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ABSTRACT
With the severity of the COVID-19 outbreak, we characterize the nature of the growth trajectories of counties
in the United States using a novel combination of spectral clustering and the correlation matrix. As the
United States and the rest of the world are still su!ering from the e!ects of the virus, the importance of as-
signing growth membership to counties and understanding the determinants of the growth is increasingly
evident. For the two communities (faster versus slower growth trajectories) we cluster the counties into, the
average between-group correlation is 88.4% whereas the average within-group correlations are 95.0% and
93.8%. The average growth rate for one group is 0.1589 and 0.1704 for the other, further suggesting that our
methodology captures meaningful di!erences between the nature of the growth across various counties.
Subsequently, we select the demographic features that are most statistically signi"cant in distinguishing
the communities: number of grocery stores, number of bars, Asian population, White population, median
household income, number of people with the bachelor’s degrees, and population density. Lastly, we
e!ectively predict the future growth of a given county with a long short-term memory (LSTM) recurrent
neural network using three social distancing scores. The best-performing model achieves a median out-of-
sample R2 of 0.6251 for a four-day ahead prediction and we "nd that the number of communities and social
distancing features play an important role in producing a more accurate forecasting. This comprehensive
study captures the nature of the counties’ growth in cases at a very micro-level using growth communities,
demographic factors, and social distancing performance to help government agencies utilize known
information to make appropriate decisions regarding which potential counties to target resources and
funding to. Supplementary materials for this article, including a standardized description of the materials
available for reproducing the work, are available as an online supplement.
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1. Introduction
The recent infectious disease (COVID-19) caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
overtaken the world as the largest pandemic we have seen in
decades. The World Health Organization (WHO) labeled it a
pandemic on 03/11/2020, with a total of more than 110 million
con!rmed cases and more than 2.44 million deaths worldwide
as of 02/20/2021.

Forecasting the growth of con!rmed cases and the locations
of future outbreaks has been a persistent challenge in the public
health and statistical !elds. With the gravity and urgency of
the global health crisis, many recent works including Kucharski
et al. (2020) and Peng et al. (2020) have attempted to model
the growth in cases in various countries. Most of the literature
on statistical modeling of the data focuses on the reproduc-
tion number. However, this value is constantly evolving and is
not always a valuable measurement to build prediction mod-
els with. Hong and Li (2020) proposed a Poisson model with
time-dependent transmission and removal rates to estimate a
time-dependent disease reproduction number. Betensky and
Feng (2020) studied the impact of incomplete testing on the
estimation of dynamic doubling time. Ultimately, we need to
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examine the underlying features contained in the time series
data in order to extract valuable insights into the unique nature
of the spread of COVID-19. As the number of deaths is at
least a two-week lagging indicator compared to the number of
con!rmed cases, we only look at the latter. More importantly, the
matrix of the number of deaths per county would be very sparse
at the initial stage, making any analysis more di"cult. Our goal
is to !rst characterize and categorize the disease progression
of various counties given the limitations of public data. Then
a#er distinct growth communities are found, the demographic
variables and social distancing scores are incorporated to project
the future behavior of the growth curve. In this way, a holistic
outlook can be gleaned of the pandemic on a granular level,
while maintaining accuracy and robustness.

Stochastic block models (SBMs), !rst developed by Holland,
Laskey, and Leinhardt (1983), have long been studied as a pow-
erful statistical tool in community detection, where the nodes
or members are partitioned into latent groups. SBMs have been
employed to study social networks (Wasserman and Anderson
1987), brain connectivity (Rajapakse, Gupta, and Sui 2017), pro-
tein signaling networks (Chen and Yuan 2006), and many other
applications. Under an SBM, the nodes within the same group
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usually have a higher probability of being connected versus
those from di$erent groups. The di"cult task is to recover these
connectivities and the communities based on one observation,
which in our case, is a snapshot of the changes in the number
of cases up to the most recent time point. In more recent years,
spectral clustering (Balakrishnan et al. 2011; Rohe, Chatterjee,
and Yu 2011; Jin 2015; Lei and Rinaldo 2015) has arisen as one
of the most popular and widely studied approaches to recover
these communities. Conventional spectral clustering algorithms
mostly involve two steps: eigen-decompose the adjacency or
Laplacian matrix of the data and then apply a clustering algo-
rithm, such as k-means, to the eigenvectors that correspond to
the largest or smallest eigenvalues. There is extensive literature
on such procedures, for instance, von Luxburg (2007), Ng, Jor-
dan, and Weiss (2001), Abbe (2017), and Chen et al. (2020).

In this study, we introduce the unique procedure of con-
ducting spectral clustering on the sample Pearson correlation
coe"cient matrix directly and compare its clusters to the
standard Laplacian embedding. This complements Brownlees,
Gudmundsson, and Lugosi’s (2020) approach based on a
latent covariance model on !nancial return data. Gilbert et al.
(2020) used agglomerative clustering, an unsupervised learning
method, on preparedness and vulnerability data in African
countries using self-reported reports of capacity and indicators.
While a comprehensive study, it only considers the possible
exposures to travelers from China. Using a di$erent dataset, Hu
et al. (2020) clustered the data from China by implementing a
simple k-means clustering directly on various features of the
provinces/cities and not on the eigenvectors of the correlation
matrix. It also does not take into account possible explanatory
features that are not directly related to the number of cases
and fails to predict provinces that have yet to have cases. The
data processing of some existing approaches also does not
standardize and shi# the data in a way that aligns with the nature
of COVID-19.

Once the communities are found, the subsequent part
uncovers the statistically signi!cant demographic features, pre-
existing in the counties, that could largely explain a county’s
community membership. Most of the existing research on
salient demographic information focuses on age-related features
and the presence of co-morbidities or underlying health
conditions, for example, Dowd et al. (2020) and Lippi et al.
(2020). In reality, what in%uences how the disease progresses
in a county is most likely a con%uence of variables, and not
one or two prevailing ones. Some studies also examine how
various demographic determinants a$ect how well a county
carries out social distancing (Im et al. 2020), but o$ers little or
no connection to the nature of the growth curve.

There have been several early studies that predict, estimate,
or model the growth curve of the disease, including Fanelli and
Piazza (2020) on the cases in Italy, France, and China, where
the authors claim from pandemic data of the !rst two months
that the mortality rate in Italy is around 3%–7% and 1%–3%
in China. Another example is Roda et al. (2020) who used
the cases in Wuhan to conclude that an SIR model, a simpler
epidemic compartmental model, is superior to an SEIR model,
a more complex compartmental model. In addition, Liu et al.
(2020) presented a system of ordinary di$erential equations to
model the cases in China, assuming a constant transmission

rate. In addition, deep learning has been applied to COVID-19
research, such as Wang and Wong (2020) that detect positive
cases through chest scans. Other studies such as Zheng et al.
(2020) investigated when patients are most infectious by using
a deep learning hybrid model and Yang et al. (2020) similarly
combined the epidemiological SIR model with an LSTM net-
work. However, there are very few studies that compare di$erent
time periods of the pandemic under a statistical lens and inte-
grate other important pieces of the puzzle. Hence, the extracted
variables from the feature analysis part are then used in conjunc-
tion with time series of social distancing scores from Unacast
(2020) to !t a recurrent neural network and to ultimately predict
the progression of con!rmed cases in a given county. It is
important to note that for this prediction section, we use the
period from the start of the pandemic until 07/20/2020 as this
traces the !rst large spike in cases in the United States and a
subsequent plateau. This gives a long enough time series sample
and to include much more recent data would include the second
large wave of the pandemic, which is counter to the objective
of capturing the growth trajectory of a county’s peak and fall.
Unacast has created a scoreboard of social distancing measures
with mobile device tracking data, where a device is assigned
to a speci!c county based on the location the device spent the
most amount of time in. The neural network prediction takes
these static, inherent county variables, community membership
(the clustering results), and social distancing data to predict the
future growth of con!rmed cases. Taken together, our paper
creates a throughline of the pandemic: historical growth curve of
con!rmed cases, characterization of this growth via clustering,
the signi!cant explanatory demographic features, and !nally,
social distancing measures that give insight into the nature of
the future growth trajectory, as displayed in Figure 1. Table 1

Figure 1. Pipeline of this study’s three-part analysis of COVID-19. COVID-19 time
series data is !rst used to perform community detection, clustering counties into
several communities. Then, demographic features are incorporated to extract the
most signi!cant features that distinguish the growth communities. Finally, social
distancing metric time series are added to the results of the previous two parts to
carry out the prediction of COVID-19 cases for new counties.
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Table 1. Time period, number of counties, and data source used for each part of
the article.

Time period(s) No. of counties n Source

Part I 1/22/20–4/17/20 950 Johns Hopkins CSSE
and 5/10/20–7/10/20

Part II 1/22/20–4/17/20 633 ACS (c/o Data Planet)
and 5/10/20–7/10/20

Part III 2/25/20–7/10/20 627 Unacast

also contains the speci!c time period, the number of counties
n, and the data source used for each part of the paper (Part I:
community detection, Part II: extraction of signi!cant features,
Part III: prediction) as outlined in Figure 1.

2. Community Detection

The !rst part of this article !nds potential communities among
the U.S. counties, in which clusters share similar growth pat-
terns, using daily county-level data of the aggregate number
of cases. To accomplish this, two fundamental concepts are
necessary: the SBM and spectral clustering. The former is a gen-
erative model through which community memberships were
formed and the latter is a methodology o#en used to recover
these memberships. Compared to traditional clustering meth-
ods, spectral clustering has shown to be e$ective in both sta-
tistical and computational e"ciency (Abbe 2017; Abbe et al.
2020; Chen et al. 2020). Our approach applies spectral cluster-
ing to the correlation matrix, instead of the commonly used
adjacency matrix or Laplacian matrix. The goal is to recover
the county membership matrix embedded in the correlations of
each county’s logarithmic daily cumulative number of cases.

2.1. Data

We use the COVID-19 (2019-nCoV) Data Repository by the
Johns Hopkins Center for Systems Science and Engineering
(CSSE) that contains data on the number of con!rmed cases
and deaths in the United States and around the world, broken
down by counties in the United States. The public database is
updated daily and the virtual dashboard is also used widely
around the world. Data sources of the database include the
World Health Organization (WHO), U.S. Center for Disease
Control (CDC), BNO News, WorldoMeters, and 1point3acres.
We take all counties that have 12 or more cumulative cases
in the time frame of 01/22/2020 to 04/17/2020. We treat the
day a county reaches 12 or more con!rmed cases as day one
and then discard all counties that have a time series of fewer
than 14 days a#er processing. This way we shi# each county
to a similar starting point in terms of number of cases and
a long enough period to do a meaningful analysis with. We
also remove unassigned cases and the U.S. territories, which
ultimately results in a total of n = 950 counties. Here, we use
wi,t = log(xi,t) to represent the logarithmic cumulative cases
for county i on day t.

We also repeat the community detection process with more
recent data from 05/10/2020, when many states started to re-
open, to 07/10/2020. The bulk of this part of the study con-
centrates on the beginning phase of the pandemic given that

health and government intervention to minimize the number
of future cases should be executed as early as possible. However,
we compare the resulting communities with more recent data
that captures the second phase of the pandemic in the U.S. States
experienced a signi!cant drop in cases when the lockdown was
enforced and businesses were closed but as they began to reopen,
the number of cases saw an uptick once again. Since this second
phase comes months a#er the initial outbreak, there may be
meaningful di$erences worthy of analysis.

2.2. Correlation Matrix vs. Adjacency Matrix

For each county, consider a daily time-series of the cumulative
number of con!rmed cases, where we use curve registration
(the time origin is set as the day on which the number of cases
exceeds 12 for a particular county). This curve registration is
important as it takes into account the fact that counties may
have di$erent COVID-19 outbreak starting times. We denote
wi,t = log(xi,t) as the logarithmic cumulative number of cases
of county i on the tth day since the county hit 12 or more cases.
Then, we use the Pearson correlation as a similarity measure,
de!ned as

Rij =
∑Tij

t=1(wi,t − w̄i)(wj,t − w̄j)√∑Tij
t=1(wi,t − w̄i)2

√∑Tij
t=1(wj,t − w̄j)2

, (1)

where Tij = min(Ti, Tj), with Ti and Tj being the number of
days county i and county j has 12 or more cases, respectively. The
sample correlation R ∈ Rn×n would then contain the pairwise
correlations among all n counties. The logarithmic cumula-
tive case counts are used to align with the exponential growth
pattern implied by popular epidemic models. For example, we
could distinguish between a faster exponential growth function
such as exp(2t) and a slower growth function exp(t/2).

Another commonly used network representation is the ad-
jacency matrix A, which shows whether two counties are con-
nected and is o#en constructed based on a similarity measure
like Pearson correlation or a mutual information score. If the
graph is undirected, where each edge that connects two nodes
is bidirectional, A is symmetric. The two most common types
of similarity graphs are the ε-neighborhood graph and the k-
nearest neighbor graph. As we are using sample correlation
as the similarity measure, an ε-neighborhood adjacency A1 is
de!ned as follows:

(A1)ij =
{

1, if Rij ≥ 1 − ε,
0, otherwise. (2)

A k-nearest neighbor adjacency A2 is de!ned as follows:

(A2)ij =






1, if county i is among j’s k nearest neighbors
or if county j is among i’s k nearest neighbors,

0, otherwise,
(3)

where the nearest neighbors are found with respect to Rij.
Depending on the parameters ε and k one chooses for A1

and A2, respectively, a signi!cant amount of information could
be lost in the process because of the thresholding operation.
However, this operation also !lters out many spurious correla-
tions. Unlike the sparse A1 and A2, R retains all of the pairwise
similarities between counties, which would shed more light on
the within-group and between-group relationships.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 495

2.3. Stochastic Block Model

The matrices R, A1, and A2 are critical because they can help
us recover !, an n × K membership matrix that re%ects which
community each county belongs to, where K is the number of
communities. Letting Zi ∈ {1, ..., K} be the community that
county i belongs to, the ith row of ! has exactly one 1 in
column Zi (the community that county i belongs to) and 0
elsewhere. We estimate ! under an SBM, where the probability
two counties are connected only depends on the membership of
these two counties. An SBM denoted by G(n, B, !) as n nodes,
K communities, and is parameterized by ! and B, the K × K
symmetric connectivity matrix. Essentially, B contains the inter-
and intra-community connection probabilities: the probability
of an edge between counties i and j is BZiZj .

The objective is to obtain an accurate estimation !̂ of ! from
an observed adjacency matrix A that is modeled as G(n, B, !).
This yields a recovery of the partitions Gk := {i ∈ [1, n] : Zi =
k} by Ĝk = {i ∈ [1, n] : Ẑi = k}, k = 1, ..., K, with an ambiguity
of permutation of clusters, where Ẑi indicates the location of 1
in the ith row of !̂. The population matrix P ∈ Rn×n, where Pij
is the probability that counties i and j are connected, is naturally
expressed as P = !B!T .

2.4. Spectral Clustering

Spectral clustering has been a popular choice for community
detection (Rohe, Chatterjee, and Yu 2011; Jin 2015; Lei and
Rinaldo 2015). The central idea is to relate the eigenvectors of
the observable adjacency matrix A to those of P = !B!T ,
which is not observed. This is accomplished by expressing A as
a perturbation of its expected value: A = E[A] + (A − E[A]).
If we treat E[A] as the signal part and A − E[A] as the noise,
we connect the eigenvectors of A and P using E[A] = P −
diag(P). Noting rank(P) = K, letting Un×K = [u1, ..., uK]
be the eigenspace spanned by the K nonzero eigenvalues of
E[A], then columns of U span the same linear space as those
spanned by the columns of P (ignoring diag(P)). Additionally,
P has the same column space as !. Now, letting Û be the
eigenspace corresponding to the K largest absolute eigenvalues
of A, then Û is a consistent estimate of U or the column space
of !, under some mild conditions. To resolve the ambiguity
created by rotation, the k-means algorithm is applied to the
normalized rows of U to identify membership of communities
(Rohe, Chatterjee, and Yu 2011; Lei and Rinaldo 2015).

Instead of examining the eigenvalues of A, spectral graph
theory has long studied graph Laplacian matrices as a tool of
spectral clustering. The symmetric Laplacian matrix is de!ned
as follows: letting D = diag(d1, ..., dn) be the diagonal degree
matrix where di = ∑n

j=1 Aij, then a popular de!nition of a nor-
malized, symmetric Laplacian matrix is L = I − D−1/2AD−1/2.
When clustering with L, one takes the eigenvectors correspond-
ing to the smallest eigenvalues in absolute value.

In our context, A can be taken as either A1 or A2 as outlined
in Section 2.2. As there are no exact rules in choosing the
parameters ε and k of A1 and A2, respectively, clustering with
L, which depends on the adjacency matrix, may be less than
ideal. It is also an added, o#en computationally cumbersome

step. Instead, we cluster directly on the similarity matrix R, the
sample correlation matrix. Algorithm 1 delineates the detailed
steps of this approach. The classic spectral clustering procedure
with L used as a benchmark is outlined in the supplementary
material.

Algorithm 1 Spectral clustering on correlation matrix
Input Sample correlation matrix R ∈ Rn×n and the number of
clusters K.

1: Compute the top K eigenvectors u1, ..., uK of R associated
with top K largest absolute eigenvalues and let Û ∈ Rn×K

be the matrix with the eigenvectors as columns.
2: Normalize rows of Û to have unit norm to get Ûnorm.
3: Cluster the rows of Ûnorm with k-means.

return Partition Ĝ1, ..., ĜK of the nodes.

There are several methods for choosing the number of
spiked eigenvalues in the context of factor models: scree-plot,
eigen-gap, eigen-ratio, adjusted correlation thresholding. As our
method involves correlations, we apply the adjusted correlation
method in Fan, Guo, and Zheng (2020). This method leads to
K = 2, which roughly divides the counties into faster or slower
growth communities. It also agrees with the choice where we
maximize the eigen-gap.

2.5. Clustering Procedure

Figure 2 is a visualization of the !rst two eigenvectors of R
and the linear separation that the algorithm partitioned all the
counties into. The le# panel is with unit norm normalization and
the right is without the normalization. The result of essentially
using the signs of the components of the second eigenvector to
cluster reminiscences the work by Abbe et al. (2020) with strong
theoretical support. From now on, all clustering analysis will be
based on the unit-norm normalization of the eigenvectors.

2.6. Fastest and Slowest Growth Clusters

For future analysis (Section 3), it is useful to de!ne the clusters
that contain the counties with the fastest and slowest growth.
A#er the clusters are produced with Algorithm 1, for every
community k, we calculate the average exponential growth rates
of the counties in that community. This is done by !tting the
total number of cases of each county i on day t, xi,t , to xi,t =
xi,0(1 + ri)t + εi,t through nonlinear least squares and obtaining
the approximated growth rate ri for county i. Then, we compare
the average !tted growth rate r̂k = 1/|Ĝk|

∑
i∈Ĝk

ri and standard
error for clusters k = 1, ..., K. The fastest growth cluster is
de!ned as argmaxkr̂k and the slowest growth cluster is de!ned
as argminkr̂k.

2.7. Results and Discussion

Table 3 contains information on the average intra- and inter-
group correlations, a sample re%ection of B. Evidently, the intra-
community correlations are higher than the inter-community
correlations. For the !rst phase, Group 1’s intra-correlation of
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Figure 2. The left panel is the !rst two unit-norm normalized eigenvectors of R and the corresponding clusters, Group 1 in blue and Group 2 in purple. The right panel
depicts the same two clusters but in the two unnormalized eigenvectors.

Figure 3. The left panel is the R Heatmap of block correlations K = 2 for the !rst phase 1/22/20 - 4/17/20, corresponding to the left panel of Table 3. The right panel is the
R Heatmap of block correlations K = 2 for the entire period of study 1/22/20 - 7/10/20, corresponding to the right panel of Table 3. Model R corresponds to Algorithm 1
where we use the sample correlation matrix. Groups 1 and 2 are the obtained partitions Ĝ1 and Ĝ2, respectively.

Table 2. Average growth rates and the number of counties in each cluster for K = 2.

Group 1 Group 2

Model No. of Counties Growth Rate SE No. of Counties Growth Rate SE

R 467 0.1589 0.0020 483 0.1704 0.0019
A1 462 0.1583 0.0020 488 0.1677 0.0019
A2 470 0.1605 0.0020 470 0.1664 0.0020
R, second phase 487 0.0207 0.0005 463 0.0233 0.0005

NOTES: Model R corresponds to Algorithm 1 where we use the sample correlation matrix. Model A1 corresponds to Algorithm 4 where we use the k-nearest neighbors graph
(k = 7). Model A2 corresponds to Algorithm 4 where we use the ε-neighborhood graph (ε = 0.007). Groups 1 and 2 are the obtained partitions Ĝ1 and Ĝ2, respectively.
Growth Rate is the approximated exponential growth rate, calculated as in Section 2.6. Presented are the averages of these growth rates and their associated SEs for the
counties in two groups, clustered by di"erent methods. R, second phase is for the clusters obtained for the period 05/10/2020–07/10/2020.

96.1% and Group 2’s 96.8% are greater than 94.0%, the inter-
group correlation between the two groups. As we only took
counties with signi!cant outbreaks as of 04/17/2020 and coun-
ties have not been fully di$erentiated yet at an early stage in
terms of cases, it is logical to observe high correlations across
the board. However, we see that for the entire period of study, the
distinction between inter- and intra-community correlations is
much more obvious, where the former has decreased signi!-
cantly. These results are also mirrored in Figure 3, heatmaps of
the block correlations.

We can see from Table 2 that for the clusters obtained by
Algorithm 1 (R), the di$erence between the growth rates of
Group 1 and Group 2 is the largest. This di$erentiation is further
bolstered by the growth curves in Figures 4 and 5. The standard
error bands in Figure 4 underscores that the two groups become
more distinct in their growth trajectory as time goes on. For
A1 and A2, the growth rates are much closer together between
the two communities. Furthermore, the right panel of Figure
5 is a plot of the average cases for the period a#er community
detection was performed: 04/17/2020–09/03/2020. Evidently,
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Table 3. The table on the left is the R average block correlations K = 2 for
the !rst phase 1/22/20–4/17/20 and the table on the right is the R average block
correlations K = 2 for the entire period of study 1/22/20–7/10/20.

Group 1 2 Group 1 2

1 96.1% 94.0% 1 95.0% 88.4%
2 94.0% 96.8% 2 88.4% 93.8%

the separation between the two groups becomes much more
distinct as time goes on (with a much larger number of cases).
As for community detection of the subsequent phase of the
pandemic in the United States (from 05/10/2020 to 07/10/2020),
the last row of Table 2 again shows a larger average growth
rate for Group 2, albeit much smaller in magnitude since cases
increased at a slower rate once the country learned how to deal
with the pandemic.

Some notable counties that are partitioned to Group 2, the
fast growth community, include Los Angeles, CA; San Francisco,
CA; District of Columbia; DeKalb, GA; Fulton, GA; Miami-
Dade, FL; Cook, IL; Je$erson, LA; Su$olk, MA; Bergen, NJ; New
York, NY; Westchester, NY; and King, WA, all large epicenters.
Figure 6 is a geographical visualization of the communities.

In addition, Figure 7 shows the same plots as those in Figure 5
but for a later phase. The curves are clearly much %atter in both
groups, which is likely due to the increase in the number of
cases plateauing in many counties. Furthermore, the distinc-
tion between the curves of Group 1 and 2 is also considerably
bigger than those of the earlier data. This can be explained by
the con%uence of additional factors that separate each county’s
experience with the virus, including the nature of local gov-
ernment intervention, degree, and timing of re-openings, travel
restrictions, etc.

3. Extracting Signi!cant Demographic Features

An important and subsequent question that arises once the
communities are obtained is what underlying factors play a role
in which growth cluster a county belongs to. Since the growth
of COVID-19 cases is also related to static, inherent factors
that are not a consequence of the disease, we examine a variety
of county demographic variables and how they di$er among
communities. In order to select the variables that are most
statistically signi!cant, or are most relevant to the community
assignment of a county, we perform independent two-sample

Figure 4. The left panel represents the average cumulative number of cases of the initial phase 01/22/2020 - 04/17/2020 with one standard error bands for the clusters of
R, K = 2. The right panel is the average log cumulative number of cases of R, K = 2. The x-axis is in calendar time, which does not account for heterogeneous starting
times of the outbreak in each county.

Figure 5. The left panel represents average cumulative number of cases of the initial phase 01/22/2020 - 04/17/2020, starting from the !rst day of at least 12 days for
the clusters of R, K = 2. The right panel is the average cumulative number of cases of the period 04/18/2020 - 09/03/2020, the time frame after the initial phase used in
community detection. The x-axis here accounts for the heterogeneity of the outbreak of COVID-19 in each county.
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Figure 6. Clusters for model R of the initial phase 01/22/2020 - 04/17/2020. Model R corresponds to Algorithm 1 where we use the sample correlation matrix. Groups 1
and 2 are the obtained partitions Ĝ1 and Ĝ2, respectively.

Figure 7. Growth curves of clusters obtained from community detection on data from 05/10/2020 - 07/10/2020 (recent phase). Plots are the same as those of Figure 5.

Figure 8. The left panel is a geographical representation of counties according to median household income. Blue dots are counties with less than $50,000 median annual
household income and purple dots are counties with more than $50,000 median annual household income. The right panel is a geographical representation of counties
according to population density. Blue dots are counties with less than 150 persons per sq mile and purple dots counties with more than 150 persons per sq mile.
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Table 4. R clusters’ mean and median values for selected features for each community K = 2.

Group 1 Group 2

Feature Mean Median Std Dev Mean Median Std Dev

Population density 275.775 159.260 394.059 913.182 289.610 3659.76
Median household income 54431.6 52651.0 13386.3 58814.6 56074.0 16737.2
% Poverty 14.0656 13.3000 5.71511 13.4712 12.5000 5.83384
% 1-person households 27.1330 27.7185 4.21220 27.0233 27.1978 4.54690
% 5 or more person households 8.91332 8.41406 2.96792 9.38467 8.71688 3.27316
% households w 60 y/o and older 39.3294 39.1802 6.85032 38.7538 38.6947 6.03233
% w low access to stores 21.8723 21.3800 9.66507 20.8704 21.2500 9.81211
% low income w low access to stores 7.48273 6.85500 4.48466 6.60216 5.69000 4.52299
% households w low access to stores 2.69416 2.32000 1.63712 2.24196 1.92000 1.50078
25 y/o and older w bachelor’s /1000 110.885 106.164 40.6371 122.654 118.332 43.6276
% White 80.8599 85.6959 15.0719 75.7593 79.6171 16.7522
% Black 11.3861 5.03010 14.6140 13.4737 7.90300 15.3919
% Asian 1.96190 1.22070 1.89220 3.67570 1.87900 5.28820
No of bars 29.3313 16.0000 39.0755 55.2143 23.5000 96.9646
No of grocery stores 42.5564 23.0000 67.0810 117.321 39.0000 16.5490
No of restaurants 13.1345 8.00000 13.1383 14.9219 9.00000 16.5490
% take public transportation 0.41130 0.19870 0.76870 1.24690 0.32130 6.14170

NOTES: Model R corresponds to Algorithm 1 where we use the sample correlation matrix. Group 1 and 2 are the obtained partitions Ĝ1 and Ĝ2, respectively. Population
Density is the number of people per sq mile; median household income is in the U.S. dollars; % Poverty is the poverty rate: % 1-person households is the percentage of
one-person households; % 5 or more person households is the percentage of !ve or more person households; % households w 60 y/o and older is the percentage of
households that have one or more members who are 60 years old or older; low access to stores is de!ned as living more than one mile (urban areas) or 10 miles (rural
areas) from the nearest supermarket, supercenter, or large grocery store; /1000 is per 1000 persons; % take public transportation is the percentage of all persons who
work in a county and take public transportation to work every day. All feature information is as of 2017.

t-tests on the fastest and slowest growth groups (Section 2.6)
with respect to various demographic variables. The null and
alternative hypotheses for this t-test for the dth feature are as
follows:

H0 : µd,1 = µd,2, vs. Ha : µd,1 &= µd,2, (4)

where µd,1 is the mean value of the dth feature of cluster 1 and
µd,2 is the mean value of the dth feature of cluster 2. We then
compute the two-sample test statistic with pooled estimate of the
variance. A#er !nding the p-values, we rank the features from
lowest p-value to highest.

Furthermore, we repeat Algorithm 1 for K = 3, 4, and 5,
select the “fastest” and “slowest” growth clusters in each case,
and carry out the independent two-sample t-tests as described
above for the same demographic features. This sensitivity analy-
sis tests whether the demographic variables that are signi!cantly
di$erent between the two groups are consistent when we have
a larger number of communities. Ultimately, we present the
statistically signi!cant demographic features.

3.1. Data

For this section, we use data from Data Planet, a social science
research database that compiles 12.6 billion U.S. and interna-
tional datasets from over 80 sources. For our purposes, we look
at the 2017 American Community Survey (ACS), the largest
household survey in the United States, conducted by the U.S.
Census Bureau. We select 17 relevant features on a county level,
which are displayed and summarized in Table 4. Note that not
all 950 counties from Johns Hopkins CCSE data that were used
in Section 2.1 is available on Data Planet, thus the analysis is
done on 633 counties for this section. Now, we are le# with 301
counties in Group 1 and 332 counties in Group 2, which is still
a close split like that of R seen in Table 2.

3.2. Results and Discussion

It is evident from Table 4 that community detection with R
results in Group 2 (fast growth) containing counties with the
highest mean and median population density by far (Figure 8 is
a visualization of counties assigned to two categories based on
density and median income). The mean and median household
incomes are also higher for counties in Group 2. The mean num-
ber of persons 25 years old or older with bachelor’s is noticeably
greater for Group 2, which can o#en coincide with more urban
areas that are more densely populated. However, it can also be
related to the number of universities in a particular area, as a
higher number would exacerbate the spread of COVID-19. The
numbers of bars and grocery stores are also starkly di$erent
between the two groups. Moreover, the percentage of people
who take public transportation to work is around three times
greater for Group 2 than Group 1. On the other hand, unlike
what one would expect in terms of the relationship between the
number of one-person households and the spread of COVID-
19, there is not much di$erentiation between the number of
people in a household.

Table 5 contains the p-values for all of the 17 features. The
numbers of grocery stores and the number of bars have much
lower p-values (and are below the p-value threshold) than that
of the number of restaurants. Also, as expected, the median
household income is among the features with lower p-values,
along with population density. A#er conducting the same two-
sided t-tests for K = 3, 4, and 5 on the two extreme groups
(the groups that have the smallest and largest average growth
rates further veri!ed by plotting Figure 4 for K = 3, 4, and 5
communities), the seven statistically signi!cant features found
are as follows: population density, median income, number of
persons who are 25 years and older with bachelor’s per 1000
persons, percentage of the White population, percentage of
the Asian population, number of bars, and number of grocery
stores. These seven features are consistently signi!cant for each
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Table 5. Left table is R clusters’p-values for independent two-sample t-tests for selected features between Group 1 and Group 2 sorted from the smallest to largest p-value.

Feature P-Value Feature P-Value

% Asian 1.26E-11 No of grocery stores 2.85E-08
No of grocery stores 5.83E-11 % low income w low access to store 6.38E-07
No of bars 2.95E-06 Median household income 8.41E-06
% White 3.04E-06 % Poverty 2.01E-04
Median household income 1.44E-05 % White 0.01967
% households w low access to stores 1.60E-05 Population density 0.04027
25 y/o and older w Bachelor’s /1000 2.80E-05 % 1-person households 0.07537
Population density 2.39E-04 % households w low access to stores 0.10640
% low income w low access to store 0.00303 % 5 or more persons households 0.10711
% take public transportation 0.00436 % Black 0.12222
% 5 or more persons households 0.02324 % take public transportation 0.13245
% Black 0.04672 % of households w 60 y/o and older 0.35344
% Poverty 0.10603 % Asian 0.47698
No of restaurants 0.11432 25 y/o and older w Bachelor’s /1000 0.52498
% w low access to stores 0.13698 % w low access to stores 0.62138
% households w 60 y/o and older 0.18014 No of restaurants 0.89977
% 1-person households 0.63999 No of bars 0.90224

NOTE: Right table is recent data (05/10/2020–07/10/2020) R clusters’ p-values. The features in bold are the ones that are selected as signi!cant features for further analysis
in Section 4.

K = 2, 3, 4, and 5 based on p-values. These values form the
demographic vector di for each county i. The variables for
bars and grocery stores underscore the ease of transmission
in locations with greater numbers of public gathering spots, a
characteristic evident in cities like New York City where most
people choose to convene at bars without much social distancing
(before stricter lockdowns took place).

A#er !nding the growth communities and conducting t-tests
to ascertain the signi!cant features for the latter phase of the
pandemic in the United States (05/10/2020–07/10/2020), the
features with the lowest p-values diverge from those of earlier
data, as presented in the right panel of Table 5. Population
density and median income are still among the most meaningful
but the percentage of people with low access to stores and
the percentage living in poverty have become signi!cant. This
suggests that at later stages of the pandemic, poverty and other
income-related measures become more indicative and respon-
sible for the di$erences in case growth among counties. Thus,
the seven features for di for this latter phase are the top seven
variables in Table 5: number of grocery stores, % low income
with low access to stores, median household income, % poverty,
% white, population density, and % 1-person households.

4. Prediction with Social Distancing Data

The !nal section of our COVID-19 methodology is to predict a
county’s growth trajectory a few days into the future. We propose
a prediction methodology with the objective that given a new
county, the new county’s key demographic features, and social
distancing measures, we implement an algorithm that projects
the new county’s future growth.

Before going in-depth on the prediction models, it’s nec-
essary to !rst de!ne some important variables. Let l be the
number of the days forward to be projected for a new county.
To build such a predictive model, let yi,t+l = log(xi,t+l) −
log(xi,t) be county i’s l-day forward log-growth rate, which is
close to the growth rate xi,t+l−xi,t

xi,t
by Taylor’s expansion and

numerical veri!cation, for t = 1, ..., Ti. Here, Ti + l is the
total number of days where county i has 12 or more cases.
Recall the obtained partitions from Algorithm 1 (set of indices

of counties that belong to group k): Ĝk = {i ∈ [1, n]|Ẑi = k},
where Ẑ ∈ Rn is the recovered community label vector. For a
community k, and a county i ∈ Ĝk, let di ∈ Rq be county
i’s signi!cant feature vectors obtained from Section 3, Si =
[si

1, si
2, ..., si

Ti
]T ∈ RTi×3 be county i’s three social distancing time

series matrix (see Section 4.1 for details about this data) and
yi = [yi,1+l, . . . , yi,Ti+l]T ∈ RTi be its l−day forward log case
di$erence. Note that each row of Si, si

t ∈ R3, has three di$erent
social distancing metrics at time t.

In summary, we have data {Si, yi : i ∈ Ĝk} for training an
l-day ahead predictive model for the kth community. Also, to
recover the predicted log cases log(x̂i,t+l) for county i on day
t + l, one can simply use log(x̂i,t+l) = ŷi,t+l + log(xi,t).

4.1. Data

Social distancing data is courtesy of Unacast and its COVID-
19 Social Distancing Scoreboard. The scoreboard tracks mobile
device movement and has three metrics that quantify the level
of social distancing people in a particular county are practic-
ing. The !rst metric is the percentage change in total distance
traveled, averaged across all devices, compared to a pre-Corona
baseline. The second is the percentage change in the number
of visitations to nonessential places compared to a pre-Corona
baseline. For these two metrics, the pre-Corona baseline of a
county on a particular day is de!ned as the average of the
four corresponding pre-weekdays (at least four weeks before the
day). For example, for Monday 3/30, the pre-Corona baseline
of the !rst metric is the average of the !rst metric for the four
Mondays: 2/10, 2/17, 2/24, and 3/2. The !nal metric is the rate
of human encounters as a fraction of the pre-Corona national
baseline. The pre-Corona national baseline for this metric is the
average of the metric taken over four weeks that immediately
precede the COVID-19 outbreak (02/10/2020 - 03/08/2020) as
de!ned by Unacast. Since this data starts at 02/25/2020 which
is a#er the start of the Coronavirus cases data (01/22/2020),
we perform prediction on the period 02/25/2020 - 7/10/2020,
which is the start of the “initial phase” until the end of the “recent
phase.” Also note that not all counties from Johns Hopkins CCSE
data and Data Planet are available at Unacast’s database so out
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of the 633 counties from Section 3.1, this section is performed
on 627 counties.

4.2. Long Short-Term Memory Network

To enhance the e$ectiveness of the model, we take advantage of
a special type of recurrent neural network (RNN): long short-
term memory (LSTM) networks, which are designed for time-
series forecasting. Unlike feedforward neural networks (FNNs),
RNNs produce an output that depends on a “hidden” state vector
that contains information based on prior inputs and outputs.
LSTMs builds on a simple, vanilla RNN to include a forget gate,
input gate, and output gate for each module. Hence, it is able
to “remember” information for longer time periods (lags). The
output for an LSTM module at time t is as follows:

ht = ot tanh(Ct), tanh(x) = exp(x) − exp(−x)

exp(x) + exp(−x)
. (5)

The components of ht are broken down as follows: ft =
σ (Wf [ht−1, xt]+bf ), is the forget gate output and Wf and bf are
its weights and biases, respectively. it = σ (Wi[ht−1, xt] + bi),
is its input gate output and Wi and bi are its weights and biases,
respectively. The cell state vector then gets updated by forgetting
the previous memory through the forget gate and adding new
memory through the input gate: Ct = ftCt−1 + itC̃t , where
C̃t = tanh(WC[ht−1, xt] + bC). Subsequently, the output gate
ot = σ (Wo[ht−1, xt] + bo) and Wo and bo are its weights
and biases, respectively. Here, σ (x) = (1 + exp(−x))−1 is the
sigmoid activation function.

We also compare the LSTM’s performance with that of an
FNN, namely an MLP (multilayer perceptron). MLPs are a type
of fully connected FNN !rst introduced and popularized by
Rumelhart, Hinton, and Williams (1986), consisting of an input
layer, output layer, and hidden layers in between, where the
training process is done through backpropagation. The total
input xs+1

i of a neuron i of layer s + 1 takes the form of

xs+1
i =

∑

j
hs

ijxs
σ j + bs+1

i , (6)

where hs
ij is the weight for neuron j of the previous layer s to

neuron i of layer s + 1 and bs+1
i is the bias of layer s + 1.

xs
σ j = σ (xs

i) is the output from neuron j from the previous
layer s, where a nonlinear activation function σ (·) is applied to
the input. Most common activation functions include sigmoid,
tanh, or ReLU (recti!ed linear unit), where the ReLU o#en
learns faster in deeper networks.

4.3. Prediction Models

The !rst prediction model, Algorithm 2 (which we will refer
to as SD-LSTM, where Sd stands for social distancing), is a
prediction procedure that solely uses a nonlinear model (a
neural network) to !t the data. The idea is to !rst train an LSTM
for each of the K communities, and then given a new county,
we select the corresponding !tted model for prediction from
our repertoire with respect to its nearest neighbor county (in
demographic variables, not geographical distance). That is, we
apply the nearest neighborhood to the demographic variables

to classify the new county’s community, and use the model for
that community to forecast the county’s cases. Speci!cally, for
each community k ∈ {1, ..., K}, we train an LSTM with the
data {(si

t , yi,t+l)
Ti
t=1, ∀i ∈ Ĝk} and this depends on the numbers

of steps forward, l, we are trying to forecast. For simplicity of
notation, for community k, we denote all such data items for all
counties i ∈ Ĝk by {(st , yt+l), t ∈ Ĝ l

k} and the !tted function
by f̂ l

k(·). Now the second part, the prediction, is that given a
new county i′’s demographic data di′ and social distancing in-
formation Si′ = [si′

1 , si′
2 , ..., si′

T′
i
] ∈ RTi′×3, we !rst !nd its nearest

neighbor county j = argminj‖di′ − dj‖2 and its associated
community Ẑj and use its associated prediction model to predict
ŷi′,t+l = f̂ l

k′(si′
t ), t = 1, ..., Ti′ with k′ = Ẑj. Algorithm 2

summarizes this method of prediction.
To predict a future event, the above procedure gives a num-

ber of prediction methods. For example, to predict tomorrow’s
outcome, we can use today’s social distancing data with l = 1, or
yesterday’s social distancing data with l = 2, or the day before
yesterday’s social distancing data with l = 3, and so on. As
veri!ed later in Figure 10, it turns out that l = 4 is the best
choice of lead, which approximately aligns with the incubation
period of the disease.

Algorithm 2 SD-LSTM: LSTM Prediction
Part I: Training

Input: The lead l
1: for k ∈ {1, ..., K} do
2: Train LSTM f̂ l

k(·) using the data {(st , yt+l), t ∈ Ĝ l
k}.

3: end for
4: return !tted LSTMs f̂ l

k(·), k = 1, ..., K.
Part II: Prediction

Input: A new county i′, di′ ∈ Rq, Si′ = [si′
1 , si′

2 , ..., si′
T′

i
] ∈

RTi′×3, Ẑ and f̂ l
k(·), k = 1, ..., K from Part I.

1: Find county i′’s nearest neighbor j = argminj‖di′ − dj‖2.
2: Select f̂ l

k′(·), where k′ = Ẑj.
3: for t ∈ {1, ..., Ti′} do
4: ŷi′,t+l = f̂ l

k′(si′
t ).

5: end for
6: return ŷi′ = [ŷi′,1+l, ŷi′,2+l, ..., ŷi′ ,Ti+l]T ∈ RTi′ .

Algorithm 3 takes SD-LSTM a step further to include a
linear component, namely, !tting the linear model for each
county !rst with residuals from each community then further
modeling with an LSTM. This idea is related to boosting or
nonparametric estimation using a parametric start (Fan, Wu,
and Feng 2009), resulting in a semiparametric !t. Again, the
objective of the training part is to obtain K !tted models, one for
each community, using semiparametric regression techniques.
More speci!cally, for county i with lead l, we !rst !t the following
linear regression models

yi,t+l = αl
i + (si

t)
Tβ l

i + εi,t+l, t = 1, ..., Ti. (7)

A#er !tting the linear regression models for every county i ∈
Ĝ l

k, we obtain the residuals {ε̂i,t+l, t ∈ Ĝ l
k} and save all the

coe"cients αl
i , β

l
i for i ∈ Ĝ l

k, k = 1, ..., K. We then extract
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the information further from {(st , ε̂t+l), t ∈ Ĝ l
k} by !tting an

LSTM to obtain the !tted ĝl
k(·). Then, for the prediction of the

new county i′, we follow the same steps as those in SD-LSTM
but the !nal prediction is instead adding the linear !t of the
nearest neighbor county and the LSTM !t of the community
corresponding to the nearest neighbor county:

ŷi′,t+l = αl
j + (si′

t )Tβ l
j + ĝl

k′(si′
t ),

where k′ = Ẑj. We will refer to this model as SD-SP. The idea is
summarized in Algorithm 3.

Algorithm 3 SD-SP: Semi-parametric Prediction
Part I: Training

Input: The lead l
1: for k ∈ {1, ..., K} do
2: Fit the regression models (7) for i ∈ Ĝ l

k and obtain the
residuals {ε̂t+l, t ∈ Ĝ l

k}.
3: Train LSTM using {(st , ε̂t+l), t ∈ Ĝ l

k}
4: end for
5: return !tted LSTMs ĝl

k(·) and all αl
i and β l

i for i ∈ Ĝ l
k, k =

1, ..., K.
Part II: Prediction

Input A new county i′, di′ ∈ Rq, Si′ = [si′
1 , si′

2 , ..., si′
T′

i
] ∈

RTi′×3, Ẑ and ĝl
k(·), αl

i and β l
i for i ∈ Ĝ l

k, k = 1, ..., K from
Part I.

1: Find county i′’s nearest neighbor j = argminj‖di′ − dj‖2.
2: Select αl

j and β l
j for county j.

3: Select ĝl
k′(·), where k′ = Ẑj.

4: for t ∈ {1, ..., Ti′} do
5: ŷi′,t+l = αl

j + (si′
t )Tβ l

j + ĝl
k′(si′

t ).
6: end for
7: return ŷi′ = [ŷi′,1+l, ŷi′,2+l, ..., ŷi′ ,Ti+l]T ∈ RTi′ .

We also include three other algorithms for comparison pur-
poses. The !rst replaces the LSTM !t f̂ l

k(·) of community k in
SD-LSTM with a linear model. This corresponds to !tting (7)
without further boosting by an LSTM. For simplicity, we shall
refer to this approach as the SD-LM (social distancing linear
model). The second one is to use both demographic and social
distancing data to !t an LSTM. This approach is identical to
SD-LSTM, but includes the q = 7 signi!cant demographic
variables in Table 5 in addition to the three social distancing
variables. Similarly, we shall refer to this approach as the DSD-
LSTM (demographic and social distancing LSTM). DSD-LSTM
is expected to improve the performance of Algorithm 2 due to
the additional information from the demographic variables. The
!nal model is similar to SD-LSTM but instead of an LSTM, we
use an MLP with two hidden layers (we will refer to this model
as SD-MLP).

4.4. Implementation

For the LSTM, the optimization algorithm used is Adam with a
learning rate of 0.01. For regularization purposes, we also use a
dropout layer (dropout rate of 0.5) for each of the LSTMs. This

also helps take care of any potential multi-collinearity between
the demographic features that are used in Model 4. We also test
the performance of various lags to see which yields the highest
out-of-sample R2, de!ned as follows for a given new county i′
and lead l:

1 −
∑Ti′

t=1(yi′,t+l − ŷi′,t+l)2
∑Ti′

t=1(yi′,t+l − ȳi′,t+l)2
, (8)

where yi′,t+l is the observed value, ŷi′,t+l is the predicted value,
and ȳi′,t+l = 1/Ti′

∑Ti′
t=1 yi′,t+l, serving as the baseline predictor.

The average, median, and standard deviation of the R2 values are
then taken across all counties in the testing sample. Additionally,
for any model involving an LSTM, up to the minimum length
T̃ = min

i=1,...,n
Ti is taken for each county since the LSTM needs

each sample to have uniform time steps. Therefore, Ti = T̃ for
each county i in the case of SD-LSTM, SD-SP, and the DSD-
LSTM model. For information regarding the hidden layers used
and input shapes in the neural network models, see Table 6.

Due to the nature of neural networks and considering the rel-
atively small sample size, we conduct !ve-fold cross-validation
to evaluate the learning models. We divide all the counties into
!ve train-test splits, where the correlation matrix is re-calculated
on only the training set. Then, for each K = 1, ..., 5, Algorithm 1
is executed on the training set for that particular split. Hence,
we have 25 sets of results for each model (!ve for each of the !ve
train-test splits).

4.5. Results and Discussion

Among the four prediction models we implemented using the
county-level social distancing measures (see Section 4.1), for
K = 1, 2, 3, Model 4 (DSD-LSTM) slightly outperforms Model
1 due to the use of the seven additional demographic variables.
Model 1 (SD-LSTM) proves to result in the highest average and
median out-of-sample R2 for K = 4, 5. Models 2 (SD-SP) and
3 (SD-LM) have much poorer performance across the board,
which implies that these two models are worse than a horizontal
line !t. It is also worth mentioning that the neural network
correction part of Model 2 is incredibly hard to tune to be able
to outperform the linear model Model 3 on its own. In this case,
not only was it not able to enhance Model 3’s results, Model
2’s correction actually worsened the model’s predictive ability.
Other nonparametric methods other than a neural network
were also used (such as support vector regression) but all had
a similar lackluster e$ect, implying that boosting or enhancing
the linear estimator with a nonlinear estimator is not bene!cial
in this case. Model 1’s and Model 4’s superiority suggests a

Table 6. Number of hidden layers, the type and number of nodes of each hidden
layer, and input shape of each model that contains an NN.

No. of hidden Type and no of Input
layers nodes/dropout rate shape

SD-LSTM 1 LSTM 10, Dropout (0.5) n × T̃ × 3
SD-SP 1 LSTM 10, Dropout (0.5) n × T̃ × 3
DSD-LSTM 1 LSTM 10, Dropout (0.5) n × T̃ × 10
SD-MLP 2 Dense 10, Dropout (0.5),

∑n
i=1 Ti × 3

Dense 10, Dropout (0.5)
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Table 7. 02/25/2020–7/10/2020 in-sample and out-of-sample R2 for Model 1 (SD-
LSTM), Model 2 (SD-SP), Model 3 (SD-LM), Model 4 (DSD-LSTM), and Model 5 (SD-
MLP) for K = 1, 2, 3, 4, and 5.

In-Sample Out-of-Sample

Model Mean Median Std Dev Mean Median Std Dev

Model 1, K = 1 0.3447 0.6376 0.8642 0.3281 0.6192 0.7978
Model 1, K = 1* 0.3532 0.6224 0.8050 0.1841 0.5346 1.6523
Model 1, K = 2 0.4733 0.6372 0.5632 0.2170 0.5437 1.0514
Model 1, K = 3 0.5003 0.6527 0.5186 0.2792 0.5600 0.8986
Model 1, K = 4 0.5211 0.6580 0.4738 0.2485 0.5245 0.9007
Model 1, K = 5 0.5113 0.6593 0.5094 0.2024 0.5461 1.0277
Model 2, K = 1 −2.0229 −1.8148 0.9800 −2.9663 −1.9824 7.8948
Model 2, K = 2 −1.8886 −1.7337 0.8901 −2.9613 −1.8356 8.1548
Model 2, K = 3 −1.8819 −1.6990 0.8471 −2.9393 −1.7641 8.0641
Model 2, K = 4 −1.8647 −1.7513 0.8371 −2.9220 −1.7512 8.1715
Model 2, K = 5 −1.8673 −1.7500 0.8016 −2.9281 −1.7872 8.0991
Model 3, K = 1 −0.1227 −0.0271 0.3236 −0.1458 −0.0311 0.4000
Model 3, K = 2 −0.1148 −0.0260 0.2941 −0.1586 −0.0296 0.5145
Model 3, K = 3 −0.1138 −0.0252 0.2936 −0.1563 −0.0276 0.5054
Model 3, K = 4 −0.1095 −0.0239 0.2771 −0.1659 −0.0302 0.6044
Model 3, K = 5 −0.0991 −0.0246 0.2559 −0.1542 −0.0317 0.5320
Model 4, K = 1 0.4855 0.6429 0.5114 0.4513 0.6251 0.5384
Model 4, K = 2 0.5486 0.6645 0.3786 0.3567 0.5556 0.7031
Model 4, K = 3 0.5473 0.6554 0.3952 0.3611 0.5672 0.6536
Model 4, K = 4 0.5489 0.6522 0.3930 0.2947 0.4912 0.7717
Model 4, K = 5 0.5467 0.6550 0.3812 0.2516 0.5223 0.8706
Model 5, K = 1 −0.1894 −0.0394 0.4866 −0.2098 −0.0430 0.4551
Model 5, K = 2 −0.1507 −0.0365 0.3679 −0.1886 −0.0411 0.4241
Model 5, K = 3 −0.1432 −0.0383 0.3538 −0.1729 −0.0415 0.3932
Model 5, K = 4 −0.1318 −0.0415 0.3072 −0.1362 −0.0413 0.3277
Model 5, K = 5 −0.1206 −0.0374 0.2633 −0.1560 −0.0462 0.3741

NOTES: *Same as Model 1, K = 1 but only uses half of the counties (n = 250),
which are randomly sampled. The average values for mean, median and standard
deviation are taken for each of the 5 folds. For K = 1, we assume that all counties
belong to one group so we take all counties in the training data to train the neural
network. The results are based on l = 4 and a !ve-fold cross-validation. 501 of the
total 627 counties are used as training data (in-sample) and 126 counties are used
as testing data (out-of-sample).

nonlinear e$ect that the LSTM was able to extract, but the linear,
semi-parametric, and MLP were unable to do so.

For Models 1 and 4, stratifying the communities through our
method does make a di$erence in-sample since increasing K
improves the models’ mean and median in-sample R2. However,
this is not the case for out-of-sample as K = 1 produces the best
results (no heterogeneity) and the out-of-sample R2 continues
to drop from K = 2 to 5. It is reasonable to conclude that the
decrease in sample size for each community training (e.g., K = 1
uses all 501 counties to train while K = 5 uses on average 1/5th
of that number to train each community) is hurting the model’s
ability to take advantage of the heterogeneity embedded in the
communities. Thus, since neural networks have an advantage in
large sample size settings, the e$ect of the reduction in sample
size for larger Ks outweighs the community di$erence captured
by community detection (Algorithm 1). We also include Model
5 (an FNN with two hidden layers, each with 50% dropout) to
contrast the LSTM with. The performance is similar to Model
3 in that it is no better than a constant !t. The advantage of the
LSTM is highlighted here since the output is dependent on pre-
vious computations, unlike the FNN that assumes the inputs (as
well as outputs) are independent of each other. As COVID-19
cases are sequential information, the LSTM is clearly preferable
to predict with. See Table 7 for the detailed breakdown by model
and by the number of clusters K. Figure 9 contains the out-of-
sample R2 box plots for the four models with K = 1, 2, 3, 4, 5.

To ascertain whether using information from community
detection still plays a role despite K = 1 being the best setting
for out-of-sample prediction, we carry out two further tests. The
!rst test is random sampling half (250) of the counties used for
K = 1 (n = 501), which roughly downsamples to the sample
size used to !t a model for each community for K = 2. This
achieves the e$ect of equaling the sample sizes between K = 1
and K = 2 for a fair comparison of their performance. We test
this only with Model 1 and depict the results in the “Model
1, K = 1*” row in Table 7. They show that a#er removing
the e$ect of sample size, having two communities produces
a better predictive outcome. In particular, the out-of-sample
mean and median R2 0.1841 and 0.5346 are lower than 0.2170
and 0.5437 for K = 2. We also see that the standard deviation
for one community is much higher than that of using two
communities. The second test involves randomly assigning each
training county to a community instead of using our community
detection procedure from Section 2. As shown in Table 8, a#er
repeating this !ve times for Model 1, K = 2, the median in-
sample R2 values are much lower compared to that of the same
model in Table 7 (median of 0.5569 vs. 0.6372, respectively).
Albeit a smaller di$erence, the out-of-sample median 0.4980
is also smaller than the 0.5437 in Table 7. Together, these two
results demonstrate that community detection and separation
aid in predictive performance and categorization of the nature
of the counties’ growth trajectories; however, this e$ect is likely
masked by the diminishing sample size as K increases.

Also note that before obtaining the prediction results for
each algorithm, the hyperparameter of the appropriate lead was
chosen by comparing the average R2 values for each lead. The
le# panel of Figure 10 presents the median out-of-sample R2 vs.
l = 1, ..., 7 for the two best models Model 1, K = 1, and Model 4,
K = 1 as examples. Since out-of-sample R2 plateaus a#er a four-
day lead, we !xed l = 4 as a larger lead would decrease precision
and it is important to be consistent with studies that show the
median incubation period of COVID-19 is 4 and 5 days (Guan
et al. 2020; Lauer et al. 2020). Furthermore, anything longer than
a week or so is rarely used in epidemiological and sociological
studies.

In addition, we establish the importance and impact of using
social distancing features for prediction in this section via two
methodologies. First of all, instead of the social distancing scores
as input Si, we replace them with unvarying constants (to pur-
posely not fully use the information of social distancing data).
Table 9 features the results for Model 1 carried out with con-
stant social distancing scores. Compared to each corresponding
number of communities in Table 7, the out-of-sample mean and
median are all signi!cantly lower, which indicates that social
distancing behavior has clear forecasting power. Without full
signal from the social distancing input, predictive capabilities
are incontrovertibly reduced. A#erward, to discover the relative
e$ect of each of the three social distancing scores, we average
out-of-sample R2 a#er leaving each feature out one at a time.
Evidently, the right panel of Figure 10 suggests that although
there is no distinct drop in performance, leaving out feature 1
(percent change in total distance traveled) results in the largest
decline in R2 whereas leaving out feature 2 (percent change in
the number of visitations to non-essential places) results in the
smallest decline.
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Figure 9. Out-of-sample R2 boxplots for all counties using Model 1 (SD-LSTM), Model 2 (SD-SP), Model 3 (SD-LM), and Model 4 (DSD-LSTM) for K = 1, 2, 3, 4, 5. The results
are based on l = 4 and the period 02/25/2020 - 7/10/2020.

Figure 10. The left panel is the average out-of-sample R2 for Model 1, K = 1 and Model 4, K = 1 for l = 1, 2, 3, 4, 5, 6, 7 for one train-test split. The right panel is average
out-of-sample R2 for the same models, where one social distancing feature is left out each time. Both panels are of the phase 02/25/2020–7/10/2020 and based on !ve-fold
cross-validation.

Table 8. 02/25/2020–7/10/2020 random assignment in-sample and out-of-sample
R2 for Model 1 (SD-LSTM), K = 2.

In-Sample Out-of-Sample

Mean Median Std Dev Mean Median Std Dev

Trial 1 0.2349 0.4842 0.9238 0.4523 0.4956 0.3505
Trial 2 0.2764 0.5569 0.9678 0.3304 0.4995 0.7916
Trial 3 0.2921 0.5628 0.9442 0.1163 0.4980 1.4862
Trial 4 0.2900 0.5594 0.9677 0.3410 0.5454 0.7049
Trial 5 0.3404 0.5430 0.8943 −0.0455 0.4367 1.3895
Median 0.2900 0.5569 0.9442 0.3304 0.4980 0.7916

NOTE: Each trial is completed via randomly assigning each train county of one of
the train-test splits to either community 1 or community 2.

Table 9. 02/25/2020–7/10/2020 in-sample and out-of-sample R2 for Model 1 (SD-
LSTM) but with constant social distancing scores.

In-Sample Out-of-Sample

Mean Median Std Dev Mean Median Std Dev

Model 1, K = 1 0.2595 0.5045 0.9772 0.1966 0.4596 1.2634
Model 1, K = 2 0.3061 0.5399 0.9073 0.0705 0.4023 1.4220
Model 1, K = 3 0.3244 0.5327 0.8876 0.1303 0.4088 1.1456
Model 1, K = 4 0.3366 0.5423 0.8621 0.1175 0.4197 1.2352
Model 1, K = 5 0.3238 0.5353 0.8662 0.0760 0.3919 1.3346
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5. Conclusion

By using spectral clustering, we develop a framework to detect
COVID-19 communities and discover meaningful interpreta-
tions of the clusters. We use the correlation matrix instead of the
canonical Laplacian as it o$ers more meaningful insights and
more distinct clusters. The resulting communities are distinct
in the nature of their respective growth trajectories and there
are several demographic variables that further distinguish these
growth communities. Singling out the signi!cant demographic
features that have explanatory power of a county’s growth com-
munity membership, we discover that not all of these variables
are intuitive when it comes to their role in impacting COVID-19
cases.

A#er modeling and interpreting historical disease progres-
sion, we turn to study future growth trajectories by incorporat-
ing social distancing information. We are able to reliably predict
the logarithmic trends in case growth through the use of LSTMs
and also verify that the counties are far from homogeneous—
the obtained communities contain crucial information neces-
sary for in-sample prediction. As for the LSTM’s out-of-sample
predictive power, the e$ect of the decline in sample size when
increasing the strati!cation of counties into more communi-
ties dominates the heterogeneity between the counties’ growth
curves that community detection uncovers. However, a#er com-
paring results to randomly assigning counties to di$erent com-
munities, the method we propose still demonstrates that using
the community detection results boosts the models’ predictive
performance.

We do, therefore, acknowledge that there could be other
latent features that we did not capture in this study and that
the three social distancing metrics used here may not paint the
complete picture. Furthermore, we do not address the e$ect of
government intervention at given time points that may have
altered the disease progression. These could all be points that
can be further investigated. Despite these potential shortcom-
ings, the analysis conducted on the !rst phase of the disease
here can also be compared to the second phase, which we are
currently experiencing. As the United States and many other
countries are witnessing an even more extraordinary uptick
in cases again, we foresee several possible future applications
of our study, including to other contagious disease outbreaks.
Another interesting future work is to use the con!dence dis-
tribution framework (Xie, Singh, and Strawderman 2011) to
combine studies from independent data sources from di$erent
countries.

Supplementary Material

Supplementary material provides the algorithm and results when clustering
using the regular adjacency matrices as described in Section 2.2.
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