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Summary

Model selection is crucial both to high-dimensional learning and to inference for contempo-
rary big data applications in pinpointing the best set of covariates among a sequence of candidate
interpretable models. Most existing work implicitly assumes that the models are correctly spec-
ified or have fixed dimensionality, yet both model misspecification and high dimensionality are
prevalent in practice. In this paper, we exploit the framework of model selection principles under
the misspecified generalized linear models presented in Lv & Liu (2014), and investigate the
asymptotic expansion of the posterior model probability in the setting of high-dimensional mis-
specified models. With a natural choice of prior probabilities that encourages interpretability and
incorporates the Kullback–Leibler divergence, we suggest using the high-dimensional general-
ized Bayesian information criterion with prior probability for large-scale model selection with
misspecification. Our new information criterion characterizes the impacts of both model mis-
specification and high dimensionality on model selection. We further establish the consistency
of covariance contrast matrix estimation and the model selection consistency of the new infor-
mation criterion in ultrahigh dimensions under some mild regularity conditions. Our numerical
studies demonstrate that the proposed method enjoys improved model selection consistency over
its main competitors.

Some key words: Bayesian principle; Big data; High dimensionality; Kullback–Leibler divergence; Model misspeci-
fication; Model selection; Robustness.
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124 E. Demirkaya et al.

1. Introduction

With the rapid advances in modern technology, big data of unprecedented size, such as genetic
and proteomic data, fMRI and functional data, and panel data in economics and finance, are
frequently encountered in many contemporary applications. In these applications, the dimen-
sionality p can be comparable to or even much larger than the sample size n. A key assumption
that often makes large-scale learning and inference feasible is the sparsity of signals, mean-
ing that only a small fraction of covariates contribute to the response when p is large relative
to n. High-dimensional modelling with dimensionality reduction and feature selection plays
an important role in these problems (e.g., Fan & Lv, 2010; Bühlmann & van de Geer, 2011;
Fan & Lv, 2018). A sparse modelling procedure typically produces a sequence of interpretable
candidate models, each involving a possibly different subset of covariates. An important ques-
tion is how to compare different models in high dimensions when the models are possibly
misspecified.

The problem of model selection has been studied extensively by many researchers over the
past several decades. Well-known model selection criteria include the Akaike information cri-
terion, aic (Akaike, 1973, 1974), and the Bayesian information criterion, bic (Schwarz, 1978),
where the former is based on the Kullback–Leibler divergence principle of model selection
and the latter on the Bayesian principle of model selection. A great deal of work has been
devoted to understanding and extending these model selection criteria to different model set-
tings (see, e.g., Bozdogan, 1987; Foster & George, 1994; Konishi & Kitagawa, 1996; Ing,
2007; Chen & Chen, 2008; Chen & Chan, 2011; Liu & Yang, 2011; Ninomiya & Kawano,
2016; Eguchi, 2017; Hsu et al., 2019). Fong & Holmes (2020) studied the links between cross-
validation and Bayesian model selection. The connections between the aic and cross-validation
have been investigated by Stone (1977), Hall (1990) and Peng et al. (2013) in various con-
texts. In particular, Fan & Tang (2013) showed that classical information criteria, such as
the aic and bic, can no longer be consistent for model selection in ultrahigh dimensions and
proposed the generalized information criterion, gic, for tuning parameter selection in high-
dimensional penalized likelihood, when models are correctly specified. See also Barber & Candès
(2015), Bühlmann & van de Geer (2015), Candès et al. (2018), Shah & Bühlmann (2018)
and Fan et al. (2019, 2020) for some recent work on high-dimensional inference for feature
selection.

Most existing work on model selection and feature selection makes an implicit assumption that
the model under study is correctly specified or of fixed dimensions. Given the practical importance
of model misspecification, White (1982) laid out a general theory of maximum likelihood estima-
tion in misspecified models for the case of fixed dimensionality and independent and identically
distributed observations. Cule et al. (2010) also studied the maximum likelihood estimation of
a multi-dimensional log-concave density in the case where the model is misspecified. Recently,
Lv & Liu (2014) investigated the problem of model selection with model misspecification and
derived asymptotic expansions of both the Kullback–Leibler divergence and Bayesian principles
in misspecified generalized linear models, leading to the generalizedAkaike information criterion,
gaic, and generalized Bayesian information criterion, gbic, for the case of fixed dimensionality.
A specific form of prior probabilities motivated by the Kullback–Leibler divergence principle
led to the generalized Bayesian information criterion with prior probability, gbicp. As contem-
porary big data applications often feature both model misspecification and high dimensionality,
an important question is how to characterize their impact on model selection. The present paper
aims to provide some partial answers to this question.
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Large-scale model selection with misspecification 125

Let us first gain some insights into the challenges of the aforementioned problem by considering
a motivating example. Assume that the response Y depends on the covariate vector (X1, . . . , Xp)

T

through the functional form Y = f (X1)+ f (X2 −X3)+ f (X4 −X5)+ε, where f (x) = x3/(x2 +1)

and the other settings are as described in § 4.2. Let the sample size be n = 200 and vary the
dimensionality p from 100 to 3200. Without any prior knowledge of the true model structure, we
take the linear regression model

y = Zβ + ε (1)

as the working model and apply some information criteria to hopefully recover the oracle working
model; here y is an n-dimensional response vector, Z is an n×p design matrix, β = (β1, . . . , βp)

T is
a p-dimensional regression coefficient vector, and ε is an n-dimensional error vector. Following
Candès et al. (2018), we define the oracle working model M0 to be the Markov blanket for
Y , i.e., M0 is the smallest subset of indices such that Y is independent of XMc

0
conditional

on XM0
; see Lauritzen (1996) and Pearl (2014). In this example, the oracle working model

consists of the first five covariates. When p = 100, the traditional aic and bic, which ignore
model misspecification, tend to select a model of size greater than five. In contrast, gbicp of
Lv & Liu (2014) selects the oracle working model around 60% of the time. However, when
p is increased to 3200, these methods fail to select such a model with significant probability
and the prediction performance of the selected models deteriorates. This motivates us to study
the problem of model selection in high-dimensional misspecified models. Our new method, in
contrast, can recover the oracle working model with significant probability in this challenging
scenario.

The main contributions of this paper are threefold. First, we derive the asymptotic expan-
sion of the posterior model probability in high-dimensional misspecified generalized linear
models, which involves delicate and challenging technical analysis. Motivated by the asymp-
totic expansion and a natural choice of prior probabilities that encourages interpretability and
incorporates Kullback–Leibler divergence, we propose a method called the high-dimensional
generalized Bayesian information criterion with prior probability, for large-scale model selec-
tion with misspecification. Second, our work provides rigorous theoretical justification of the
covariance contrast matrix estimator that incorporates the effect of model misspecification and
is crucial for practical implementation. Such an estimator is shown to be consistent in the gen-
eral setting of high-dimensional misspecified models. Third, we establish the model selection
consistency of our new information criterion in ultrahigh dimensions under some mild regu-
larity conditions. In particular, our work provides important extensions of the studies in Lv &
Liu (2014) and Fan & Tang (2013) to the cases of high dimensionality and model misspec-
ification, respectively. The aforementioned contributions make our work distinct from other
studies on model misspecification, such as those of Bühlmann & van de Geer (2015), Hsu
et al. (2019) and Shah & Bühlmann (2018). Since Lv & Liu (2014) is closely related to the
present paper, we reiterate the main differences between these two works. First, the study in
Lv & Liu (2014) focused on fixed dimensionality, so our model selection criterion differs in
how it penalizes the model complexity, as discussed in § 2.2. Although both criteria rely on
estimation of the covariance contrast matrix, the consistency result of the covariance contrast
matrix estimator in Lv & Liu (2014) does not allow model misspecification, whereas we estab-
lish in § 3.3 the consistency of the estimator for the covariance contrast matrix even under model
misspecification. Finally, in light of the new consistency result, we further provide a model
selection consistency theorem for our model selection criterion, a result that was missing from
Lv & Liu (2014).
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126 E. Demirkaya et al.

2. Large-scale model selection with misspecification

2.1. Model misspecification

The main focus of this paper is the investigation of ultrahigh-dimensional model selection with
model misspecification in which the dimensionality p can grow nonpolynomially with the sample
size n. Let Z be the n×p design matrix with all available covariates. We let M denote an arbitrary
subset of size d of the p available covariates and let X = (x1, . . . , xn)

T denote the corresponding
n × d fixed design matrix given by the covariates in model M. Assume that conditional on the
covariates in model M, the response vector Y = (Y1, . . . , Yn)

T has independent components and
each Yi follows distribution Gn,i with density gn,i, where all the distributions Gn,i are unknown
to us in practice. Denote by gn = ∏n

i=1 gn,i the product density and Gn the corresponding true
distribution of the response vector Y .

Since the collection of true distributions {Gn,i}1�i�n is unknown to practitioners, one often
chooses a family of working models to fit the data. A popular class of working models is the
family of generalized linear models (McCullagh & Nelder, 1989) with a canonical link and
natural parameter vector θ = (θ1, . . . , θn)

T with θi = xT
i β, where xi is a d-dimensional covariate

vector and β = (β1, . . . , βd)T is a d-dimensional regression coefficient vector. Let τ > 0 be
the dispersion parameter. Then under this working model, the conditional density of response yi
given the covariates in model M is assumed to take the form

fn,i(yi) = exp{yiθi − b(θi) + c(yi, τ)}, (2)

where b(·) and c(· , ·) are some known functions, with b(·) being twice continuously differentiable
and b′′(·) bounded away from 0 and ∞. Here Fn denotes the corresponding distribution of the n-
dimensional response vector y = (y1, . . . , yn)

T with the product density fn = ∏n
i=1 fn,i, assuming

the independence of components. Since the generalized linear model is chosen by the user, the
working distribution Fn can generally be different from the true unknown distribution Gn.

For the generalized linear model in (2) with natural parameter vector θ , let us define two
vector-valued functions b(θ) = {b(θ1), . . . , b(θn)}T and μ(θ) = {b′(θ1), . . . , b′(θn)}T, as well
as a matrix-valued function �(θ) = diag{b′′(θ1), . . . , b′′(θn)}. Basic properties of generalized
linear models give E(y) = μ(θ) and cov(y) = �(θ) with θ = X β. The product density of the
response vector y can be written as

fn(y; β, τ) =
n∏

i=1

fn,i(yi) = exp

{
yTX β − 1Tb(X β) +

n∑
i=1

c(yi, τ)

}
, (3)

where 1 represents the n-dimensional vector with all components equal to the scalar 1. Since
the family of generalized linear models is only our working model, (3) results in the quasi-
loglikelihood function (White, 1982)

�n(y; β, τ) = log fn(y; β, τ) = yTX β − 1Tb(X β) +
n∑

i=1

c(yi, τ). (4)

Hereafter we treat the dispersion parameter τ as a known parameter and focus on our main
parameter of interest, β. Whenever confusion is unlikely, we will slightly abuse notation and
drop the functional dependence on τ .

The quasi maximum likelihood estimator for the parameter vector β in our working model (2)
is defined as β̂n = arg maxβ∈Rd �n(y, β), which is the solution to the score equation

�n(β) = ∂�n(y, β)/∂β = X T{y − μ(X β)} = 0. (5)
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Large-scale model selection with misspecification 127

For the linear regression model with μ(X β) = X β, this score equation becomes the familiar
normal equation X Ty = X TX β. Such a vector β is called the quasi maximum likelihood estimator
when the model is misspecified. Hereafter, for simplicity we call β the maximum likelihood
estimator, since we do not know whether or not the model is misspecified in practice. The
Kullback–Leibler divergence (Kullback & Leibler, 1951) between our working model Fn and
the true model Gn is defined as I {gn; fn(· , β)} = E{log gn(Y )} − E{�n(Y , β)}, with the response
vector Y following the true distribution Gn. As in Lv & Liu (2014), we consider the best working
model in the sense that it is closest to the true model under the Kullback–Leibler divergence. Such
a model has parameter vector βn,0 = arg minβ∈Rd I {gn; fn(· , β)}, which solves the equation

X T{E(Y ) − μ(X β)} = 0. (6)

We see that (6) is simply the population version of the score equation (5).
Following Lv & Liu (2014), we introduce two matrices, the Fisher information in outer product

form and in Hessian form. These matrices play a key role in model selection with model mis-
specification. Under the true distribution Gn, we have cov(X TY ) = X Tcov(Y )X . Computing the
score equation at βn,0, the Fisher information matrix in outer product form is

Bn = cov{�n(βn,0)} = cov(X TY ) = X Tcov(Y )X (7)

with cov(Y ) = diag{var(Y1), . . . , var(Yn)} by the independence assumption and under the true
model. Under the working model Fn, we have cov(X TY ) = X T�(X β)X . The Fisher information
matrix in Hessian form is defined by

An(β) = ∂2I {gn; fn(· , β)}
∂β2 = −E

{
∂2�n(Y , β)

∂β2

}
= X T�(X β)X , (8)

and we write An = An(βn,0). Thus An and Bn are the covariance matrices of X TY under the best
working model Fn(βn,0) and the true model Gn, respectively. To account for the effect of model
misspecification, we define the covariance contrast matrix Hn = A−1

n Bn as in Lv & Liu (2014).
Observe that An and Bn coincide when the best working model and the true model are the same.
In this case, Hn is the identity matrix of size d.

2.2. High-dimensional generalized Bayesian information criterion with prior probability

Given a set of competing models {Mm : m = 1, . . . , M }, a popular model selection proce-
dure using the Bayesian principle of model selection involves first placing nonzero prior proba-
bility αMm on each model Mm, and then choosing a prior distribution μMm for the parameter
vector in the corresponding model. We use dm = |Mm| to denote the dimensionality of candi-
date model Mm and suppress the subscript m for conciseness whenever confusion is unlikely.
Assume that the density function of μMm is bounded in R

Mm = R
dm and locally bounded away

from zero in a shrinking neighbourhood of βn,0. The Bayesian principle of model selection
entails choosing the most probable model a posteriori, i.e., choosing the model Mm0 such that
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128 E. Demirkaya et al.

m0 = arg maxm∈{1,...,M } S(y, Mm; Fn), where

S(y, Mm; Fn) = log
∫

αMm exp{�n(y, β)} dμMm(β), (9)

with the loglikelihood �n(y, β) defined in (4) and the integral over R
dm .

The choice of prior probabilities αMm is important in high dimensions. Lv & Liu (2014)
suggested using prior probability αMm ∝ exp(−Dm) for each candidate model Mm, where the
quantity Dm is defined as Dm = E[I {gn; fn(· , β̂n,m)} − I {gn; fn(· , βn,m,0)}], with the subscript m
indicating a particular candidate model. The idea is that the further away the maximum likelihood
estimator β̂n,m is from the best misspecified generalized linear models Fn(· , βn,m,0), the lower the
prior probability we assign to that model. In the high-dimensional setting where the dimensionality
p can be much larger than the sample size n, it is sensible to also take into account the complexity
of the space of all possible sparse models of the same size as Mm. This motivates us to consider
a new prior probability of the form

αMm ∝ p−d exp(−Dm) (10)

with d = |Mm|. The complexity factor p−d is motivated by the asymptotic expansion of {p!/(p−
d)!}−1. In fact, an application of Stirling’s formula yields log{p!/(p − d)!}−1 ≈ −d log p =
log(p−d) up to an additive term of order o(d) when d = o(p). The factor of [p!/{(p − d)!d!}]−1

was also exploited by Chen & Chen (2008), who showed that by using the term [p!/{(p−d)!d!}]−γ

with some constant 0 < γ � 1, their extended Bayesian information criterion, ebic, can be
model selection consistent for the scenario of correctly specified models with p = O(nκ) for
some positive constant κ satisfying 1− (2κ)−1 < γ . A different way of integrating the number of
candidate models into the prior was considered by Szulc (2012) in the case where the model under
study is correctly specified. Moreover, we add the term d! to reflect a stronger prior on model
sparsity. See also Fan & Tang (2013) for the characterization of model selection in ultrahigh
dimensions with correctly specified models.

A similar normalization term can be found in some fully Bayesian methods; see, for instance,
Castillo et al. (2015) for more details. However, the fully Bayesian methods need to specify
the distribution of parameter β, whereas our method only puts some prior probabilities on the
candidate models Mm, and the distribution μMm(β) of parameter β given model Mm does not
need to be specified. Furthermore, fully Bayesian approaches require posterior computation,
which may limit their use in high dimensions; see, for example, George (2000).

The asymptotic expansion in § 3.2 of the posterior model probability in Theorem 1 moti-
vates us to introduce the high-dimensional generalized Bayesian information criterion with prior
probability, hgbicp, for large-scale model selection with misspecification.

Definition 1. Define hgbicp = hgbicp(y, Mm; Fn) of model Mm by

hgbicp = −2�n(y, β̂n) + 2(log p∗)|Mm| + tr(Ĥn) − log |Ĥn|, (11)

where Ĥn is a consistent estimator of Hn and p∗ = pn1/2. Here, consistency is in terms of trace
and log determinant of the matrix.

In correctly specified models, Hn = A−1
n Bn = Id and so the term tr(Ĥn) − log |Ĥn| in (11) is

asymptotically close to |Mm| when Ĥn is a consistent estimator of Hn. Thus, compared to the
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Large-scale model selection with misspecification 129

bic with factor log n, the hgbicp contains a larger factor of order log p when the dimensionality
p grows nonpolynomially with the sample size n. This leads to a heavier penalty on model
complexity, similar to that in Fan & Tang (2013).

As shown in Lv & Liu (2014), the hgbicp defined in (11) can also be viewed as a sum of
three terms: the goodness of fit, model complexity and model misspecification; see Lv & Liu
(2014) for more details. Furthermore, hgbicp is also related to Takeuchi’s information criterion,
tic = −2�n(y, β̂n)+ 2 tr(Ĥn) (Takeuchi, 1976), which contains a similar model misspecification
term tr(Ĥn), but lacks any model complexity term.

Our new information criterion hgbicp represents an important extension of the model selec-
tion criterion gbicp = −2�n(y, β̂n) + (log n)|Mm| + tr(Ĥn) − log |Ĥn| in Lv & Liu (2014),
which was proposed for the scenario of model misspecification with fixed dimensionality, by
explicitly taking into account the high dimensionality of the whole feature space. Moreover,
in view of (11) and the definition of p∗, hgbicp has an additional model complexity term
2(log p)|Mm|.

3. Asymptotic properties of hgbicp

3.1. Technical assumptions

We list the technical assumptions required to prove the main results and the asymptotic prop-
erties of the maximum likelihood estimator with diverging dimensionality. Denote by Z the full
design matrix of size n × p whose (i, j)th entry is xij. For any subset Mm of {1, . . . , p}, ZMm

denotes the submatrix of Z formed by the columns whose indices are in Mm. When confusion
is unlikely, we drop the subscript and write X = ZMm for fixed M. For theoretical reasons, we
restrict the parameter space to B0, a sufficiently large convex and compact set of R

p. We consider
parameters with bounded support. Specifically, we define B(Mm) = {β ∈ B0 : supp(β) = Mm}
and B = ⋃

|Mm|�K B(Mm), where the maximum support size K is taken to be o(n). Moreover,

we assume that c0 � b′′(Zβ) � c−1
0 for any β ∈ B, where c0 is some positive constant.

We use the following notation. For matrices, ‖ · ‖2, ‖ · ‖∞ and ‖ · ‖F denote the matrix operator
norm, entrywise maximum norm and matrix Frobenius norm, respectively. For vectors, ‖ ·‖2 and
‖ · ‖∞ denote the vector L2-norm and maximum norm, and (v)i represents the ith component of
vector v. Denote by λmin(·) and λmax(·) the smallest and largest eigenvalues of a given matrix,
respectively.

Assumption 1. There exists some positive constant c1 such that for each i = 1, . . . , n, pr(|Wi| >

t) � c1 exp(−c−1
1 t) for any t > 0, where W = (W1, . . . , Wn)

T = Y − E(Y ). The variances of
the Yi are bounded below uniformly in i and n.

Assumption 2. Let u1 and u2 be some positive constants and m̃n = O(nu1) a
diverging sequence. We have the bounds max{‖E(Y )‖∞, supβ∈B ‖μ(Zβ)‖∞} � m̃n and∑n

i=1

([E(Yi) − {μ(X βn,0)}i]2/var(Yi)
)2 = O(nu2). For simplicity, we also assume that m̃n

diverges faster than log n.

Assumption 3. Let K = o(n) be a positive integer. There exist positive constants c2 and u3
such that for any Mm ⊂ {1, . . . , p} with |Mm| � K , we have c2 � λmin(n−1ZT

Mm
ZMm) �

λmax(n−1ZT
Mm

ZMm) � c−1
2 and ‖Z‖∞ = O(nu3). For simplicity, we assume that the columns of

Z are normalized, i.e.,
∑n

i=1 x2
ij = n for all j = 1, . . . , p.
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130 E. Demirkaya et al.

Assumption 1 is a standard tail assumption on the response variable Y ; it ensures that the subex-
ponential norm of the response is bounded. Assumptions 2 and 3 are counterparts of assumptions
in Fan & Tang (2013). However, Assumption 2 has been modified to deal with model misspeci-
fication. More specifically, the means of the true distribution and fitted model, as well as their
relations, are assumed in Assumption 2: the first part simultaneously controls the tail behaviour of
the response and fitted model, while the second part ensures that the mean of the fitted distribution
does not deviate from the true mean too significantly. We point out that such an assumption does
not limit the generality of model misspecification, since the misspecification considered in this
paper is due to the distributional mismatch between the working model and the underlying true
model. Even in the misspecified scenario, the fitted mean vector from the working model can
approximate the true mean vector under certain regularity conditions. Assumption 3 concerns
the design matrix X ; the first part is important for the consistency of the maximum likelihood
estimator β̂n and the uniqueness of the population parameter. Assumptions 2 and 3 also provide
bounds on the eigenvalues of An(β) and Bn. See Fan & Tang (2013) for further discussions of
these assumptions.

For the next two assumptions, we define a neighbourhood aroundβn,0. Let δn = m̃n(log p)1/2 =
O{nu1(log p)1/2}. We define the neighbourhood Nn(δn) = {β ∈ R

d : ‖(n−1Bn)
1/2(β −βn,0)‖2 �

(n/d)−1/2δn}. We assume that (n/d)−1/2δn converges to zero so that Nn(δn) is an asymptotically
shrinking neighbourhood of βn,0.

Assumption 4. Assume that the prior density relative to the Lebesgue measure μ0 on R
d ,

π{h(β)} = dμMm/dμ0{h(β)}, satisfies infβ∈Nn(2δn)
π{h(β)} � c3 and supβ∈Rd π{h(β)} � c−1

3 ,

where c3 is a positive constant and h(β) = (n−1Bn)
1/2β.

Assumption 5. Let Vn(β) = B−1/2
n An(β)B−1/2

n , Vn = Vn(βn,0) = B−1/2
n AnB−1/2

n and

Ṽn(β1, . . . , βd) = B−1/2
n Ãn(β1, . . . , βd)B−1/2

n , where Ãn(β1, . . . , βd) is the matrix whose jth
row is the corresponding row of An(β j) for each j = 1, . . . , d. There exists some sequence ρn(δn)

such that ρn(δn)δ
2
nd converges to zero, maxβ1,...,βd∈Nn(δn)

‖Ṽn(β1, . . . , βd)−Vn‖2 � ρn(δn), and
maxβ∈Nn(2δn)

max[|λmin{Vn(β) − Vn}|, |λmax{Vn(β) − Vn}|] � ρn(δn).

Similar versions of Assumptions 4 and 5 were imposed in Lv & Liu (2014). Under Assump-
tion 4, the prior density is bounded above globally and bounded below in a neighbourhood of βn,0.
This assumption is used in Theorem 1 for the asymptotic expansion of the posterior model prob-
ability. Assumption 5 is on the continuity of the matrix-valued function Vn and Ṽn in a shrinking
neighbourhood Nn(2δn) of βn,0. The first and second parts control the expansions of the expected
loglikelihood and score functions, respectively. Assumption 5 ensures that the remainders are
negligible in approximating S(y, Mm; Fn). More detailed discussion of Assumption 5 is provided
in the Supplementary Material; see also Lv & Liu (2014) for further discussions about these
assumptions.

3.2. Asymptotic expansion of the Bayesian principle of model selection

We now give the asymptotic expansion of the posterior model probability with the prior intro-
duced in § 2.2. As mentioned earlier, the Bayesian principle chooses the model that maximizes
S(y, Mm; Fn) given in (9). To ease the presentation, for any β ∈ R

d we define a quantity

�∗
n(y, β) = �n(y, β) − �n(y, β̂n), (12)
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which is the deviation of the quasi-loglikelihood from its maximum. Then, from (9) and (12), we
have

S(y, Mm; Fn) = �n(y, β̂n) + log EμMm
{Un(β)n} + log αMm , (13)

where Un(β) = exp{n−1�∗
n(y, β)}. With the choice of the prior probability in (10), it is clear that

log αMm = −Dm − d log p. (14)

Aided by (13) and (14), some delicate technical analysis unveils the following expansion of
S(y, Mm; Fn).

Theorem 1. Assume thatAssumptions 1–5 hold and let αMm = Cp−d exp(−Dm) where C > 0
is a normalization constant. If (n/d)−1/2δn = o(1), then with probability tending to 1,

S(y, Mm; Fn) = �n(y, β̂n) − (log p∗)|Mm| − 1

2
tr(Hn) + 1

2
log |Hn|

+ log(Cc4) + o(μ̃n), (15)

where Hn = A−1
n Bn, p∗ = pn1/2, μ̃n = max{tr(A−1

n Bn), 1} and c3 � c4 � c−1
3 with c3 being the

positive constant in Assumption 4.

Theorem 1 lays the foundation for investigating high-dimensional model selection with model
misspecification. Based on the asymptotic expansion in (15), our new information criterion in
(11) is defined by replacing the covariance contrast matrix Hn with a consistent estimator Ĥn.
The hgbicp naturally characterizes the impacts of both model misspecification and high dimen-
sionality on model selection. A natural question is how to ensure a consistent estimator for Hn,
which we address next.

3.3. Consistency of covariance contrast matrix estimation

For practical implementation of hgbicp, it is of vital importance to provide a consistent esti-
mator for the covariance contrast matrix Hn. To this end, we consider the plug-in estimator
Ĥn = Â−1

n B̂n with Ân and B̂n defined as follows. Since the maximum likelihood estimator β̂n pro-
vides a consistent estimator of βn,0 in the best misspecified generalized linear models Fn(· , βn,0),
a natural estimate of the matrix An is

Ân = An(β̂n) = X T�(X β̂n)X .

When the model is correctly specified, the simple estimator

B̂n = X Tdiag
[{

y − μ(X β̂n)
} ◦ {

y − μ(X β̂n)
}]

X ,

with ◦ denoting the componentwise product, is an asymptotically unbiased estimator of the
matrix Bn.

Theorem 2. Suppose thatAssumptions 1–3 hold, n−1An(β) is Lipschitz in operator norm in the
neighbourhood Nn(δn), d = O(nκ1), and log p = O(nκ2) with constants satisfying 0 < κ1 < 1/4,
0 < u3 < 1/4 − κ1, 0 < u2 < 1 − 4κ1 − 4u3, 0 < u1 < 1/2 − 2κ1 − u3 and 0 < κ2 <

1−4κ1 −2u1 −2u3. Then the plug-in estimator Ĥn = Â−1
n B̂n is such that tr(Ĥn) = tr(Hn)+oP(1)
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and log |Ĥn| = log |Hn|+oP(1) with significant probability 1−O(n−δ+p1−8c2γ
2
n ), where δ is some

positive constant and γn is a slowly diverging sequence such that γnm̃n(K1/2n−1 log p)1/2 → 0.

Theorem 2 improves upon the result of Lv & Liu (2014) in two important respects. First, the
consistency of the covariance contrast matrix estimator was justified in Lv & Liu (2014) only in
the scenario of correctly specified models. Our new result shows that the simple plug-in estimator
Ĥn still enjoys consistency in the general setting of model misspecification. Second, the result
in Theorem 2 holds for the case of high dimensionality. These theoretical guarantees are crucial
for the practical implementation of our new information criterion. Our numerical studies in § 4
show that such an estimate works well in a variety of model misspecification settings.

3.4. Model selection consistency of hgbicp

We further investigate the model selection consistency property of the information criterion
hgbicp. Assume that there are M = o(nδ) sparse candidate models M1, . . . , MM , where δ is
some sufficiently large positive constant. At first glance, such an assumption may seem slightly
restrictive, since it rules out an exhaustive search over all p!/{(p − d)!d!} possible candidate
models. However, our goal here is to provide practitioners with some tools for comparing a set
of candidate models that are available to them. In fact, the set of sparse models under model
comparison can be often smaller in practice, for example polynomial instead of exponential in
sample size, even in the ultrahigh-dimensional setting. One situation is where practitioners may
apply different algorithms, each of which can lead to a possibly different model. Another example
is the use of a certain regularization method with a sequence of sparse models generated by a
path algorithm, which will be demonstrated in our numerical studies. For each candidate model
Mm, we have the hgbicp criterion as defined in (11),

hgbicp(Mm) = −2�n(y, β̂n,m) + 2(log p∗)|Mm| + tr(Ĥn,m) − log |Ĥn,m|, (16)

where Ĥn,m is a consistent estimator of Hn,m and p∗ = pn1/2. Assume that there exists an oracle
working model in the sequence {Mm : m = 1, . . . , M } that has support identical to the set of
all important features in the true model. Without loss of generality, suppose that M1 is such an
oracle working model.

Theorem 3. Suppose that all the assumptions ofTheorems 1 and 2 hold and that the population
version of the hgbicp in (16) is minimized at M1 such that for some positive sequence �n slowly
converging to zero,

min
m>1

{
hgbic

∗
p(Mm) − hgbic

∗
p(M1)

}
> �n (17)

with hgbic
∗
p(Mm) = −2�n(y, βn,m,0) + 2(log p∗)|Mm| + tr(Hn,m) − log |Hn,m|. Then

min
m>1

{
hgbicp(Mm) − hgbicp(M1)

}
> �n/2

for large enough n with asymptotic probability 1.

Theorem 3 formally establishes the model selection consistency property of the new infor-
mation criterion hgbicp for large-scale model selection with misspecification, in that the oracle
working model can be selected from a large sequence of candidate sparse models with significant
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probability. This desirable property is an important consequence of the results in Theorems 1
and 2. Furthermore, the assumption (17) is intrinsically necessary for this kind of theorem. For
any model selection criterion, when the models are indistinguishable at the population level, the
criterion cannot differentiate them in the sample version. Theorem 3 ensures that the gap in the
population version is preserved in the sample version, giving a slight leeway.

4. Numerical studies

4.1. Set-up

In this section we investigate the finite-sample performance of the information criterion hgbicp
in comparison with the information criteria aic, bic, ebic (Chen & Chen, 2008), gic (Fan & Tang,
2013), gaic, or equivalently tic, gbic and gbicp in high-dimensional misspecified models via
three simulation examples: a multiple-index model, a logistic regression model with interaction
effects, and a Poisson regression model with interaction effects. For each candidate model Mm,
the ebic and gic criteria are defined as

ebic(Mm) = −2�n(y, β̂n,m) + (log n)|Mm| + log
(

p

|Mm|
)

,

gic(Mm) = −2�n(y, β̂n,m) + (log n)(log log p)|Mm|.
4.2. Multiple-index model

The first model we consider is the multiple-index model

Y = f (β1X1) + f (β2X2 + β3X3) + f (β4X4 + β5X5) + ε, (18)

where the response depends on the covariates Xj only through the first five in a nonlinear fashion
and f (x) = x3/(x2 + 1). Here the rows of the n × p design matrix Z are sampled as independent
copies from N (0, Ip), and the n-dimensional error vector ε is distributed as N (0, σ 2In). We let
the true parameter vector be β0 = (1, −1, 1, 1, −1, 0, . . . , 0)T and set σ = 1. We vary the dimen-
sionality p from 100 to 3200 while keeping the sample size n fixed at 200. We aim to investigate
the behaviour of different information criteria as the dimensionality increases. Although the data
were generated from model (18), we fit the linear regression model (1). This is a typical example
of model misspecification. Since the first five variables are independent of the other variables, the
oracle working model is M0 = supp(β0) = {1, . . . , 5}. Because of the high dimensionality, it is
computationally prohibitive to implement the best subset selection. Therefore we first applied the
lasso followed by least-squares refitting to build a sequence of sparse models and then selected
the final model using a model selection criterion. In practice, one can apply any preferred variable
selection procedure to obtain a sequence of candidate interpretable models.

We report the consistent selection probability, i.e., the proportion of simulations where the
selected model M̂ is equal to M0, the sure screening probability (Fan & Fan, 2008; Fan & Lv,
2008), i.e., the proportion of simulations where M̂ ⊃ M0, and the prediction error E(Y − zTβ̂)2

where β̂ is an estimate and (z, Y ) is an independent observation for z = (X1, . . . , Xp)
T. To evaluate

the prediction performance of different criteria, we calculated the average prediction error on an
independent test sample of size 10 000. The results for the prediction error and model selection
performance are summarized in Table 1. We also calculate the average number of false positives
for each method in Table 2.

From Table 1 we observe that as the dimensionality p increases, the consistent selection
probability tends to decrease for all criteria except the newly proposed hgbicp, which maintains at
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Table 1. Average results over 100 repetitions for the example in § 4.2 with all entries multiplied
by 100

Consistent selection probability with sure screening probability in parentheses
p aic bic ebic gic gaic gbic gbicp hgbicp Oracle

100 0 (100) 29 (100) 70 (100) 66 (100) 0 (100) 33 (100) 57 (100) 100 (100) 100 (100)
200 0 (100) 6 (100) 57 (100) 59 (100) 0 (100) 9 (100) 32 (100) 99 (100) 100 (100)
400 0 (100) 1 (100) 57 (100) 68 (100) 0 (100) 3 (100) 13 (100) 99 (100) 100 (100)
800 0 (100) 0 (100) 51 (100) 64 (100) 0 (100) 0 (100) 10 (100) 98 (100) 100 (100)
1600 0 (100) 0 (100) 39 (100) 59 (100) 0 (100) 0 (100) 9 (100) 98 (100) 100 (100)
3200 0 (100) 0 (100) 43 (100) 64 (100) 0 (100) 0 (100) 4 (100) 95 (99) 100 (100)

Mean prediction error with standard error in parentheses
100 151 (2) 126 (2) 122 (1) 122 (1) 137 (2) 126 (2) 123 (1) 119 (1) 119 (1)
200 166 (2) 131 (2) 121 (1) 121 (1) 139 (2) 130 (2) 124 (1) 117 (1) 117 (1)
400 181 (3) 140 (2) 124 (1) 123 (1) 146 (2) 139 (2) 129 (2) 120 (1) 119 (1)
800 187 (2) 149 (2) 127 (1) 125 (1) 151 (2) 147 (2) 136 (2) 121 (1) 121 (1)
1600 185 (2) 154 (2) 128 (2) 124 (1) 152 (2) 152 (2) 137 (2) 119 (1) 119 (1)
3200 178 (2) 151 (2) 123 (1) 120 (1) 146 (2) 150 (2) 134 (2) 117 (1) 116 (1)

aic,Akaike information criterion; bic, Bayesian information criterion; ebic, extended Bayesian information criterion
of Chen & Chen (2008); gic, generalized information criterion; gaic, generalized Akaike information criterion;
gbic, generalized Bayesian information criterion; gbicp, generalized Bayesian information criterion with prior
probability; hgbicp, high dimensional generalized Bayesian information criterion with prior probability.

Table 2.Average false positives over 100 repetitions for the example in § 4.2
p aic bic ebic gic gaic gbic gbicp hgbicp

100 15.35 1.84 0.49 0.58 7.05 1.75 0.86 0.00
200 24.30 3.53 0.76 0.70 7.43 3.07 1.39 0.01
400 31.46 5.58 0.73 0.53 8.32 5.11 1.98 0.01
800 34.12 7.21 0.87 0.60 8.26 6.20 2.58 0.02
1600 34.41 8.74 1.23 0.56 7.65 7.58 3.12 0.02
3200 33.41 8.64 0.93 0.48 7.25 8.28 3.26 0.04

least 95% consistent selection probability for all dimensionalities considered. Generally speaking,
gaic was an improvement over aic, and gbic and gbicp performed better than bic in terms of
both prediction and variable selection. The high-dimensional information criteria ebic and gic

outperformed the traditional aic and bic. In particular, the model selected by our new information
criterion hgbicp delivered the best performance with the smallest prediction error and highest
consistent selection probability across all settings.

An interesting observation comes from comparing gbicp, gic and hgbicp in terms of the model
selection consistency property. While gbicp is comparable to hgbicp when the dimensionality is
not large, such as p = 100, the difference between these two methods increases as the dimen-
sionality increases. In the case where p = 3200, hgbicp has 95% success for consistent selection,
while gbicp has a success rate of only 4%. This confirms the necessity of including the log p∗
factor with p∗ = pn1/2 in the model selection criterion to take into account the high dimension-
ality, which is in line with the results of Fan & Tang (2013) for the case of correctly specified
models. On the other hand, due to the lack of consideration of model misspecification, gic is still
outperformed by the newly proposed hgbicp across all dimensionalities considered.

We further study a family of model selection criteria induced by the hgbicp and characterized
as follows:
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Fig. 1. For the example in § 4.2, (a) the average false discovery proportion and (b) the true positive rate as the factor
ζ varies, when p = 200 (black solid), p = 800 (red dashed) and p = 3200 (green dot-dash).

hgbicp,ζ (Mm) = −2�n(y, β̂n,m) + ζ
{
2(log p∗)|Mm| + tr(Ĥn,m) − log |Ĥn,m|},

where ζ is a positive factor controlling the penalty level on both model misspecification and high
dimensionality. The hgbicp,ζ with ζ = 1 reduces to our original hgbicp. Here we examine the
impact of the factor ζ on the false discovery proportion and the true positive rate for the selected
model M̂ , compared to the oracle working model M0. In Fig. 1 we see that as ζ increases, the
average false discovery proportion drops sharply as it gets close to 1. In addition, we have the
desired model selection consistency property, with the false discovery proportion close to 0 and
true positive rate close to 1 when ζ ∈ [1, 1.5]. This figure demonstrates the robustness of the
introduced hgbicp,ζ criteria.
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