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ABSTRACT
Distributed statistical learning has become a popular technique for large-scale data analysis. Most existing
work in this area focuses on dividing the observations, but we propose a new algorithm, DDAC-SpAM,
which divides the features under a high-dimensional sparse additive model. Our approach involves three
steps: divide, decorrelate, and conquer. The decorrelation operation enables each local estimator to recover
the sparsity pattern for each additive component without imposing strict constraints on the correlation
structure among variables. The effectiveness and efficiency of the proposed algorithm are demonstrated
through theoretical analysis and empirical results on both synthetic and real data. The theoretical results
include both the consistent sparsity pattern recovery as well as statistical inference for each additive
functional component. Our approach provides a practical solution for fitting sparse additive models,
with promising applications in a wide range of domains. Supplementary materials for this article are
available online.
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1. Introduction

In modern statistics and computing practices, there exists a
common bottleneck that complex data with unprecedented size
cannot fit into memory nor be analyzed within reasonable time
on a single machine. One popular solution is distributed sta-
tistical learning which works by distributing the learning task
to different machines and combining the estimates afterward
(Boyd et al. 2011; Zhang, Wainwright, and Duchi 2012; Lee et al.
2017). According to the way of partitioning the dataset, we call a
method observation-distributed or feature-distributed. Substan-
tial progress has been made on the former type that partitions
observations into subsets and then fits the same model using
each subset with the same features in different machines. Most of
the literature focuses on the massive linear or generalized linear
models (Chen and Xie 2014; Zhang, Duchi, and Wainwright
2015; Zeng and Lin 2015; Tang, Zhou, and Song 2016; Zhao,
Cheng, and Liu 2016; He et al. 2016; Lee et al. 2017; Battey et al.
2018; Shi, Lu, and Song 2018). For nonparametric inference, the
existing studies include a partial linear model (Zhao, Cheng, and
Liu 2016) and nonparametric regression model (Zhang, Duchi,
and Wainwright 2013). However, to the best of our knowledge,
the feature-distributed statistical learning method, especially for
high dimensional nonparametric regression, still remains to be
developed.

In this article, we propose a feature-distributed algorithm
for sparse additive model with potentially massive number of
covariates (p � n). This problem can be formulated as follows:
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we are given n observations with response yi ∈ R and covariates
{xi1, . . . , xip} ∈ R

p for i = 1, . . . , n. The goal is to fit the additive
model (Stone 1985)

yi =
p∑

j=1
fj(xij) + εi, (1)

where the number of covariates p can grow much faster than the
sample size n with log(p) = nv for some v ∈ (0, 1). What makes
the high dimensional inference possible is the sparsity assump-
tion where only a small subset of {fj, j = 1, . . . , p} are nonzero
functions. Many sparsity-promoted estimators have been pro-
posed for (1) (Aerts, Claeskens, and Wand 2002; Ravikumar et al.
2009; Meier, Van de Geer, and Bühlmann 2009; Koltchinskii and
Yuan 2010; Huang, Horowitz, and Wei 2010; Raskutti, Wain-
wright, and Yu 2012; Yuan and Zhou 2016; Petersen, Witten,
and Simon 2016; Sadhanala and Tibshirani 2019). Since sparse
additive models (SpAM) are essentially a functional version of
the group lasso, Ravikumar et al. (2009) borrowed ideas from the
sparse linear model and proposed a corresponding algorithm for
solving the problem

min
βj∈Rdn ,j=1,...,p

1
2n

∥∥∥∥∥∥Y −
p∑

j=1
�jβj

∥∥∥∥∥∥
2

2

+ λ

p∑
j=1

√
1
n
βT

j �T
j �jβj.

where βj = (βj1, . . . , βjdn)
T is a length-dn vector of coefficients,

and �j = (ψj1, . . . , ψjdn) is an n × dn matrix of the truncated
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set of orthogonal basis functions for fj evaluated at the training
data. Minimax optimal rates of convergence were established in
Raskutti, Wainwright, and Yu (2012) and Yuan and Zhou (2016).
Other extensions of the high-dimensional additive model have
been proposed by Lou et al. (2016), Sadhanala and Tibshirani
(2019), Petersen and Witten (2019), and Haris, Simon, and
Shojaie (2022).

Considering datasets of massive dimensions that the com-
putational complexity or memory requirements cannot fit into
one single computer, the aforementioned frameworks for addi-
tive models are not directly applicable. A distributed solution
and the decentralized storage of datasets are necessary. Most
works on distributed statistical inference assume that the data
is partitioned by observations, because of the good theoretical
properties of the averaged estimators. However, under the high-
dimensional additive model, the spline basis functions are con-
structed from the whole sample. Besides, each component is
represented by a group of basis functions which results in an
even higher dimension of the design matrix than the number
of observations. It is thus desirable to seek feature-distributed
algorithms. But feature-distributed studies are scarce, partially
due to the fact that the feature distribution process which ignores
the correlation between covariates could lead to incorrect infer-
ence. Indeed, dividing feature space directly usually leads to
misspecified models and ineradicable bias.

Next, we review several works on feature distributed meth-
ods. Inspired by group testing, Zhou et al. (2014) proposed a
parallelizable feature selection algorithm. They randomly sec-
tionalized features repeatedly for tests and then ranked the
features by the test scores. This attempt can boost efficiency
but its success heavily depends on the correlation structure of
covariates. Song and Liang (2015) proposed a Bayesian variable
selection approach for ultrahigh dimensional linear regression
models based on splitting feature set into lower-dimensional
subsets and screening important variables, respectively, with
the marginal inclusion probability for final aggregation. Similar
treatments can be found in the Yang et al. (2016), although
in the final stage they used the sketch approach for further
selection. The efficiency of this kind of algorithms will again
be highly affected by the correlation structure among fea-
tures. Thus, the identifiability condition for controlling the
degree of multicollinearity is necessary. Based on those key
facts, Wang, Dunson, and Leng (2016) relaxed the correla-
tion requirements by preprocessing the data with a decorre-
lation operator (DECO) to lower the correlation in feature
space under the linear regression model. In a related work,
this decorrelation operator was shown to satisfy the irrepre-
sentable condition for lasso (Jia and Rohe 2015). With DECO,
we can get consistent estimates of coefficients with misspecified
submodels.

In this work, we consider decorrelating covariates and pro-
pose the feature-distributed algorithm DDAC-SpAM under the
high-dimensional additive model. That is, we first divide the
whole dataset by predictors, that is, each local machine operates
on only pi variables. Then local machines approximate each
component in additive models with a truncated set of B-spline
basis. After decorrelating the design matrix of the B-spline basis
with the central machine, local machines can in parallel conduct
group lasso fit efficiently. Finally, the central machine combines

the discovered important predictors and refines the estimates.
This algorithm can be regarded as a functional extension of the
DECO procedure proposed by Wang, Dunson, and Leng (2016).
It provides an efficient way of conducting simultaneous feature
selection and point estimation. On top of that, we incorporate
a debiasing step (Van de Geer et al. 2014; Cai, Zhang, and
Zhou 2022) and propose a Chi-squared test for each functional
summands in model (1).

The rest of this article is organized as follows. In Section 2,
we review the sparse additive model problem. In Section 3, we
introduce the distributed feature selection procedure for the
additive model after decorrelation. In Section 4, we construct
a Chi-squared test based on a debiased version of the DDAC-
SpAM algorithm. In Section 5, we present the sparsistency prop-
erty (i.e., sparsity pattern consistency) (Ravikumar et al. 2009)
of the DDAC-SpAM algorithm and asymptotic theories for the
hypothesis testing framework. Our simulations and a real data
analysis are presented in Sections 6 and 7, respectively, showing
the efficiency and effectiveness of our method. We conclude with
a discussion in Section 8. All the technical details are relegated
to the supplementary material.

Some standard notation used throughout this article is col-
lected here. For number a, �a� represent the smallest integer
larger than or equal to a. For a square matrix A, let λmin(A),
λmax(A) and tr(A) denote the minimum and maximum eigen-
values and the trace. We use the norms ‖A‖ = √

λmax(ATA),
‖A‖F = √

tr(ATA) and ‖A‖∞ = maxi
∑n

j=1 |Aij|. For vector

v = (v1, . . . , vk)
T, we use the norms ‖v‖ =

√∑k
j=1 v2

j and
‖v‖∞ = maxj |vj|. For function f , f = 0 means f is the zero
constant function.

2. Sparse Additive Model

Given a random sample {(xi1, . . . , xip), yi}n
i=1, where for each j,

{xij, i = 1, . . . , n} iid∼ μj in which μj is a probability distribution
supported on [0, 1], we consider the nonparametric additive
model

yi =
p∑

j=1
fj(xij) + εi,

where the error εi
iid∼ N (0, σ 2), i = 1, . . . , n. Let ε =

(ε1, . . . , εn)T. X = (xij)n×p = (X1, . . . , Xp) is the n × p design
matrix and Y = (y1, . . . , yn)T is the response vector. To ensure
identifiability of {fj, j = 1, . . . , p}, we assume Efj(xij) = 0.

For function fj, let {ψjk, k = 1, 2, . . .} denote the uniformly
bounded basis functions with respect to the Lebesgue measure
on [0, 1]. Following Ravikumar et al. (2009), we assume the
following smoothness condition.

Condition 1. For j = 1, . . . , p, fj ∈ Sj where

Sj =
{

fj ∈ Hj : fj(x) =
∞∑

k=1
βjkψjk(x),

∞∑
k=1

β2
jkk4 ≤ C2

}

for some 0 < C < ∞, where Hj is a Hilbert space of mean
zero square integrable functions with the inner product 〈fj, f ′

j 〉 =
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Efj(xij)f ′
j (xij), that is, Efj(xij) = 0, ‖fj‖2 = 〈fj, fj〉 < ∞, and

supx |ψjk(x)| ≤ B for some B. {βjk, k = 1, 2, . . . } are the
parameters corresponding to fj.

The standard form of the penalized additive model optimiza-
tion problem is

min
f1∈S1,...,fp∈Sp

n∑
i=1

⎧⎨⎩yi −
p∑

j=1
fj(xij)

⎫⎬⎭
2

+ J(f1, . . . , fp). (2)

where J is a sparsity-smoothness penalty. In this article, we
restrict our discussion to the sparsity-inducing penalty

J(f1, . . . , fp) = λn

p∑
j=1

√√√√ n∑
i=1

f 2
j (xij).

Following Meier, Van de Geer, and Bühlmann (2009), we
approximate {fj, j = 1, . . . , p} by a cubic B-spline with a proper
number of knots. One possible choice would be to place dn − 4
interior knots at the empirical quantile of Xj, that is,

fj(x) ≈ fnj(x) =
dn∑

k=1
βjkψjk(x).

With Condition 1, we can bound the truncation bias by ‖fj −
fnj‖2 = O(1/d3

n). Let h = ∑p
j=1 fj and hn = ∑p

j=1 fnj. Let S =
{j : fj �= 0} be the active set of variables and s = |S| be its
cardinality. It follows that ‖h − hn‖2 = O(s2/d3

n).
Let �j denote the n × dn B-spline basis matrix for fj, where

�j(i, k) = ψjk(xij). Let βj denote the corresponding coefficient
vector (βj1, . . . , βjdn). Then the optimization problem (2) can be
reformulated as

min
β1,...,βp

∥∥∥∥∥∥Y −
p∑

j=1
�jβj

∥∥∥∥∥∥
2

+ λ

p∑
j=1

1√
n
‖�jβj‖. (3)

This group-wise variable selection problem can be solved
by the standardized group lasso technique (Simon and Tibshi-
rani 2012). The algorithm for standardized group lasso can be
viewed as a special group lasso procedure after orthogonaliza-
tion within each group, in which group lasso is computationally
more intensive than lasso (Tibshirani 1996). Since its solution
paths are not piecewise linear, the least angle regression (LARS)
algorithm (Efron et al. 2004) is not applicable. Instead, the block
coordinate-wise descent-type algorithms (Hastie and Tibshirani
1990; Meier, Van De Geer, and Bühlmann 2008; Foygel and
Drton 2010; Wood 2011; Yang and Zou 2015) are common
approaches. Computational complexity is somewhat tricky to
quantify since it largely depends on the number of iterations.
Since each spline block costs O(ndn) operations, O(npdn) cal-
culations are required for entire data in one pass. The number of
back-fitting loops required for convergence is usually related to
p. As for the noniterative components, orthogonalization within
each block can be solved by QR decomposition which costs
O(npd2

n) operations. Besides, compared with linear regression,
memory footprint increases with the expanded spline basis
functions �j taking place of original Xj. All these manifest that
we need distributed learning to relieve stress from computation
time and memory cost.

Before introducing our method, some additional notation is
needed. Let � = (�1, . . . , �p) denote n × pdn design matrix of
the B-spline bases and β = (βT

1 , βT
2 , . . . , βT

p )T be the length-pdn
coefficient vector. If A ⊂ {1, . . . , p}, we denote the n × dn|A|
submatrix of � by �A where for each j ∈ A, �j represents
the submatrix in the corresponding order. Correspondingly, βA
is the coefficients of �A. For parallel computing, assume X
has been column-wisely partitioned into m groups, where m
represents a pre-specified number of local machines one can
access. If Xj is assigned to the ith group and it is the kth predictor
in group i, we denote it by X(i)

k . Note that there is a one-to-one
mapping between the original predictor index j and the (i, k)
pair. For convenience, define the mapping from the (i, k) pair
to the original index as j = ζ(i, k). We denote the ith part of X
by X(i) = (X(i)

1 , X(i)
2 , . . . , X(i)

pi ) which are stored in local machine
i, i = 1, . . . , m and its spline basis matrix is denoted by �(i).
Excluding �(i), we denote the remaining submatrix of � by
�(−i). Let S(i) denote the true set of important variables in the ith
group, that is, S(i) = {ζ(i, k) : f (i)

k �= 0}, with si = |S(i)|, and let
Sc(i) = {ζ(i, k) : f (i)

k = 0} denote its complement. Thus, S is the
union of S(i), i = 1, . . . , m, and Sc denotes its complement. �(i)

S
is the submatrix of �(i) consisting of spline basis of important
predictors in the ith group and �

(i)
Sc is the basis matrix for the

noise predictors.

3. DDAC-SpAM Algorithm

Since X has already been column-wisely partitioned, each local
machine stores one subset of the predictors and Y . Before the
parallel variable selection, let us begin with a decorrelation step
for the additive model.

Reformulated as the linear combination of basis functions, we
have

Y = �β + Z + ε, (4)

where Z = (z1, . . . , zn)T with zi = ∑p
j=1[fj(xij) − fnj(xij)], i =

1, . . . , n.
The most intuitive way to reduce correlation is orthogonaliz-

ing the basis matrix � to make its columns uncorrelated by left-
multiplication. If � has full column rank with n > pdn, we write
� via singular value decomposition as � = UDVT, where U is a
n × pdn tall matrix with orthonormal columns, D is a pdn × pdn
diagonal matrix and V is a pdn × pdn orthogonal matrix. Then,
we set �̃ = F� . Here, F = UD−1UT. It is easy to see that the
columns of �̃ are orthogonal. Actually, F can be calculated in
the central machine by( m∑

i=1
�(i)�(i)T

)+
2

,

where the n × n matrix �(i)�(i)T is transmitted from local
machine and A+ denotes the Penrose-Moore pseudo-inverse
of A.

Left multiplying F on both sides of (4), we get

FY = F�β + FZ + Fε.
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It can be denoted as

Ỹ = �̃β + Z̃ + ε̃. (5)

The spline basis matrix �̃ satisfies �̃T
i �̃j = 0 for any i �= j and

�̃T
i �̃i = Idn .
The group lasso working mechanism for the ith data sub-

group
{

Ỹ , �̃(i)} can be shown as follow. First, the optimization
object (3) would be

L(β(i)) =
∥∥∥∥∥Ỹ −

pi∑
k=1

�̃
(i)
k β

(i)
k

∥∥∥∥∥
2

+ λn

pi∑
k=1

1√
n
‖�̃(i)

k β
(i)
k ‖. (6)

As shown in Yuan and Lin (2006) and Ravikumar et al.
(2009), a solution to (6) satisfies

β̂
(i)
k =

[
1 − λn

‖P(i)
k ‖

]
+

P(i)
k ,

where P(i)
k = �̃

(i)T
k Ỹ .

Combining with (5), we can derive that

P(i)
k = �̃

(i)T
k

(
�̃

(i)
k β

(i)
k + �̃

(i)
−kβ

(i)
−k + �̃(−i)β(−i) + Z̃ + ε̃

)
= β

(i)
k + �̃

(i)T
k �̃

(i)
−kβ

(i)
−k + �̃

(i)T
k �̃(−i)β(−i) + �̃

(i)T
k Z̃ + �̃

(i)T
k ε̃

= β
(i)
k + �̃

(i)T
k Z̃ + �̃

(i)T
k ε̃ (7)

where �̃
(i)
−k = (�̃

(i)
1 , . . . , �̃(i)

k−1, �̃(i)
k+1, . . . , �̃(i)

pi ) and β
(i)
−k =

(β
(i)T
1 ,. . .,β(i)T

k−1,β(i)T
k+1,. . ., β

(i)T
pi )T. Since the last two terms of (7)

can be bounded by Condition 1, with a mild condition for ��T

to be presented in Section 5, P(i)
k converges to β

(i)
k almost at the

same rate as that with the full data.
When pdn ≥ n, SVD of � generates a n×n orthogonal matrix

U, a pdn × n matrix V with only orthonormal columns and D is
a n × n diagonal matrix. Then F becomes (

∑m
i=1 �(i)�(i)T)− 1

2 .
Although the columns of �̃ are not exactly mutually orthogonal,
that is, for some i �= j, �̃T

i �̃j �= 0, according to Khatri and Pillai
(1965), we have E(�̃T�̃) = (n/pdn)Ipdn , which means that any
two columns of �̃ are orthogonal in expectation. Thus, we can
still apply the same decorrelation step to get a new response Ỹ
and the design matrix �̃ .

The decorrelation operation mainly aims to lower the corre-
lation between the basis functions in different blocks. To show
it visually, we now present a simple example with n < pdn. In
particular, we sample X from zero mean normal distribution
with covariance matrix 	 = [σij], where σii = 1, σij = ρ with
i �= j and (n, p) = (500, 1000). A cubic B-spline with dn = 5 is
used. We focus on comparing ρ̃ij := tr(�̃T

i �̃j)/(‖�̃i‖F‖�̃j‖F)

and ρij := tr(�T
i �j)/(‖�i‖F‖�j‖F), 1 ≤ i < j ≤ p. The

difference between these two terms is affected by the depen-
dence between basis functions of different covariates. We call
them quasi-correlation here. Figure 1 shows the boxplots of
quasi-correlation before and after the decorrelation step when
ρ increases. It can be seen that while ρij increases with ρ, ρ̃ij is
stable throughout the range of ρ at a very low level, which means
the decorrelation step reduces correlation between additive
components in high-dimensional additive model significantly.

After the decorrelation step, since {�̃(i)
k , k = 1, . . . , pi} is not

exactly column-orthogonal, we cannot apply the SpAM backfit-
ting algorithm (Ravikumar et al. 2009) directly with

{
Ỹ , �̃(i)} on

Figure 1. Comparison of quasi-correlations for � and �̃ .

the ith local machine. Following Simon and Tibshirani (2012),
we use a method similar to the standardized group lasso to solve
this problem.

Specifically, we apply QR decomposition for each block �̃
(i)
k ,

i = 1, . . . , m, k = 1, . . . , pi into the product of an orthogo-
nal matrix Q̃(i)

k and an upper triangular matrix R̃(i)
k . Then, the

ith local machine runs the SpAM backfitting algorithm with{
Ỹ , Q̃(i)} to solve the following problem

θ̂ (i) = arg min
θ(i)=(θ

(i)T
1 ,...,θ(i)T

pi )T

1
n
‖Ỹ − Q̃(i)θ (i)‖2 + λn

pi∑
k=1

‖Q̃(i)
k θ

(i)
k ‖,

i = 1, . . . , m (8)

and select variables, where Q̃(i) = (Q̃(i)
1 , . . . , Q̃(i)

pi ).
The original coordinates β̂(i) can be back-solved by

β̂
(i)
k = (̃R(i)

k )−1θ̂ (i)
k . (9)

However, this is unnecessary for the purpose of feature selection
since θ̂

(i)
k = 0 implies β̂

(i)
k = 0. The local machines only

need to transfer the selected important variables and their basis
functions to the central machine. The final estimates of β(i) and
fj(Xj) will be computed on the central machine.

Let Ŝ(i) = {ζ(i, k) : θ̂
(i)
k �= 0} denote the ith estimated set of

important variables, for i = 1, . . . , m, and Ŝ be their union. The
details of DDAC-SpAM are provided in Algorithm 1.

Remark 1. Steps 1 and 2 are used for data initialization and divi-
sion. Steps 3–5 are the decorrelation steps. Step 6 and 7 are dis-
tributed feature selection and final refinement steps, respectively.
In Step 4, we use

∑m
i=1 �(i)�(i)T +rIn instead of

∑m
i=1 �(i)�(i)T

for robustness. Besides, using ridge regression in Step 7 instead
of ordinary least squares is also for robustness.

Now, we analyze the computational complexity and memory
consumption of DDAC-SpAM. For convenience, we assume that
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Algorithm 1: Divide, decorrelate and conquer SpAM
(DDAC-SpAM)

Input: Y , X, dn, the number of machines m, the ridge
regularization parameter r.

1 On the central machine, store and standardize Y to get
Y ;

2 Randomly divide predictors into m parts: X(1), . . . , X(m)

and allocate (Y , X(i)) to the ith local machine for
i = 1, . . . , m;

3 On the ith local machine, i = 1, . . . , m, generate spline
basis matrix �(i) for X(i), standardize every column of
�(i) to get �(i) and transmit �(i)�(i)T to the central
machine;

4 On the central machine, compute
F = (

∑m
i=1 �(i)�(i)T + rIn)−1/2 and transmit it to the

local machines;
5 On the ith local machine, i = 1, . . . , m, compute

�̃(i) = F�(i) and Ỹ = FY ;
6 On the ith local machine, i = 1, . . . , m, (a) perform the

QR factorization �̃
(i)
k = Q̃(i)

k R̃(i)
k , for k = 1, . . . , pi; (b)

run the SpAM backfitting algorithm to solve (8); (c)
push Ŝ(i) and �Ŝ(i) to the central machine;

7 On the central machine, combine �Ŝ(i) , i = 1, . . . , m, to
get �Ŝ. Apply ridge regression on (Y , �Ŝ) and get β̂Ŝ;

Output: Ŝ and f̂j, j ∈ Ŝ.

the p features are evenly distributed to m parts. Excluding spline
interpolation, the costs of the decorrelation operation and QR
factorization are O(n3 + n2pdn/m + n2m) and O(npd2

n/m)

per local machine, respectively, so the total cost is O(n3 +
n2pdn/m + n2m). For parallel estimation, within each iteration
of the SpAM backfitting algorithm, O(npdn/m) calculations
are required. Assume the number of loops is k. So the total
computational cost is O(n3 + n2pdn/m + n2m + knpdn/m) for
DDAC-SpAM, compared with O(knpdn + npd2

n) for SpAM on a
single machine. Meanwhile, the memory consumption of every
local machine through the entire algorithm is decreased roughly
by a factor of m. As shown above, DDAC-SpAM can significantly
speed up computation and relax memory requirements. This
will be demonstrated in the numerical study section.

4. Statistical Inference via Debiased DDAC-SpAM

In the previous section, we have developed the DDAC-SpAM
algorithm for feature selection of the sparse additive model.
With the selected variables, we further apply ridge regression to
obtain an estimation of the coefficients β in (4). In this section,
we study the statistical inference for β .

Naturally associated with the sparse additive model yi =∑p
j=1 fj(xij)+εi, we focus on the fundamental hypothesis testing

problem H0: fj = 0 versus H1: fj �= 0 for some 1 ≤ j ≤ p.
In terms of the B-spline basis expansion under our distributed
computing setting, this is equivalent to

H0 : β
(i)
k = 0 versus H1 : β

(i)
k �= 0 (10)

for 1 ≤ i ≤ m and 1 ≤ k ≤ pi.

Based on recent developments in high-dimensional inference
for linear models (Van de Geer et al. 2014; Cai, Zhang, and
Zhou 2022), we construct the following debiased DDAC-SpAM
estimator

β̂u = β̂ + pdn
n

�̃T
(

Ỹ − �̃β̂
)

, (11)

where β̂ is the DDAC-SpAM estimate of β obtained from (9).
Restricting ourselves to the kth variable in the ith machine,
β̂

u(i)
k enjoys the property that its scaled and decorrelated ver-

sion M̂(i)
k

(
β̂

u(i)
k − β

(i)
k

)
approximately follows a dn-dimensional

standard normal distribution, where

M̂(i)
k = (�̃

(i)T
k FFT�̃

(i)
k )−1/2n/(pdnσ̂ ), (12)

in which σ̂ is an estimate for σ (Theorem 2). Therefore, we
define our test statistic T (i)

k := ‖M̂(i)
k β̂

u(i)
k ‖2, which follows

χ2(dn) asymptotically under H0. The notation Tj := T (i)
k is also

used when j = ζ(i, k). With significance level α0, we reject the
null hypothesis of (10) when T (i)

k > F−1
dn

(1 − α0), where Fdn

is the cumulative distribution function for χ2(dn). The detailed
testing procedure is presented in Algorithm 2.

Remark 2. In Cai, Zhang, and Zhou (2022) and Van de Geer
et al. (2014), the debiased estimator is constructed as β̂u = β̂ +
�̂�T(Y −�β̂)/n, where �̂ is an estimate of (�T�/n)−1. When
working with decorrelated �̃ and Ỹ , we have (�̃T�̃/n)−1 ≈
pdnIpdn (Khatri and Pillai 1965), which leads to the definition
in (11).

Algorithm 2: Inference via Debiased DDAC-SpAM
(H0 : β

(i0)
k0

= 0 versus H1 : β
(i0)
k0

�= 0)
Input: Y , X, dn, the number of machines m, the ridge

regularization parameter r, the significance level
α0.

1 On the central machine, store and center Y to get Y ;
2 Steps 2–5 of Algorithm 1;
3 On the ith local machine, i = 1, . . . , m, perform the QR

factorization �̃
(i)
k = Q̃(i)

k R̃(i)
k , for k = 1, . . . , pi, run the

SpAM backfitting algorithm to solve (8), compute β̂(i)

by β̂
(i)
k = (̃R(i)

k )−1θ̂ (i)
k , and push Ŷ(i) = �(i)β̂(i) to the

central machine;
4 On the central machine, fetch β̂

(i0)
k0

and �̃
(i0)
k0

from the
i0th machine, compute ε̂ = Y − ∑m

i=1 Ŷ(i),
σ̂ = ‖ε̂‖/√n, M̂(i0)

k0
= (�̃

(i0)T
k0

FFT�̃
(i0)
k0

)−1/2n/(pdnσ̂ ),
β̂

u(i0)
k0

= β̂
(i0)
k0

+ pdn�̃
(i0)T
k0

Fε̂/n and
T (i0)

k0
= ‖M̂(i0)

k0
β̂

u(i0)
k0

‖2;
Output: “Reject” if T (i0)

k0
> F−1

dn
(1 − α0); “Accept”

otherwise.

5. Theoretical Results

In this section, we provide the theoretical framework for DDAC-
SpAM to show it is variable selection consistent (sparsistent)
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under mild conditions. On top of that, we further derive
the asymptotic distribution for the debiased DDAC-SpAM
estimator.

For results in this section, we will treat X as random. When
pdn ≥ n, let the spline interpolation � = UDVT, where U is a
n × n orthogonal, D is a n × n diagonal matrix and V satisfies
VTV = In. �̃ = F� = UVT satisfies �̃�̃T = In. All n ×
pdn matrices whose rows are orthonormal (e.g., �̃) form Stiefel
manifold V(n, pdn) (Downs 1972).

For clarity, we review the definition of uniform distribution
for a random matrix.

Definition 1 (Chikuse 2003). A random n × p matrix H is uni-
formly distributed onV(n, p), written H ∼ Uniform (V(n, p)), if
H has the same distribution as HO for any fixed p×p orthogonal
matrix O.

Besides Condition 1, we further make the following assump-
tions for � .

Condition 2. �̃ ∼ Uniform (V(n, pdn)).

We allow the minimum eigenvalue of ��T decay with sam-
ple size at a certain rate.

Condition 3. P(λmin(��T/pdn) > δnα−1) ≥ 1 −
exp(−ξnγ ), for some 0 < α ≤ 1 and δ, ξ , γ > 0.

Similar conditions to Condition 2 have been imposed on the
design matrix of linear model (Jia and Rohe 2015). Condition 3
is related to Theorem 2 in Ravikumar et al. (2009) in which they
require the eigenvalues of n−1�T� to be bounded by constants.
When the number of covariates diverges with n, Condition 3 is
more general than theirs.

We also assume that the truncation size dn, regularization
parameter λn and the number of important variables s satisfy

Condition 4. dn → ∞, λ̃n → 0, λ̃−2
n n−1s2dn → 0,

λ̃−2
n n1−αs2d−3

n → 0, λ̃−2
n n−αsdn → 0 and

√
sλ̃n/ρn → 0,

where λ̃n = √
pdnλn and ρn = minj∈S ‖βj‖∞.

Similar conditions were assumed in many high-dimensional
additive model variable selection literatures, such as condition
(B2) for Theorem 3 in Huang, Horowitz, and Wei (2010).

Additionally, assume

Condition 5. p = o(exp(sdn)).

To clarify the implications of Conditions 4 and 5, assume the
number of important variables is bounded, that is, s = O(1).
Then, in practice, we can set dn � n1/5. The order of dimension
pn can be as large as o(exp(n1/5)). If 1/ρn = o(nα/2−1/5/ log n),
a suitable choice for the regularization parameter λ̃n would be
n1/5−α/2 log n for some 2/5 < α ≤ 1.

If we impose a slightly more strict requirement on α (e.g.,
3/5 < α ≤ 1), then the sparsity s is allowed to increase
with n. For example, assuming s � n1/10, p = o(exp(n3/10)),
dn � n1/5 and 1/ρn = o(nα/2−7/20/ log n), we can choose
the regularization parameter λ̃n � n3/10−α/2 log n so that both
Conditions 4 and 5 are satisfied.

The key of our algorithm is to reduce the correlation between
predictors which leads to a milder constraint for the correlation
structure of variables or fj(Xj) within Theorem 1 than before. It
can be reflected in two aspects. First, there is no assumption for
the correlation between important variables that are distributed
to different local machines, since the bound of this kind of
correlation is reduced to

P

{∥∥∥∥∥pdn�̃
(i)T
S �̃

(−i)
S

n

∥∥∥∥∥ ≤ C1λ̃n√
s

}
→ 1,

for some C1 > 0, as shown in Lemma S.2 in the supplemen-
tary material of this article. Second, there is no assumption
for the correlation between important variables and irrelevant
variables. Specifically, we do not need a version of irrepre-
sentable condition (Zhao and Yu 2006) for selection consistency
of DDAC-SpAM. In previous works, such as Ravikumar et al.
(2009), this kind of condition can be formulated as an upper
bound for

max
j∈Sc

∥∥∥∥∥
(

1
n
�T

j �S

)(
1
n
�T

S �S

)−1
∥∥∥∥∥ ,

while this bound exists in our work by

P

{
max
j∈Sc(i)

∥∥∥∥∥pdn�̃
(i)T
S �̃

(i)
k

n

∥∥∥∥∥ ≤ C2√
s

,

∥∥∥∥∥
(

pdn
n

�̃
(i)T
S �̃

(i)
S

)−1
∥∥∥∥∥ ≤ C3

}
→ 1,

for some C2, C3 > 0. The details and proof of these results can
be found in Lemmas S.2, S.3, S.4 of the supplementary material.

Theorem 1. Assuming Conditions 1–5 hold and si > 0, the
following inequality holds for sufficiently large n:

P
(

Ŝ(i) = S(i)
)

≥ 1−exp(−ξnγ )−16(pi−si+1) exp(−sdn) → 1,

that is, the local estimator on machine i is sparsistent.

The convergence rate of P(Ŝ(i) = S(i)) is controlled by two
o(1) terms, where exp(−ξnγ ) directly follows from Condition 3,
and 16(pi − si + 1) exp(−sdn), as a combined rate, has con-
nections to both the Gaussian assumption of ε and the uniform
assumption in Condition 2. The additional technical condition
si > 0 is not critical in our numerical studies, as we will show
in the following sections. The proof of Theorem 1 is provided in
the supplementary material.

After aggregating the results from local machines, we can
derive the following corollary.

Corollary 1. Under Conditions 1–5, the central estimator is
sparsistent:

P
(

Ŝ = S
)

≥ 1 − exp(−ξnγ ) − 16(p − s + 1) exp(−sdn) → 1.

Next, we will establish the theoretical foundation of Algo-
rithm 2. To ensure our test statistic T follow the desired Chi-
squared distribution asymptotically, we need two additional
conditions.

Condition 6. P(λmax(��T/pdn) ≤ δ′) ≥ 1 − exp(−ξ ′nγ ′
) for

some δ′, ξ ′, γ ′ > 0.
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Condition 7. ns2d−3
n → 0 and

√
sλ̃nn1/4 → 0.

Condition 6 resembles Condition 3 and requires the eigen-
values of ��T to be bounded from above with high proba-
bility. Condition 7 strengthens Condition 4 to make the more
challenging statistical inference a feasible task. One immedi-
ate implication of Condition 7 is that more knots are needed
for the B-spline basis. With s = O(1), it is necessary that
dn � n1/3. For instance, we may set dn � n1/3 log n, which
along with λ̃n � n1/6−α/2 log n, 1/ρn = o(nα/2−1/6/ log n)

and p = o(exp(n1/3 log n)) would satisfy all requirements of
Conditions 4, 5, and 7 for 5/6 < α ≤ 1.

Theorem 2. Assuming Conditions 1–7 hold and si > 0, the debi-
ased DDAC-SpAM estimator β̂u has the following asymptotic
distribution:

M̂(i)
k

(
β̂

u(i)
k − β

(i)
k

) d−→ N (0, Idn),

for all 1 ≤ i ≤ m and 1 ≤ k ≤ pi, where M̂(i)
k =

(�̃
(i)T
k FFT�̃

(i)
k )−1/2n/(pdnσ) is (12) with σ̂ replaced by its true

value σ . In addition, the test statistic

T (i)
k = ‖M̂(i)

k β̂
u(i)
k ‖2 d−→ χ2(dn)

when β
(i)
k = 0.

6. Simulation Studies

6.1. Performance Comparison Under Different Correlation
Structures and Distributions

To study the performance of the DDAC-SpAM procedure on
simulated datasets, we divide feature space evenly and randomly.
Since the results are stable for different choices of r, we fix it
to be 1 throughout the numerical studies for simplicity. For
each fj, we use a cubic B-spline parameterization with dn =
�0.1n1/3 log n� according to the discussions after Condition 7.
For comparison, we include the full data SpAM with a ridge
refinement (SpAM) and SpAM with separated feature space
without decorrelation (DAC-SpAM). The oracle method that
employs Step 7 of Algorithm 1 with �Ŝ replaced by �S is also
included as the benchmark. We report the false positives (FP),
false negatives (FN), the mean squared error ‖ĥ−h‖2 (MSE) and
computational time (Time). We use gglasso (Yang and Zou
2017) and glmnet (Friedman, Hastie, and Tibshirani 2010)
with 5-fold cross-validation to fit group lasso and ridge regres-
sion, respectively. We consider an exponentially-decay sequence
for λn, whose value varies from λ

(1)
n > λ

(2)
n > · · · > λ

(500)
n ,

where λ
(1)
n is the smallest λ value such that all coefficient esti-

mates are zero and λ
(500)
n = 0.001λ

(1)
n .

We define the signal-to-noise ratio

SNR = var(h(X))

var(ε)
.

Independent Predictors. We first consider the case with
independent predictors. Two examples where predictors follow
a uniform distribution and normal distribution are analyzed,
respectively.

Example 1 (SNR ≈ 15). Following Example 1 in Meier, Van de
Geer, and Bühlmann (2009), we generate the data from the
following additive model:

yi = 2g1(xi1) + 1.6g2(xi2) − 4g3(xi3, 2) + g4(xi4) + 1.5εi,

with

g1(x) = x, g2(x) = x2 − 25
12

, g3(x, ω) = sin(ωx),

g4(x) = e−x − 2/5 · sinh(5/2),

where the covariates X = (X1, . . . , Xp) are simulated from

independent Uniform (−2.5, 2.5) and εi
iid∼ N (0, 1).

Example 2 (SNR ≈ 15). In this example, the covariates X =
(X1, . . . , Xp) are simulated from independent standard normal
distribution. The model is

yi = 5g1(xi1) + 2.1g5(xi2) + 13.2g6(xi3,
π

4
) + 17.2g7(xi4,

π

4
) + 2.56εi,

with

g5(x) = (x − 1)2, g6(x, ω) = sin(ωx)

2 − sin(ωx)
,

g7(x, ω) = 0.1 sin(ωx) + 0.2 cos(ωx) + 0.3 sin2(ωx)

+0.4 cos3(ωx) + 0.5 sin3(ωx),

and εi
iid∼ N (0, 1).

Dependent Predictors. For dependent predictors with dif-
ferent distributions, we investigate three different correlation
structures.

Example 3 (SNR ≈ 6.7). Following Example 3 in Meier, Van de
Geer, and Bühlmann (2009), the covariates are generated with
the following random-effects model:

Xj = Wj + tU�j/20�
1 + t

, j = 1, . . . , p,

where W1, . . . , Wp, U1, . . . , U�p/20�
iid∼ Uniform (0, 1). By con-

struction, the p predictors are partitioned into segments of size
20. Variables in different segments are independent while the
variables in each segment are dependent through the shared
U variable. As a result, the correlation strength within each
segment is controlled by t. Here, we set t = 1.5, leading to a
correlation between Xi and Xj to be 0.6 when they are in the same
segment. The model is

yi = 2.5g1(xi1) + 2.6g5(xi2) + g6(xi3, 2π) + g7(xi4, 2π) + 0.3εi,

where εi
iid∼ N (0, 1).

Example 4 (SNR ≈ 6.7). The setting is the same as Example 3
except that Xj = (Wj + tU)/(1 + t) and U ∼ Uniform (0,1). We
set t = 1.5 leading to the pairwise correlation of all covariates
being 0.6.
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Example 5 (SNR ≈ 18). The covariates are generated according
to a multivariate normal distribution with zero mean and covari-
ance matrix 	 = [σij], where σii = 1 and σij = 0.5 for i �= j. Y
is generated with

yi = 2.5g1(xi1)+ g5(xi2)+6.5g6(xi3,
π

4
)+8.5g7(xi4,

π

4
)+1.2εi,

where εi
iid∼ N (0, 1).

For all examples, the feature dimension and the sample size
are fixed at p = 10,000 and n = 500, respectively, which leads
to dn = 5. The number of machines is fixed as m = 20.
We run each simulation for 100 times and report the average
performance in Table 1.

Several conclusions can be drawn from Table 1. In Examples 1
and 2 where all variables are independent, DDAC-SpAM and
DAC-SpAM perform the best, closely mimicking the perfor-
mance of Oracle in terms of MSE. The possible reason for the
similar performance between DDAC-SpAM and DAC-SpAM
is that the decorrelation step is not necessary under this inde-
pendent setting. On the other hand, SpAM tends to select more
irrelevant variables. This shows that for independent variables,
distributed feature selection can enhance the selection accuracy.
Also, we can see that both DDAC-SpAM and DAC-SpAM take
much less time than SpAM, showing the power of distributed
computing. In Examples 3–5 where the variables are dependent,
the performances of both SpAM and DAC-SpAM deteriorate,
possibly due to the violation of the irrepresentable condition.
On the contrary, DDAC-SpAM is far less affected and achieves
the overall best performance. In particular, it has much fewer
false positives than the other two methods. This shows that the
decorrelation step can handle such kinds of strong correlation
structures. Also it leads to a smaller MSE than SpAM and DAC-
SpAM for Examples 4 and 5. This shows the importance of the
decorrelation step when there exists correlation among features.
Similar to Examples 1 and 2, we observe DDAC-SpAM and
DAC-SpAM are much faster to compute than SpAM. Inter-
estingly, DDAC-SpAM takes significantly less time to compute

than DAC-SpAM, possibly due to a faster SpAM fitting after
decorrelation.

6.2. Performance Comparison with Varying Number of
Machines

Corollary 1 indicates the sparsistency property of DDAC-SpAM
is irrelevant to the number of machines m. This is because
in the ideal scenario where the decorrelation step produces
perfectly independent covariates, the aggregated result from the
local machines is identical to the full data estimator. In reality,
correlation between variables can never be fully eliminated, in
which case a large m value mainly has two effects. First, it
increases bias by distributing correlated variables into differ-
ent machines, which can potentially hurt the performance of
DDAC-SpAM. Second, it tends to separate correlated important
variables, encouraging their simultaneous selection.

In this experiment, we analyze the impact of the number of
machines on the performance of DDAC-SpAM with simulated
data. We fix the sample size n = 500 and the dimension p =
10,000, and vary the number of machines m from 1 to 200 (m =
1, 10, 20, 100, 200). Naturally, as m increases, each machine has
a lower local dimension. The data is generated using Example 4
in Section 6.1.

We summarize the results in Figure 2. First, we observe
that all three methods capture nearly all important variables.
Compared with DAC-SpAM and SpAM, DDAC-SpAM has the
smallest number of false positive variables and lowest estimation
error. While DAC-SpAM suffers from high correlation between
features when the computation is distributed, that is, m > 1, the
feature selection and prediction performance of DDAC-SpAM
is stable throughout the range of m. Besides, thanks to the dis-
tributed framework, the time consumption of DDAC-SpAM and
DAC-SpAM decreases as m increases. Although decorrelation
increases the computational complexity which is evident when
the dataset is not partitioned, that is, m = 1, DDAC-SpAM
takes less time than DAC-SpAM as m increases. The reason
is that the reduced correlation between variables leads to less
number of back-fitting loops required for convergence in the

Table 1. Average false positive (FP), false negative (FN), mean squared error (MSE), time (in seconds) over 100 repetitions and their standard deviations (in parentheses).

Model Method FP FN MSE Time

Example 1 DDAC-SpAM 0.02 (0.14) 0.00 (0.00) 0.465 (0.09) 42.96 (2.55)
DAC-SpAM 0.04 (0.20) 0.00 (0.00) 0.466 (0.09) 42.05 (2.97)

SpAM 1.22 (3.55) 0.00 (0.00) 0.562 (0.20) 1524.47 (348.38)
Oracle NA (NA) NA (NA) 0.464 (0.09) NA (NA)

Example 2 DDAC-SpAM 0.03 (0.22) 0.00 (0.00) 2.369 (0.59) 42.60 (2.08)
DAC-SpAM 0.01 (0.10) 0.00 (0.00) 2.365 (0.59) 41.70 (1.95)

SpAM 0.61 (1.47) 0.00 (0.00) 2.496 (0.64) 1521.43 (243.08)
Oracle NA (NA) NA (NA) 2.367 (0.59) NA (NA)

Example 3 DDAC-SpAM 3.59 (3.58) 0.09 (0.29) 0.036 (0.03) 42.02 (2.18)
DAC-SpAM 4.67 (3.15) 0.07 (0.26) 0.035 (0.02) 41.48 (2.20)

SpAM 6.58 (6.39) 0.00 (0.00) 0.036 (0.01) 1542.65 (302.87)
Oracle NA (NA) NA (NA) 0.026 (0.00) NA (NA)

Example 4 DDAC-SpAM 0.01 (0.10) 0.03 (0.17) 0.030 (0.02) 43.44 (2.39)
DAC-SpAM 41.23 (14.21) 0.00 (0.00) 0.055 (0.01) 76.73 (8.12)

SpAM 22.23 (11.67) 0.00 (0.00) 0.047 (0.01) 1386.66 (243.80)
Oracle NA (NA) NA (NA) 0.026 (0.00) NA (NA)

Example 5 DDAC-SpAM 0.20 (1.15) 0.01 (0.10) 0.680 (0.39) 42.07 (2.51)
DAC-SpAM 18.81 (13.69) 0.00 (0.00) 0.887 (0.16) 90.10 (6.64)

SpAM 11.92 (9.00) 0.00 (0.00) 0.832 (0.15) 1514.38 (396.94)
Oracle NA (NA) NA (NA) 0.643 (0.13) NA (NA)
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Figure 2. Performance of DDAC-SpAM, DAC-SpAM, and SpAM with different number of local machines.

additive model fitting. Overall, DDAC-SpAM excels at using
all available computing resources, and is highly efficient and
effective compared to existing algorithms for high-dimensional
additive models.

6.3. Hypothesis Testing

In this section, we investigate the performance of the Chi-
squared test in Algorithm 2 with simulated data, under a setting
adapted from Example 3 in Section 6.1. The covariates Xj are
generated in the same way:

Xj = Wj + tU�j/20�
1 + t

, j = 1, . . . , p,

where W1, . . . , Wp, U1, . . . , U�p/20�
iid∼ Uniform (0, 1). In the

model, we include a parameter a to control the signal-to-noise
ratio:

yi = a
[
2.5g1(xi1) + 2.6g5(xi2) + g6(xi3, 2π) + g7(xi4, 2π)

]
+ 0.5εi.

As before, we fix the sample size n = 500, the dimension
p = 10,000, the truncation size dn = 5, and the number of
machines m = 20. And we vary the parameter a from 0.1 to 1 in
increments of 0.1. Finally, we set the significance level α0 = 0.05.

Note that due to the lack of formal hypothesis testing algo-
rithms for high-dimensional sparse additive models, we focus

Figure 3. Type I error and power curves of the Chi-squared test in Algorithm 2.

on analyzing the performance of our method only. We report
the averages of

Type I error = (p − 4)−1
p∑

j=5
1{Tj>F5(0.95)}

and
Power = 4−1

4∑
j=1

1{Tj>F5(0.95)}
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over 100 simulation runs in Figure 3. The Type I error curve
stays constantly below the significance level of 0.05 across the
range of a, whereas the power curve first shows a steep positive
slope for small a values and then gradually increases as a con-
tinues to increase. The turning point occurs at a ≈ 0.3, with
SNR ≈ 1.3.

7. An Application to Real Data

In this section, we compare the performances of DDAC-SpAM,
SpAM, Deco-linear (Wang, Dunson, and Leng 2016), and lasso
(Tibshirani 1996) on the meatspec dataset analyzed by Meier,
Van de Geer, and Bühlmann (2009) and Yang and Zou (2017).
The dataset was recorded by a Tecator near-infrared spectrome-
ter which measured the spectrum of light transmitted through a
sample of minced pork meat (Borggaard and Thodberg 1992;
Thodberg 1993). It is available in the R package faraway.
Our aim is to predict the fat content by absorbances which can
be measured more easily. This original dataset contains n =
215 observations with p = 100 predictors which are highly
correlated (Meier, Van de Geer, and Bühlmann 2009). In fact,
the average correlation between different predictors is about
0.986. After all predictors are centered and scaled to have mean
0 and variance 1, we add 1900 simulated variables from joint
distribution N (0, 	) as artificial noise terms, where 	ii = 1
and 	ij = 0.98 for i �= j, for the purpose of mimicking the
high-correlation among the “actual” predictors. Then, DDAC-
SpAM, SpAM, Deco-linear, and lasso are applied to predict the
fat content using these 2000 features. We use 10 machines for
the DDAC-SpAM algorithm, where the features are distributed
randomly. To compare the performances of all methods, we
randomly split the dataset into a training set of 172 observa-
tions (80%) and a test set of 43 observations (20%), which also
specifies the truncation size dn = �0.1(1721/3 log 172)� = 3.
We repeat the procedure 100 times. For each random split, we
compute the number of predictors selected, the prediction errors
on the test set, and the false positives among the 1900 simulated
variables. Table 2 includes the average values and their associated
robust standard deviations over 100 replications. To evaluate
DDAC-SpAM’s dependency on the number of local machines,
we conduct the same experiment with varying m values (m =
1, 5, 10, 20, 50), and summarize the results in Table 3.

From Table 2, DDAC-SpAM outperforms Deco-Linear and
lasso in terms of prediction errors. The performance of SpAM is
superior to DDAC-SpAM, possibly because it can take advan-
tage of the perfect independence between the original pre-
dictors and the 1900 new variables, while the decorrelation
step in DDAC-SpAM inadvertently introduces correlation. Note
that DDAC-SpAM selects significantly fewer predictors than

Table 2. Average prediction error (PE), model size (MS) and false positive count (FP)
over 100 repetitions and their robust standard deviations (in parentheses) for DDAC-
SpAM, SpAM, Deco-Linear and lasso.

Method PE MS FP

DDAC-SpAM 0.337 (0.087) 13.84 (4.17) 7.52 (4.15)
SpAM 0.290 (0.084) 21.30 (5.03) 9.36 (5.25)
Deco-Linear 0.453 (0.114) 58.09 (23.00) 50.15 (19.14)
lasso 0.399 (0.107) 82.62 (32.99) 21.81 (11.18)

Table 3. Average prediction error (PE), model size (MS) and false positive count (FP)
over 100 repetitions and their robust standard deviations (in parentheses) for DDAC-
SpAM using m local machines.

m PE MS FP

1 0.488 (0.108) 28.88 (14.12) 24.38 (13.37)
5 0.368 (0.085) 11.64 (3.53) 6.40 (3.55)
10 0.337 (0.087) 13.84 (4.17) 7.52 (4.15)
20 0.304 (0.078) 16.01 (4.50) 7.79 (4.38)
50 0.292 (0.077) 15.95 (3.84) 6.93 (3.73)

competing methods. Considering the high correlation among
predictors and to provide a more parsimonious list, DDAC-
SpAM could be a very worthwhile method for distributed fea-
ture selection. In Table 3, we observe the prediction errors of
DDAC-SpAM steadily decrease as m increases. This is because
with more machines used for distributed computing, it is more
likely for correlated important features to be separated, making
the consistent selection easier.

8. Discussion

In this article, we have developed a new feature-distributed
learning framework named DDAC-SpAM for the high dimen-
sional additive model. DDAC-SpAM makes predictors less cor-
related and more suitable for the further sparsistent variable
selection. The experiments illustrate that this method not only
reduces the computational cost substantially, but also outper-
forms the existing approach SpAM when covariates are highly
correlated. This is the first work to combine the divide and
conquer method with the high dimensional nonparametric
model for feature-distributed learning. The results demonstrate
that DDAC-SpAM is appealing through the lens of theoret-
ical analysis, empirical performance and its straightforward
implemention.

Given that we specifically approximate the additive compo-
nents by truncated B-spline bases and then impose the spar-
sity penalty only, DDAC-SpAM framework is readily avail-
able for other smoothing method with the additive models,
for example, smoothing splines (Speckman 1985) and sparsity-
smoothness penalized approaches (Meier, Van de Geer, and
Bühlmann 2009). Besides, extension to the generalized additive
model can be an interesting topic for future research. Lastly,
although DDAC-SpAM is currently designed to solve large-p-
small-n problems, it can be naturally combined with a sample
space partition step to deal with large-p-large-n problems. The
details can be explored in future work.
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