Yang Feng

Yang_Feng.jpg

708 Broadway, Room 415

Department of Biostatistics

New York University

New York, NY 10003

Email: yf31@nyu.edu

Academic Appointments

Research Interests

Machine Learning
  • Transfer learning
  • Multi-task learning
  • Federated learning
  • Neyman-Pearson classification
  • Causal inference
  • Deep learning
High-Dimensional Statistics
  • Variable selection
  • Variable screening
  • Gaussian graphical models
Network Models
  • Community detection
  • Network embedding
Applications
  • Electronic health records
  • Genomics
  • Epidemiology
  • Neuroscience
  • Social networks
  • Computer vision

📄 Google Scholar Profile (View by Year)

📄 Short CV (PDF)

Editorial Activities

Selected Honors

  • Fellow, American Statistical Association (ASA)
  • Fellow, Institute of Mathematical Statistics (IMS)
  • Elected Member, International Statistical Institute (ISI)

Research Support

  • NSF Grant DMS-2324489: Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference

news

latest posts

selected publications

  1. Semiparametric Modeling and Analysis for Longitudinal Network Data
    Yinqiu He, Jiajin Sun, Yuang Tian, Zhiliang Ying, and Yang Feng
    Annals of Statistics, 2025
  2. Neyman-pearson multi-class classification via cost-sensitive learning
    Ye Tian, and Yang Feng
    Journal of the American Statistical Association, 2024
  3. Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms
    Ye Tian, Haolei Weng, and Yang Feng
    In Forty-first International Conference on Machine Learning, 2024
  4. Transfer learning under high-dimensional generalized linear models
    Ye Tian, and Yang Feng
    Journal of the American Statistical Association, 2023
  5. DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse Additive Models with Feature Division and Decorrelation
    Yifan He, Ruiyang Wu, Yong Zhou, and Yang Feng
    Journal of the American Statistical Association, 2023
  6. PCABM: Pairwise Covariates-Adjusted Block Model for Community Detection
    Sihan Huang, Jiajin Sun, and Yang Feng
    Journal of the American Statistical Association, 2023
  7. Testing community structure for hypergraphs
    Mingao Yuan, Ruiqi Liu, Yang Feng, and Zuofeng Shang
    The Annals of Statistics, 2022
  8. Large-scale model selection in misspecified generalized linear models
    Emre Demirkaya, Yang Feng, Pallavi Basu, and Jinchi Lv
    Biometrika, 2022
  9. RaSE: Random Subspace Ensemble Classification
    Ye Tian, and Yang Feng
    Journal of Machine Learning Research, 2021
  10. RaSE: A Variable Screening Framework via Random Subspace Ensembles
    Ye Tian, and Yang Feng
    Journal of American Statistical Association, 2021
  11. A Projection Based Conditional Dependence Measure with Applications to High-dimensional Undirected Graphical Models
    Jianqing Fan, Yang Feng, and Lucy Xia
    Journal of Econometrics, 2020
  12. Neyman-Pearson classification: parametrics and sample size requirement
    Xin Tong, Lucy Xia, Jiacheng Wang, and Yang Feng
    Journal of Machine Learning Research, 2020
  13. A kronecker product model for repeated pattern detection on 2d urban images
    Juan Liu, Emmanouil Z Psarakis, Yang Feng, and Ioannis Stamos
    IEEE transactions on pattern analysis and machine intelligence, 2019
  14. Neyman-Pearson classification algorithms and NP receiver operating characteristics
    Xin Tong, Yang Feng, and Jingyi Jessica Li
    Science Advances, 2018
  15. Model selection for high-dimensional quadratic regression via regularization
    Ning Hao, Yang Feng, and Hao Helen Zhang
    Journal of the American Statistical Association, 2018
  16. Neyman-Pearson classification under high-dimensional settings
    Anqi Zhao, Yang Feng, Lie Wang, and Xin Tong
    Journal of Machine Learning Research, 2016
  17. Nonparametric independence screening in sparse ultra-high-dimensional additive models
    Jianqing Fan, Yang Feng, and Rui Song
    Journal of the American Statistical Association, 2011