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Many complex networks in the real world can be formulated as hyper-
graphs where community detection has been widely used. However, the fun-
damental question of whether communities exist or not in an observed hy-
pergraph remains unclear. This work aims to tackle this important problem.
Specifically, we systematically study when a hypergraph with community
structure can be successfully distinguished from its Erdős–Rényi counter-
part, and propose concrete test statistics when the models are distinguish-
able. The main contribution of this paper is threefold. First, we discover
a phase transition in the hyperedge probability for distinguishability. Sec-
ond, in the bounded-degree regime, we derive a sharp signal-to-noise ra-
tio (SNR) threshold for distinguishability in the special two-community 3-
uniform hypergraphs, and derive nearly tight SNR thresholds in the general
two-community m-uniform hypergraphs. Third, in the dense regime, we pro-
pose a computationally feasible test based on sub-hypergraph counts, obtain
its asymptotic distribution, and analyze its power. Our results are further ex-
tended to nonuniform hypergraphs in which a new test involving both edge
and hyperedge information is proposed. The proofs rely on Janson’s conti-
guity theory (Combin. Probab. Comput. 4 (1995) 369–405), a high-moments
driven asymptotic normality result by Gao and Wormald (Probab. Theory Re-
lated Fields 130 (2004) 368–376), and a truncation technique for analyzing
the likelihood ratio.

1. Introduction. Community detection is a fundamental problem in network data anal-
ysis. For instance, in social networks [24, 34, 58], protein to protein interactions [16], image
segmentation [52], among others, many algorithms have been developed for identifying com-
munity structure. Theoretical studies on community detection have mostly been focusing on
ordinary graph setting in which each possible edge contains exactly two vertices (see [4, 7,
13, 28, 50, 58, 59]). One common assumption made in these references is the existence of
communities. Recently, a number of researchers have been devoted to testing this assump-
tion, for example, [9, 10, 12, 26, 27, 40, 43, 55]. Besides, hypothesis testing has been used to
test the number of communities in a network [12, 40].

Real-world networks are usually more complex than ordinary graphs. Unlike ordinary
graphs where the data structure is typically unique, for example, edges only contain two
vertices, hypergraphs demonstrate a number of possibly overlapping data structures. For in-
stance, in coauthorship networks [22, 47–49], the number of coauthors varies across different
papers so that one cannot consider edges consisting of two coauthors only. Instead, a new
type of “edge,” called hyperedge, must be considered which allows the connectivity of ar-
bitrarily many coauthors. The complex structures of hypergraphs create new challenges in
both theoretical and methodological studies. As far as we know, existing hypergraph liter-
ature mostly focuses on community detection in algorithmic aspects [4, 13, 17, 31, 39, 41,
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50, 51]. Only recently, Ghoshdastidar and Dukkipati [31, 32] provided a statistical study in
which a spectral algorithm based on adjacency tensor was proposed for identifying commu-
nity structure and asymptotic results were developed. Nonetheless, the important problem of
testing the existence of community structure in an observed hypergraph remains untreated.

In this paper, we aim to tackle the problem of testing community structure for hypergraphs.
We first consider the relatively simpler but widely used uniform hypergraphs in which each
hyperedge consists of an equal number of vertices. For instance, the (user, resource, anno-
tation) structure in folksonomy may be represented as a uniform hypergraph where each
hyperedge consists of three vertices [30]; the (user, remote host, login time, logout time)
structure in the login-data can be modeled as a uniform hypergraph where each hyperedge
contains four vertices [33]; the point-set matching problem is usually formulated as identify-
ing a strongly connected component in a uniform hypergraph [17]. We provide various theo-
retical or methodological studies ranging from dense uniform hypergraphs to sparse ones and
investigate the possibility of a successful test in each scenario. Our testing results in the dense
case are then extended to the more general nonuniform hypergraph setting, in which a new
test statistic involving both edge and hyperedge is proposed. One important finding is that our
new test is more powerful than the classic one involving edge information only, showing the
advantage of using hyperedge information to boost the testing performance. A more notable
contribution is a nearly tight threshold for signal-to-noise ratio to examine the existence of
community structure (Theorem 2.6).

1.1. Review of hypergraph model and relevant literature. In this section, we review some
basic notions in hypergraphs and recent progress in the literature. Let us first review the
notion of the uniform hypergraph. An m-uniform hypergraph Hm = (V,E) consists of a
vertex set V and a hyperedge set E , where each hyperedge in E is a subset of V consisting of
exactly m vertices. Two hyperedges are the same if they are equal as vertex sets. An l-cycle
in Hm is a cyclic ordering {v1, v2, . . . , vr} of a subset of the vertex set with hyperedges like
{vi, vi+1, . . . , vi+m−1} and any two adjacent hyperedges have exactly l common vertices. An
l-cycle is loose if l = 1 and tight if l = m − 1. To better illustrate the notion, consider a 3-
uniform hypergraph H3 = (V,E), where V = {v1, v2, v3, v4, v5, v6, v7}, E = {(vi, vj , vt )|1 ≤
i < j < t ≤ 7}. Then ({v1, v2, v3, v4, v5, v6}, {(v1, v2, v3), (v3, v4, v5), (v5, v6, v1)}) is a loose
cycle and ({v1, v2, v3, v4}, {(v1, v2, v3), (v2, v3, v4), (v3, v4, v1), (v4, v1, v2)}) is a tight cycle
(see Figure 1).

FIG. 1. Left: a loose cycle of three edges E1, E2, E3. Right: a tight cycle of four edges E1, E2, E3, E4. Both
cycles are subgraphs of the 3-uniform hypergraph H3(V,E).
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Next, let us review uniform hypergraphs with a planted partitioning structure, also known
as stochastic block model (SBM). For any positive integers n, m, k with m,k ≥ 2, and pos-
itive sequences 0 < qn < pn < 1 (possibly depending on n), let Hk

m(n,pn, qn) denote a
m-uniform hypergraph of n vertices and k balanced communities, in which pn (qn) repre-
sents the hyperedge probability within (between) communities. More explicitly, any vertex
i ∈ [n] ≡ {1,2, . . . , n} is assigned, independently and uniformly at random, a label σi ∈ [k] ≡
{1,2, . . . , k}, and then each possible hyperedge (i1, i2, . . . , im) is included with probability pn

if σi1 = σi2 = · · · = σim and with probability qn otherwise. In particular, H2
2(n,pn, qn) (with

m = k = 2) reduces to the ordinary bisection stochastic block models considered by [44, 55].

Let A ∈ {0,1}
n × n × · · · × n︸ ︷︷ ︸

m denote the symmetric adjacency tensor of order m associated with
Hk

m(n,pn, qn). By symmetry, we mean that Ai1i2...im = Aψ(i1)ψ(i2)...ψ(im) for any permuta-
tion ψ of (i1, i2, . . . , im). For convenience, assume Ai1i2...im = 0 if is = it for some distinct
s, t ∈ {1,2, . . . ,m}, that is, the hypergraph has no self-loops. Conditional on σ1, . . . , σn, the
Ai1i2...im’s, with i1, . . . , im pairwise distinct, are assumed to be independent following the
distribution below:

(1) P(Ai1i2...im = 1|σ) = pi1i2...im(σ ), P(Ai1i2...im = 0|σ) = qi1i2...im(σ ),

where σ = (σ1, . . . , σn),

pi1i2...im(σ ) =
{
pn σi1 = · · · = σim,

qn otherwise,
qi1i2...im(σ ) = 1 − pi1i2...im(σ ).

In other words, each possible hyperedge (i1, . . . , im) is included with probability pn if
the vertices i1, . . . , im belong to the same community, and with probability qn otherwise.

Let Hm(n,
pn+(km−1−1)qn

km−1 ) denote the m-uniform hypergraph without community structure,
that is, an Erdős–Rényi model in which each possible hyperedge is included with com-

mon probability pn+(km−1−1)qn

km−1 . We consider such a special choice of hyperedge probabil-

ity in order to make the model have the same average degree as Hk
m(n,pn, qn). In particular,

H2(n,
pn+(k−1)qn

k
) with m = 2 becomes the traditional Erdős–Rényi model that has been well

studied in ordinary graph literature; see [14, 15, 21, 25, 54]. Nonuniform hypergraphs can be
simply viewed as a superposition of uniform ones; see Section 3. Throughout this paper, we
assume k and m are fixed constants independent of n.

Given an observed adjacency tensor A, does A represent a hypergraph that exhibits com-
munity structure? In the present setting, this problem can be formulated as testing the follow-
ing hypothesis:

(2) H0 : A ∼Hm

(
n,

pn + (km−1 − 1)qn

km−1

)
vs. H1 : A ∼ Hk

m(n,pn, qn).

When m = k = 2, problem (2) has been well studied in the literature. Specifically, for ex-
tremely sparse scenario pn � qn � n−1, [44] show that H0 and H1 are always indistin-
guishable in the sense that all tests are asymptotically powerless; for bounded degree case
pn � qn � n−1, the two models are distinguishable if and only if the signal-to-noise ratio
(SNR) is greater than 1 [44, 45, 55]; for dense scenario pn � qn 	 n−1, H0 and H1 are al-
ways distinguishable and a number of algorithms have been developed (see [3, 10, 12, 26,
27, 40]). When m = 2 and k ≥ 3, the above statements remain true for extremely sparse and
dense scenarios; but for bounded degree scenario, SNR > 1 is only a sufficient condition for
successfully distinguishing H0 from H1 while a necessary condition remains an open prob-
lem (see [3, 11, 56]). Abbe [1] provides a comprehensive review of the recent development
in this field. From the best of our knowledge, there is a lack of literature dealing with the
testing problem (2) for general m. The literature on hypergraph analysis mainly focused on
community detection (see [8, 17, 31, 32, 35, 39, 41, 42, 51]).
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1.2. Our contributions. The aim of this paper is to provide a study on hypergraph testing
under a spectrum of hyperedge probability scenarios. Our results consist of four major parts.
Section 2.1 deals with the extremely sparse scenario pn � qn � n−m+1, in which we show
that H0 and H1 are always indistinguishable in the sense of contiguity. Section 2.2 deals with
bounded degree case pn � qn � n−m+1, in which we show that H0 and H1 are distinguishable
if the SNR of uniform hypergraph is greater than a certain threshold, but indistinguishable if
the SNR is below another threshold. Interestingly, when k = 2, the two thresholds are nearly
tight in that they are of the same order 2−m (up to universal constants). We also construct
a powerful test statistic when SNR is greater than one based on counting the “long loose
cycles”. Section 2.3 deals with dense scenario pn � qn 	 n−m+1. We propose a test based
on counting the hyperedges, l-hypervees, and l-hypertriangles with l determined by the order
of pn (or qn), and show that the power of the proposed test approaches one as the number of
vertices goes to infinity. In Section 3, we extend some of the previous results to nonuniform
hypergraph testing. We propose a new test involving both edge and hyperedge information
and show that it is generally more powerful than the classic test using edge information only
(see Remark 3.1). The results of the present paper can be viewed as nontrivial extensions of
the ordinary graph testing results such as [26, 44, 45]. Section 4 provides numerical studies
to support our theory. Possible extensions are discussed in Section 5 and proof of the main
results are collected in [57].

Figure 2 displays a phase transition phenomenon in the special 3-uniform hypergraph,
based on our results in Sections 2.1 and 2.3. We find that H0 and H1 are indistinguishable
if the hyperedge probabilities satisfy pn, qn = o(n−2) (see red zone), and are distinguishable
if pn, qn 	 n−2 (see green zone), which is consistent with [6] who showed that commu-
nity detection with weak consistency is possible if and only if pn, qn 	 n−2. Therefore,
the seemingly different perspectives, that is, hypothesis testing and community detection,
appear to coincide here. In contrast, the spectral algorithm proposed by [32] is able to de-
tect communities with strong consistency if pn, qn 	 n−2(logn)2 (later improved to pn,
qn 	 n−2 logn by [5, 41]). For bounded degree case pn, qn � n−2, detection algorithms
better than random guess were proposed by [6, 18, 23]. Overall, in the references [6, 18],
the SNR conditions are not comparable to our κ > 1 since unknown constants are involved
in their conditions. The SNR condition in [23] seems more restrictive than our condition
κ > 1.

On the next page, Figure 3 demonstrates the distinguishable and indistinguishable re-
gions for two-community graph (left) and two-community 3-uniform hypergraph (right) in
the bounded degree regime, that is, pn = a

nm−1 , qn = b
nm−1 . The regions are characterized

by (a, b) with a > b > 0. The left plot is based on [44] who derived the decision boundary
(a − b)2 = 2(a + b). The right plot is based on our Theorem 2.6 with the decision boundary

FIG. 2. Phase transition for 3-uniform hypergraph. Red: indistinguishable; green: distinguishable.
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FIG. 3. Phase transition in bounded degree case. Red: indistinguishable; green: distinguishable.

(a − b)2 = 4(a + 3b). It can be observed that m = 3 yields a larger indistinguishable region
than m = 2, which reveals a substantial difference for hypothesis testing in the two models.

2. Main results. In this section, we present our main results in three parts, organized by
the sparsity of the network. The contiguity theory for the extremely sparse case is presented
in Section 2.1, followed by the contiguity and orthogonality result for the bounded degree
case in Section 2.2. In Section 2.3, we construct a powerful test by counting the hyperedges,
l-hypervees, and l-hypertriangles for the dense case. Throughout this paper, we assume k and
m are fixed positive integers.

2.1. A contiguity theory for extremely sparse case. In this section, we consider the test-
ing problem (2) with pn � qn � n−m+1, that is, the hyperedge probability of the hypergraph
is extremely low. For technical convenience, we only consider pn = a

nα and qn = b
nα with

constants a > b > 0 and α > m − 1. The results in this section may be extended to general
orders of pn and qn with more cumbersome arguments. We will show that no test can suc-
cessfully distinguish H0 from H1 in such a situation. The proof proceeds by showing that
the probability measures associated with H0 and H1 are contiguous (see Theorem 2.1). We
remark that contiguity has also been used to prove indistinguishability for ordinary graphs
(see [44, 45]).

Let Pn and Qn be sequences of probability measures on a common probability space
(�n,Fn). We say that Pn and Qn are mutually contiguous if for every sequence of mea-
surable sets An ⊂ �n, Pn(An) → 0 if and only if Qn(An) → 0 as n → ∞. They are said to
be orthogonal if there exists a sequence of measurable sets An such that Pn(An) → 0 and
Qn(An) → 1 as n → ∞. According to [44], two probability models are indistinguishable
if their associated probability measures are mutually contiguous, and two probability mod-
els are distinguishable if their associated probability measures are orthogonal. The following
theorem shows that H0 and H1 are indistinguishable.

THEOREM 2.1. If α > m − 1 and a > b > 0 are fixed constants, then the probability
measures associated with H0 and H1 are mutually contiguous.

The proof of Theorem 2.1 proceeds by showing that the ratio of the likelihood function
of H1 over H0 converges in distribution to 1 under H0, which implies the contiguity of H1
and H0 [36]. Theorem 2.1 says that the hypergraphs in H0 and H1 are indistinguishable, and
hence, no test can successfully separate the two hypotheses. One intuitive explanation is that
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when α > m − 1, the average degree of both hypergraph models converges to zero. To see
this, the average degree is

(3)
(

n

m − 1

)
a + (km−1 − 1)b

km−1nα
,

which goes to zero as n → ∞ if α > m − 1. Therefore, the signals in both models are not
strong enough to support a successful test. It is easy to see that the average degree becomes
bounded when α = m − 1 which will be investigated in the next section.

2.2. Bounded degree case. In this section, we consider pn � qn � n−m+1 which leads
to bounded average degrees for the models in H0 and H1; see (3). For convenience, let us
denote pn = a

nm−1 and qn = b
nm−1 for fixed a > b > 0. Define the signal to noise ratio (SNR)

for H0 and H1 as

(4) κ = (a − b)2

km−1(m − 2)![a + (km−1 − 1)b] .

When m = k = 2, it is easy to check that κ = (a−b)2

2(a+b)
which becomes the classic SNR

of ordinary stochastic block models considered by [2, 3, 44]. Hence, it is reasonable to
view κ defined in (4) as a generalization of the classic SNR to the hypergraph model
Hk

m(n, a
nm−1 , b

nm−1 ). Like the classic SNR, the value of κ characterizes the separability be-
tween communities. Intuitively, when κ is large which means that the communities are very
different, the testing problem (2) becomes simpler. The following result showes that when
κ > 1, successful testing becomes possible.

THEOREM 2.2. Suppose that a > b > 0 are fixed constants, m,k ≥ 2. If κ > 1, then the
probability measures associated with H0 and H1 are orthogonal.

We prove Theorem 2.2 by constructing a sequence of events dependent on the number
of long loose cycles and showing that the probabilities of the events converge to 1 (or 0)
under H0 (or H1), based on the high moments driven asymptotic normality theorem from
Gao and Wormald [29]. Theorem 2.2 says that it is possible to distinguish the hypotheses H0
and H1 provided that κ > 1. Abbe and Sandon [3] obtained relevant results in the ordinary
graph setting, that is, m = 2 and k ≥ 2 in our case; see Corollary 2.8 therein which states
that community detection in polynomial time becomes possible if SNR > 1. Whereas Theo-
rem 2.2 holds for arbitrary m,k ≥ 2. Hence, our result can be viewed as an extension of [3]
to hypergraph setting.

Let us now propose a test statistic based on “long loose cycles” that can successfully
distinguish H0 and H1 when κ > 1. Let ξn be a positive integer sequence diverging along
with n. Let Xξn be the number of loose cycles, each consisting of exactly ξn edges. Define

μn0 = λ
ξn
m

2ξn

, μn1 = μn0 + k − 1

2ξn

[
a − b

km−1(m − 2)!
]ξn

,

where λm = a+(km−1−1)b

km−1(m−2)! for any m ≥ 2. Note that when m = 2, λm = a+(k−1)b
k

is the average
degree [11]. Let PH1 denote the probability measure induced by A under H1. We have the
following theorem about the asymptotic property of Xξn .

THEOREM 2.3. Suppose κ > 1 and 1 � ξn ≤ δ0 logλm
logγ n, where γ > 1 and 0 < δ0 <

2 are constants. Then, under Hl for l = 0,1, Xξn−μnl√
μnl

d→ N(0,1) as n → ∞. Furthermore,

for any constant C > 0, PH1(|Xξn−μn0√
μn0

| > C) → 1 as n → ∞.
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TABLE 1
Minimal n to achieve a desirable value of ξn

Desirable ξn 3 4 5 6

Minimal n 2 3 25 29,786

The proof is based on the asymptotic normality theory developed by [29]. According to
Theorem 2.3, we propose the following test statistic:

Tξn = Xξn − μn0√
μn0

.

We remark that computation of Tξn is typically in super-polynomial time since it requires to

find Xξn which has complexity nO(ξn). By Theorem 2.3, Tξn

d→ N(0,1) under H0. Hence, we
construct the following testing rule at significance level α ∈ (0,1):

reject H0 if and only if |Tξn | > zα/2,

where zα/2 is the (1 − α/2)-quantile of N(0,1). It follows by Theorem 2.3 that PH1(|Tξn | >

zα/2) → 1, that is, the power of Tξn approaches one when κ > 1.
Theorem 2.3 requires ξn → ∞ and to grow slower than an iterative logarithmic order. This

is due to the use of [29] which requires ξn to diverge with ξnλ
ξn
m = o(logn). In practice, we

suggest choosing ξn = �δ0 logλm
logγ n� with γ close to 1 and δ0 close to 2. Such γ and δ0

will make ξn suitably large so that the test statistic Tξn becomes valid. For instance, Table 1
demonstrates the values of ξn along with n with δ0 = 1.99, γ = 1.01, λm = 10. We can see
that, for a moderate range of n, the values of ξn are sufficiently large to make the test valid.
When ξn = l is fixed and the exact α-level test is needed, we should use Poisson distribution
as the null limiting distribution. In this case, the number of l-loose cycle Xl converges in

distribution to Poisson distribution with mean μ0 = λl
m

2l
under H0 (It’s implied by the proof

of Theorem 2.5). It should be mentioned that the calculation of Tξn requires known values
of a and b. When a and b are unknown, motivated by the ordinary graph [44], they can be
estimated as follows. Define

λ̂m = nm−1|E |
(m − 2)!( n

m

) , f̂ = (
2ξnXξn − λ̂ξn

m

) 1
ξn ,

where |E | is the number of observed hyperedges and Xξn is the number of loose cycles of

length ξn. Let ân = (m − 2)![̂λm + (km−1 − 1)(k − 1)
− 1

ξn f̂ ] and b̂n = (m − 2)![̂λm − (k −
1)

− 1
ξn f̂ ]. The following theorem says that ân and b̂n are consistent estimators of a and b,

respectively.

THEOREM 2.4. Suppose κ > 1 and ξn satisfies the condition in Theorem 2.3. Then ân →
a and b̂n → b in probability.

Another interesting question is to investigate for what values of κ a successful test be-
comes impossible. When m = k = 2, [44] showed that no test can successfully distinguish
H0 from H1 provided κ < 1; and a successful test becomes possible provided κ > 1. It
is substantially challenging to obtain such a sharp result when k becomes larger. For in-
stance, in the ordinary graph setting, [46] obtained a (nonsharp) condition in terms of SNR
when k ≥ 3 under which successful test becomes impossible. In Theorem 2.5 below, we
address a similar question in the hypergraph setting. For any integers m ≥ 3, k ≥ 2, define
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τ1(m, k) = ( m
2

)−1 ∑�m
2 −1�

i=1
1

k2i−1

( m
i+2

)
and τ2(m, k) = 1+ ( m

2
)−1 ∑m−2

i=1
1

k2i

( m
i+2

)
. The quanti-

ties τ1(m, k) and τ2(m, k) will jointly characterize a spectrum of (m, k, κ) such that success-
ful test does not exist.

THEOREM 2.5. Suppose that m ≥ 3, k ≥ 2 are integers satisfying τ1(m, k) ≤ 1, a > b >

0 are fixed constants and α = m − 1. If

(5) 0 < κ <
1

τ2(m, k)(k2 − 1)
,

then the probability measures associated with H0 and H1 are mutually contiguous.

The proof of Theorem 2.5 relies on Janson’s contiguity theory [36]. Theorem 2.5 says
that when τ1(m, k) ≤ 1 and κ falls in the range (5), there is no test that can successfully
distinguish the hypotheses H0 and H1. It should be emphasized that the condition τ1(m, k) ≤
1 holds for a broad range of pairs (m, k). For instance, such condition holds for any k ≥ 2
and 3 ≤ m ≤ 6. To see this, for any k ≥ 2, τ1(3, k) = 1

3k
< 1, τ1(4, k) = 2

3k
< 1, τ1(5, k) =

1
k

+ 1
2k3 < 1 and τ1(6, k) = 4

3k
+ 1

k3 < 1. Note that m ≤ 6 covers most of the practical cases
(see [32]).

Combining Theorems 2.5 and 2.2, it is still unknown whether H0 and H1 are distinguish-
able when 1

τ2(m,k)(k2−1)
≤ κ ≤ 1. Such result can be further improved for the special case

k = 2, and we close the gap if in addition m = 3, as presented in the following theorem.

THEOREM 2.6. For k = 2, the following results hold.

1. For any m ≥ 2, if 0 < κ < 22−m, then H0 and H1 are indistinguishable. Moreover,
for any given constant κ0 such that κ0 >

m(m−1) log 2
2m−1−1

, there exist a > b > 0 such that the SNR
κ for the hypotheses H0 and H1 is equal to κ0, and H0 and H1 are distinguishable by the
likelihood ratio test.

2. For any m ≥ 2, if 0 < κ < m(m−1)
2Nm

, where Nm = [3m + (−1)m]/4 − 2m−1 + 1/2, then
H0 and H1 are indistinguishable.

Specifically, Part 1 indicates that, when SNR is below 22−m, H0 and H1 are indistinguish-
able; while they are possible to be distinguishable when SNR is greater than m(m−1) log 2

2m−1−1
.

Essentially, Part 1 implies that the derived SNR upper and lower bounds satisfy the following
relationship:

0 < sup
m≥1

1

m2 · SNR upper bound

SNR lower bound
< ∞,

and

0 < min
m≥1

SNR lower bound

2−m
≤ max

m≥1

SNR lower bound

2−m
< ∞.

Part 2 in Theorem 2.6 provides an SNR interval for H1 and H0 to be indistinguishable. When
m = 3, N3 = 3 leads to an SNR interval 0 < κ < 1 which is sharp since κ > 1 implies that H0
and H1 are distinguishable thanks to Theorem 2.2. For k = 2 and general m, the upper bound
m(m−1)

2Nm
may be less sharp as m grows. In particular, when m is large, the upper bound is of

order m23−3, which can actually be improved as shown in Part 1 of Theorem 2.6. Specifically,
Part 1 indicates that, when SNR is below 22−m, H0 and H1 are indistinguishable; while they
are possible to be distinguishable when SNR is greater than m22−m up to a constant in the
special case k = 2. Note that for 3 ≤ m ≤ 8, m(m−1)

2Nm
> 22−m and for m ≥ 9, m(m−1)

2Nm
< 22−m.
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The proof of Theorem 2.6 relies on a truncation technique to show the stochastic bound-
edness of the likelihood ratio and a delicate derivation of a lower bound for the truncated
likelihood ratio. An interesting consequence of Part 1 is that the likelihood ratio test is pos-
sible to distinguish H0 and H1 even when κ is below 1 (but greater than m(m−1) log 2

2m−1−1
). How-

ever, the computation of the likelihood ratio is NP-hard. When κ > 1, the l-cycle based test
can distinguish H0 and H1 as well (see Theorem 2.3), and is computationally less expen-
sive.

REMARK 2.1. We provide more details about why truncation technique is needed in our
setting. The proof of Theorem 2.6 relies on the first moment technique which requires the
analysis of E1Yn where E1 is the expectation taken under H1 and Yn = dP1

dP0
is the likelihood

ratio of H1 to H0. We find that the expression of E1Yn includes terms like

(6) Eσ exp
( ∑

i1<···<im

poly(σi1, . . . , σim)

)
,

where poly(σi1, . . . , σim) is an mth-order polynomial of σi1, . . . , σim ∈ {±1}. When m = 2,
(6) becomes a second-order polynomial which is asymptotically χ2 by CLT. And so, (6) is
heuristically E exp(const ×χ2) which is finite. This is why no truncation technique is needed
here.

However, when m = 3, the above polynomial is third-order which is asymptotically Z3

where Z ∼ N(0,1). And as a result, (6) is heuristically E exp(const × Z3) which is infinite.
This is why we used the truncation technique, that is, to truncate the likelihood ratio on an
even with high probability so that the higher-order polynomials are well controlled, and the
truncated likelihood ratio has a finite expectation.

2.3. A powerful test for dense uniform hypergraph. In this section, we consider the prob-
lem of testing community structure in dense m-uniform hypergraphs with pn � qn 	 n−m+1.
Our approach is based on counting the hyperedges, l-hypervees, and l-hypertriangles in the
observed hypergraph. To ensure the success of our test, l needs to be properly selected ac-
cording to the hyperedge probability of the model. Under such correct selection, we derive
asymptotic normality for the test and analyze its power. We also discuss the effect of mis-
specified l in Remark 2.2. Our method can be viewed as a generalization of [26, 27] from
ordinary graph testing. The different features of the hypergraph cycles make our generaliza-
tion nontrivial.

For convenience, let us denote pn = an

nm−1 and qn = bn

nm−1 with diverging an, bn. Therefore,
(2) becomes the following hypothesis testing problem:

(7) H ′
0 : A ∼ Hm

(
n,

an + (km−1 − 1)bn

km−1nm−1

)
vs. H ′

1 : A ∼ Hk
m

(
n,

an

nm−1 ,
bn

nm−1

)
.

We temporarily assume that there exists an integer 1 ≤ l ≤ m
2 such that nl−1 � an � bn �

nl− 2
3 . Such a requirement will be relaxed by invoking a sparsification technique. Note that

model (7) allows 1 � an � bn � n1/3 (with l = 1), compared with spectral algorithm [32]
which requires an 	 (logn)2 or an 	 logn in [41].

We consider the following degree-corrected SBM in [19, 20, 26] which is more general
than (1) and generalizes its counterpart in ordinary graphs. Let {Wi, i = 1, . . . , n} be nonneg-
ative i.i.d. random variables with E(W 2

1 ) = 1 and {σi, i = 1, . . . , n} be i.i.d. random variables
from multinomial distribution Mult(k,1,1/k). Assume that Wi ’s and σi’s are independent.
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Given Wi ’s and σi ’s, the Ai1i2...im’s, with pairwise distinct i1, . . . , im, are conditional inde-
pendent satisfying

P(Ai1i2...im = 1|W,σ) = Wi1 . . .Wimpi1i2...im(σ ),

P(Ai1i2...im = 0|W,σ) = 1 − Wi1 . . .Wimpi1i2...im(σ ),
(8)

where W = (W1, . . . ,Wn),

pi1i2...im(σ ) =
⎧⎪⎨⎪⎩

an

nm−1 σi1 = · · · = σim,

bn

nm−1 otherwise.

We call (8) the degree-corrected SBM in hypergraph setting. The degree-correction weights
Wi ’s can capture the degree of inhomogeneity exhibited in many social networks. When
m = 2, (8) reduces to the classical degree-corrected SBM for ordinary graphs (see [19, 20,
26]). For ordinary graphs, [26] proposed a test through counting small subgraphs to distin-
guish the degree-corrected SBM from an Erdős–Rényi model. In what follows, we generalize
their results to hypergraphs through counting small sub-hypergraphs, including hyperedges,
l-hypervee, and l-hypertriangles, with definitions given below.

DEFINITION 2.1. An l-hypervee consists of two hyperedges with l common vertices. An
l-hypertriangle is an l-cycle consisting of three hyperedges.

For example, in Figure 4, the hyperedge set {(v1, v2, v3, v4), (v3, v4, v5, v6)} is a 2-
hypervee, and {(v1, v2, v3, v4), (v3, v4, v5, v6), (v5, v6, v1, v2)} is a 2-hypertriangle.

Consider the following probabilities of hyperedge, hypervee and hypertriangle in Hk
m(n,

an

nm−1 , an

nm−1 ):

E = P(Ai1i2...im = 1),

V = P(Ai1i2...imAim−l+1...i2m−l
= 1),

T = P(Ai1i2...imAim−l+1...i2m−l
Ai2m−2l+1...i3(m−l)i1...il = 1).

It follows from direct calculations that

E = (EW1)
m an + (km−1 − 1)bn

nm−1km−1 ,

FIG. 4. Examples of hypervee (left) and hypertriangle (right) with two common vertices between consecutive
hyperedges.
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V = (EW1)
2(m−l)

(
(an − bn)

2

n2(m−1)k2m−l−1 + 2(an − bn)bn

n2(m−1)km−1 + b2
n

n2(m−1)

)
,

T = (EW1)
3(m−2l)

(
(an − bn)

3

n3(m−1)k3(m−l)−1 + 3(an − bn)
2bn

n3(m−1)k2m−l−1 + 3(an − bn)b
2
n

n3(m−1)km−1 + b3
n

n3(m−1)

)
.

Define T = T − (V
E

)3. The following result demonstrates a strong relationship between T
and H ′

0, H ′
1.

PROPOSITION 2.7. Under H ′
0, T = 0 and under H ′

1, T �= 0.

Proposition 2.7 says that H ′
0 holds if and only if T = 0. Hence, it is reasonable to use an

empirical version of T , namely, T̂ , as a test statistic for (7).
Prior to constructing T̂ , let us introduce some notation. For convenience, we use i1 : im

to represent the ordering i1i2 . . . im. Also define C2m−l(A) and C3(m−l)(A) for any adjacency
tensor A as follows.

C2m−l(A) = Ai1:imAim−l+1:i2m−l
+ Ai2:im+1Aim−l+2:i2m−l i1 + · · · + Ai2m−l i1:im−1Aim−l :i2m−l−1,

C3(m−l)(A) = Ai1:imAim−l+1:i2m−l
Ai2m−2l+1:i3(m−l)i1:il

+ Ai2:im+1Aim−l+2:i2m−l+1Ai2m−2l+2:i3(m−l)i1:il+1

+ · · · + Aim−l :i2m−l−1Ai2(m−l):i3(m−l)i1:il−1Ai3(m−l)i1:im−1 .

Note that C2m−l(A) is the number of hypervees in the given vertex ordering i1i2 . . . i2m−l ,
while C3(m−l)(A) counts the number of hypertriangles in the given vertex ordering
i1i2 . . . i3(m−l). Define Ê, V̂ , T̂ as the empirical versions of E, V , T :

Ê = 1( n
m

) ∑
i∈c(m,n)

Ai1:im,

V̂ = 1( n
2m−l

) ∑
i∈c(2m−l,n)

C2m−l(A)

2m − l
,

T̂ = 1( n
3(m−l)

) ∑
i∈c(3(m−l),n)

C3(m−l)(A)

m − 1
,

(9)

where, for any positive integers s, t , c(s, t) = {(i1, . . . , is) : 1 ≤ i1 < · · · < is ≤ t}. We have
the following asymptotic normality result.

THEOREM 2.8. Suppose EW 4
1 = O(1) and nl−1 � an � bn � nl− 2

3 for some integer
1 ≤ l ≤ m

2 . Moreover, let

(10) δ :=
√( n

3(m−l)

)
(m − l)√

T

[
T −

(
V

E

)3]
∈ [0,∞).

Then we have, as n → ∞,√( n
3(m−l)

)
(m − l)[T̂ − ( V̂

Ê
)3]√

T̂
− δ

d→ N(0,1),(11)

2

√(
n

3(m − l)

)
(m − l)

[√
T̂ −

(
V̂

Ê

) 3
2
]

− δ
d→ N(0,1).(12)
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When l = 1 and m = 2, Theorem 2.8 becomes Theorem 2.2 of [26].
Following (11) in Theorem 2.8, we can construct a test statistic for (7) as

(13) T̂m =
√( n

3(m−l)

)
(m − l)[T̂ − ( V̂

Ê
)3]√

T̂
.

In practice, T̂ might be close to zero which may cause computational instability, an alternative
test can be constructed based on (12) as

(14) T̂ ′
m = 2

√(
n

3(m − l)

)
(m − l)

[√
T̂ −

(
V̂

Ê

) 3
2
]
.

We remark that computation of T̂m and T̂ ′
m is in polynomial time since the computations of T̂ ,

V̂ , and Ê all have complexity O(n3(m−l)). Theorem 2.8 proves asymptotic normality for T̂m

and T̂ ′
m under both H ′

0 and H ′
1. Under H ′

0, that is, δ = 0, both T̂m and T̂ ′
m are asymptotically

standard normal. Under H ′
1, both T̂m and T̂ ′

m are asymptotically normal with mean δ > 0 and
unit variance. When T̂ has a large magnitude, both test statistics can be used to construct
valid rejection regions.

The following Theorem 2.9 says that the power of our test tends to one if δ goes to infinity.

THEOREM 2.9. Suppose EW 4
1 = O(1) and nl−1 � an � bn � nl− 2

3 for some integer
1 ≤ l ≤ m

2 . Under H ′
1, as n, δ → ∞, P(|T̂m| > zα/2) → 1. The same result holds for T̂ ′

m.

REMARK 2.2. When there are multiple possible choices for l, Theorem 2.8 and Theo-
rem 2.9 may fail if l is misspecified. For example, if m = 4 and the “correct” value is l0 = 2
(corresponding to the true hyperedge probability), but we count 1-cycle. Then under H0, the

test statistic in (11) or (12) is of order Op(n
3
2 ), that is, the limiting distribution does not exist.

Whereas, if the correct value is l0 = 1 but we count 2-cycle, then the test statistic in (11) or
(12) have the same limiting distribution (if it exists) under H0 and H1, that is, the power of
the test does not approach one. In practice, we recommend using the hyperedge proportion to
get a rough estimate for l.

Theorem 2.8 and Theorem 2.9 work for relatively sparse hypergraphs. For denser hyper-
graphs, we propose a sparsification procedure so that Theorem 2.8 and Theorem 2.9 are valid.

For any index i1 < i2 < · · · < im, generate εi1i2...im

iid∼ Bernoulli(rn). Consider a new hyper-
graph with adjacency tensor Ã defined by Ãi1i2...im = εi1i2...imAi1i2...im , where Ai1i2...im are the
elements of the original observed adjacency tensor. Under H ′

0, we have

E[Ãi1i2...im] = (EW1)
m (rnan) + (km−1 − 1)(rnbn)

km−1nm−1 .

Set ãn = rnan and b̃n = rnbn. For dense hypergraphs, we could replace A, an and bn in
(7) by Ã, ãn and b̃n respectively. Note that the hypergraphs Ã and A have the same global
community structure. A properly selected rn will make Theorem 2.8 and Theorem 2.9 valid.

COROLLARY 2.10. Suppose EW 4
1 = O(1) and 1 � an � bn ≤ nm−1. If rn = o(1) and

nl−1 � rnan � rnbn � nl− 2
3 for some integer 1 ≤ l ≤ m

2 . Then the results of Theorems 2.8
and 2.9 based on l-cycle continue to hold based on the sparsified hypergraph Ã.
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Note that Corollary 2.10 is valid for a broad range of hyperedge probabilities 1
nm−1 �

pn � qn ≤ 1. Since H0 and H1 are indistinguishable when pn � qn � 1
nm−1 (see Section 2.1),

it covers all density regimes of interest. One just needs to select the sparsification factor

rn to ensure that rnan and rnbn fall into the range nl−1 � rnan � rnbn � nl− 2
3 , provided

that one wants to use l-cycles to construct the test. The selection of l has been discussed in
Remark 2.2.

REMARK 2.3. In some literature, the degree correction variable Wi in (8) are assumed
to be deterministic [28, 37, 38]. In this case, Theorem 2.8 still holds under mild conditions
and the proof goes through with slight modifications. To illustrate this, we consider m = 3.
Let W = (W1, . . . ,Wn) be a given and deterministic degree correction vector and denote
‖W‖t

t = ∑n
i=1 Wt

i for positive integer t . Let T̂1, Ê1, V̂1 be defined as

T̂1 =
∑

i1,...,i6:distinct Ai1i2i3Ai3i4i5Ai5i6i1

n6 ,

V̂1 =
∑

i1,...,i5:distinct Ai1i2i3Ai3i4i5

n5 ,

Ê1 =
∑

i1,i2,i3:distinct Ai1i2i3

n3 .

Then we have the following result.

PROPOSITION 2.11. Suppose 1 � ‖W‖t
t = O(‖W‖1) for 2 ≤ t ≤ 12, ‖W‖1 � ‖W‖2

2 =
O(n), p0‖W‖2

1 	 1 and p2
0‖W‖3

1 = o(1). Then under H ′
0 we have

(15) T̂3 =
√

n6

T̂1

[
T̂1 −

(
V̂1

Ê1

)3]
d→ N(0,1).

Further, if 1 � an � bn � n
1
3 , then the power of the test T̂3 goes to 1 as δ1 → ∞, where

δ1 :=
√

n6

T1

[
T1 −

(
V1

E1

)3]
,

E1 = an + (k2 − 1)bn

n2k2

‖W‖3
1

n3 ,

V1 =
(

(an − bn)
2

n4k4 + 2(an − bn)bn

n4k2 + b2
n

n4

)‖W‖2
2‖W‖4

1

n5 ,

T1 =
(

(an − bn)
3

n6k5 + 3(an − bn)
2bn

n6k4 + 3(an − bn)b
2
n

n6k2 + b3
n

n6

)‖W‖6
2‖W‖3

1

n6 .

The proof of Proposition 2.11 is given in the supplement [57]. In Proposition 2.11, the
conditions p0‖W‖2

1 	 1 and p2
0‖W‖3

1 = o(1) require the hypergraph to be moderately
sparse. At first glance, the conditions 1 � ‖W‖t

t = O(‖W‖1) = O(n) for 2 ≤ t ≤ 12 and
‖W‖1 � ‖W‖2

2 seem very restrictive. However, these conditions are easy to satisfy and can
accommodate severe degree heterogeneity. For example, when Wi = i

n
for i = 1,2, . . . , n,

we have ‖W‖t
t = n

t+1(1 + o(1)) for any positive integer t . In this case, the average degrees d1
and dn for vertices 1 and n are

d1 = ∑
1<j<k

W1WjWkp0 = p0W1

(
0.5

(
n∑

j=2

Wj

)2

−
n∑

j=2

W 2
j

)
= np0

8

(
1 + o(1)

)
,
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dn = ∑
j<k<n

WnWjWkp0

= p0Wn

(
0.5

(
n−1∑
j=1

Wj

)2

−
n−1∑
j=1

W 2
j

)
= n2p0

8

(
1 + o(1)

)
.

Clearly, dn � nd1 and hence the hypergraph is highly heterogeneous. Another example is
to take Wi ∈ [c1, c2] with positive constants c1 < c2, which yields a hypergraph with less
heterogeneous degrees.

3. Extensions to nonuniform hypergraph. Nonuniform hypergraph can be viewed as a
superposition of a collection of uniform hypergraphs, introduced by [32] in which the authors
proposed a spectral algorithm for community detection. In this section, we study the problem
of testing community structure over a nonuniform hypergraph.

Let Hk(n,M) be a nonuniform hypergraph over n vertices, with the vertices uniformly
and independently partitioned into k communities, and M ≥ 2 is an integer represent-
ing the maximum length of the hyperedges. Following [32], we can write Hk(n,M) =⋃M

m=2 Hk
m(n, amn

nm−1 , bmn

nm−1 ), where Hk
m(n, amn

nm−1 , bmn

nm−1 ) are independent uniform hypergraphs
with degree-corrected vertices introduced in Section 2.3. Correspondingly, define H(n,M) =⋃M

m=2 Hm(n, amn+(km−1−1)bmn

km−1nm−1 ) as a superposition of Erdős–Rényi models. Clearly, each

Erdős–Rényi model in H(n,M) has the same average degree as its counterpart in Hk(n,M),
and H(n,M) has no community structure. Let Am denote the adjacency tensor for m-uniform
sub-hypergraph and A = {Am,m = 2, . . . ,M} is a collection of Am’s. We are interested in
the following hypotheses:

(16) H ′′
0 : A ∼ H(n,M) vs. H ′′

1 : A ∼ Hk(n,M).

3.1. Nonuniform homogeneous hypergraphs with bounded degree. To enhance readabil-
ity, we assume M = 3, that is, H = H2 ∪H3, and the hypergraphs are homogeneous without
degree correction. The results are extendable to arbitrary M with more tedious arguments.
The following Corollary 3.1, extending Theorem 2.1, shows that it is impossible to distin-
guish H ′′

0 and H ′′
1 in extremely sparse regime. The proof is essentially the same as Theo-

rem 2.1 which also relies on the conditional independence of H2 and H3.

COROLLARY 3.1. If amn � bmn = o(1), then H ′′
0 and H ′′

1 are mutually contiguous.

The following Corollary 3.2 extends the bounded degree results from Section 2.2. Let

amn = am, bmn = bm be positive constants, and κm = (am−bm)2

km−1[am+(km−1−1)bm] .

COROLLARY 3.2. If κ2 > 1 or κ3 > 1, then H ′′
0 and H ′′

1 are asymptotically orthogonal.
If [

κ2 + κ3

3

(
1 + 1

3k2

)](
k2 − 1

)
< 1,

then H ′′
0 and H ′′

1 are mutually contiguous. Furthermore, the results of Theorems 2.3 and 2.4
still hold with the corresponding quantities therein replaced by those in Hm.
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3.2. Nonuniform hypergraph with growing degree. Assume that, for 2 ≤ m ≤ M , amn,

bmn are proxies of the hyperedge densities satisfying nlm−1 � amn � bmn � nlm− 2
3 , for some

integer 1 ≤ lm ≤ m
2 .

For any 2 ≤ m ≤ M , let T̂m and δm be defined as in (13) and (10), respectively, based on
the m-uniform sub-hypergraph. We define a test statistic for (16) as

(17) T̂ =
M∑

m=2

cmT̂m,

where cm are constants with normalization
∑M

m=2 c2
m = 1. As a simple consequence of Theo-

rems 2.8 and 2.9, we get the asymptotic distribution of T̂ as follows.

COROLLARY 3.3. Suppose that the degree-correction weights satisfy the same con-

ditions as in Theorem 2.8, and for any 2 ≤ m ≤ M , nlm−1 � amn � bmn � nlm− 2
3 , for

some integer 1 ≤ lm ≤ m
2 . Then, as n → ∞, T̂ − ∑M

m=2 cmδm
d→ N(0,1). Furthermore,

for any constant C > 0, under H ′′
1 , P(|T̂ | > C) → 1, provided that

∑M
m=2 cmδm → ∞ as

n → ∞.

Under H ′′
0 , that is, each m-uniform subhypergraph has no community structure, we have

δm = 0 by Proposition 2.7. Corollary 3.3 says that T̂ is asymptotically standard normal.
Hence, an asymptotic testing rule at significance α would be

reject H ′′
0 if and only if |T̂ | > zα/2.

The quantity
∑M

m=2 cmδm may represent the degree of separation between H ′′
0 and H ′′

1 . By
Corollary 3.3, under H ′′

1 , the test will achieve high power when
∑M

m=2 cmδm is large.

REMARK 3.1. According to Corollary 3.3, to make T̂ having the largest power,
we need to maximize the value of

∑M
m=2 cmδm subject to

∑M
m=2 c2

m = 1. The maxi-
mizer is c∗

m = δm√∑M
m=2 δ2

m

, m = 2,3, . . . ,M . The corresponding test T̂ ∗ = ∑M
m=2 c∗

mT̂m be-

comes asymptotically the most powerful among (17). In particular, T̂ ∗ is more power-
ful than T̂m for a single m. This can be explained by the additional hyperedge informa-
tion involved in the test. This intuition is further confirmed by numerical studies in Sec-
tion 4. Note that T̂2 (m = 2) is the classic test proposed by [26] in ordinary graph set-
tings.

4. Numerical studies. In this section, we provide a simulation study in Section 4.1 and
real data analysis in Section 4.2 to assess the finite sample performance of our tests.

4.1. Simulation. We generated a nonuniform hypergraph H2(n,3) = H2
2(n, a2, b2) ∪

H2
3(n, a3, b3), with n = 100 under various choices of {(am, bm),m = 2,3}. In each scenario,

we calculated Z2 := T̂ ′
2 and Z3 := T̂ ′

3 by (14). Note that Z2 = T̂ ′
2 is the test for ordinary

graph considered in [26]. For testing the community structure on the nonuniform hyper-
graph, we calculated the statistic Z := T̂ = (T̂ ′

2 + T̂ ′
3 )/

√
2. In addition, we considered a

strategy similar to [6] by first reducing the hypergraph to a weighted graph and applying a
test designed for weighted graphs in [53]. Specifically, given an m-uniform hypergraph with
hyperedges e1, e2, . . . , eM , we first transformed it to a weighted graph with an adjacency ma-
trix Ã = [Ãij ]1≤i,j≤n in which Ãij = ∑M

k=1 I ({i, j} ⊂ ek) for i �= j and Ãij = 0 for i = j .
In other words, Ãij is the total number of hyperedges containing vertices i and j . Next, we
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TABLE 2
Choices of r2, r3, b3 for δ to range from 1 to 10

b3 δ 0 1 2 3 4 5 6 7 8 9 10

0.01 r3 1 2.26 2.65 2.93 3.17 3.38 3.58 3.75 3.91 4.06 4.21
r2 1 2.07 2.43 2.71 2.95 3.16 3.35 3.53 3.71 3.87 4.02

0.005 r3 1 2.89 3.51 3.98 4.39 4.75 5.08 5.38 5.67 5.94 6.20
r2 1 2.66 3.29 3.79 4.22 4.61 4.97 5.31 5.64 5.94 6.24

0.001 r3 1 6.50 8.83 10.73 12.41 13.95 15.39 16.76 18.03 19.28 20.48
r2 1 6.57 9.31 11.59 13.64 15.51 17.26 18.92 20.51 22.00 23.46

generated a new weighted graph with an adjacency matrix A = [Aij ]1≤i,j≤n by zeroing out
row s and column s of Ã if

∑n
j=1 Ãsj > cthr

1
n

∑n
i=1

∑n
j=1 Ãij . Here cthr > 0 is a prespecified

threshold constant.1 We then applied the test method proposed by [53] to the weighted graph
A, where the test statistic is denoted by ZT .

We examined the size and power of each test by calculating the rejection proportions based
on 500 independent replications at 5% significance level. Let δm denote the quantity defined
in (10) which is the main factor that affects power.

Our study consists of two parts. In the first part, we investigated the power change of
the four testing procedures when δ2 = δ3 = δ increases from 0 to 10. Specifically, we set
b2 = 10b3, where b3 = 0.01,0.005,0.001 represents the dense, moderately dense and sparse
network, respectively; am = rmbm for m = 2,3 with the values of rm summarized in Table 2.
It can be checked that such choice of (am, bm) indeed makes δ range from 0 to 10. We also
considered both balanced and imbalanced networks with the probability (ς ) of the smaller
community takes the value of 0.5 and 0.3, respectively.

The rejection proportions under various settings are summarized in Figures 5, 6, and 7.
Several interesting findings should be discussed. First, the rejection proportions of all test
statistics except the ZT (based on the graph transformation) at δ = 0 are close to the nominal
level 0.05 under different choices of ς and b3, which demonstrates that these three test statis-
tics are valid. We observe that the size (corresponding to δ = 0) and power (corresponding to

FIG. 5. Rejection proportions in dense case with b3 = 0.1 × b2 = 0.01.

1According to the proof of Lemmas 5 and 7 in [6], cthr is a large enough constant such that log(1+m2x)−m2 ≥
1
2 log(x) for all x ≥ cthr . In the simulation studies, we chose cthr to be the largest root of log(1 + m2x) − m2 =
1
2 log(x)
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FIG. 6. Rejection proportions in moderately dense case with b3 = 0.1 × b2 = 0.005.

δ > 0) of the graph-transformation test are almost 100% regardless of the choice of b3, which
implies that the testing procedure ZT is asymptotically invalid. Second, as expected, the re-
jection proportions of all tests increase with δ, regardless of the choices of b3 and ς . Third, in
most cases, the testing procedure based on nonuniform hypergraph (Z) has larger power than
the one based only on the 3-uniform hypergraph (Z3) or the ordinary graph (Z2). This agrees
with our theoretical finding since more information has been used in the combined test; see
Remark 3.1 for a detailed explanation.

REMARK 4.1. The failure of the graph-transformation-based testing procedure ZT is
possibly due to the dependence between the edges of the transformed graph. Given the num-
ber of communities k, many existing community detection algorithms do not require the
independence assumption about the edges. However, this assumption is important to derive
the limit distributions of the corresponding statistics in the hypothesis testing problems about
k (e.g., see [12, 26, 40, 53]). The graph-transformation-based method might still be promising
for testing hypergraphs, but new asymptotic theory based on dependent edges seems neces-
sary.

In the second part, we investigated how the powers of the tests change along with the
hyperedge probability. For convenience, we report the results based on the log-scale of b3
which ranges from −8 to −6. We chose δ = 1 and 3, ς = 0.3 and 0.5, b2 = 10b3. Similar to

FIG. 7. Rejection proportions in sparse case with b3 = 0.1 × b2 = 0.001.
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TABLE 3
Choices of r2, r3, and δ for log(b3) to range from −8 to −6

δ log(b3) −8 −7 −6

1 r3 14.18 6.88 3.93
r2 15.78 7.03 3.72

3 r3 26.37 11.51 5.82
r2 30.68 12.54 5.83

the first part, we set am = rmbm with m = 2 and 3 to guarantee that logb3 indeed ranges from
−8 to −6. The values of rm were summarized in Table 3. Figures 8 and 9 report the rejection
proportions for δ = 1 and 3 under various hyperedge densities. We note that the rejection
proportion of ZT is always 100% under all settings. Moreover, Z is more powerful than Z2
and Z3 in the cases ς = 0.3,0.5 and δ = 3. For the remaining scenarios, all procedures have
satisfactory performance.

4.2. Analysis of coauthorship data. In this section, we applied our testing procedure to
study the community structure of a coauthorship network dataset, available at https://static.
aminer.org/lab-datasets/soinf/. The dataset contains a 2-author ordinary graph and a 3-author
hypergraph. After removing vertices with degrees less than ten or larger than 20, we obtained
a hypergraph (hereinafter referred to as global network) with 58 nodes, 110 edges, and 40
hyperedges. The vertex-removal process aims to obtain a suitably sparse network so that our
testing procedure is applicable. We examined our procedures based on the global network
and subnetworks. To do this, we first performed the spectral algorithm proposed by [32] to
partition the global network into four subnetworks which consist of 7, 13, 14, 24 vertices,
respectively (see Figure 10). In Figure 11, we plotted the incidence matrices of the 2- and
3-uniform hypergraphs, denoted 2-UH and 3-UH, respectively, as well as their superposition
(Non-UH). The black dots represent vertices within the same communities. The red crosses
represent vertices between different communities. An edge or hyperedge is drawn between
the black dots or red crosses that are vertically aligned. It is observed that the between-
community (hyper)edges are sparser than the within-community ones, indicating the validity
of the partitioning.

We conducted testing procedures based on Z2, Z3, and Z at significance level 0.05 (similar
to Section 4.1) to both global network and subnetworks. The values of the test statistics are

FIG. 8. Rejection proportions when δ = 1 and b2 = 10b3.

https://static.aminer.org/lab-datasets/soinf/
https://static.aminer.org/lab-datasets/soinf/
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FIG. 9. Rejection proportions when δ = 3 and b2 = 10b3.

summarized in Table 4. Observe that Z2 and Z yield very large test values for the global
network indicating strong rejection of the null hypothesis. For subnetwork testing, Z2 rejects
the null hypothesis for subnetwork 3; while Z3 and Z do not reject the null hypotheses for
any subnetworks. This demonstrates that the community detection results are reasonable in
general, and the subnetworks may no longer have finer community structures.

5. Discussion. In the context of community testing for hypergraphs, we systematically
considered various scenarios in terms of hyperedge densities and investigated distinguisha-
bility or indistinguishability of the hypotheses in each scenario. Extensions of our results are
possible.

The first line is to extend the test statistic in Section 2.3 to tackle the model selection
problem for SBM in hypergraphs. In particular, one possibility is to study the hypothesis
testing problem of H0 : k = k0 vs. H1 : k > k0 for k0 = 1,2, . . . sequentially and stop when
observing a rejection. The second line is to extend the current results to the increasingly

FIG. 10. Global network and four subnetworks based on coauthorship data.
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FIG. 11. Incidence matrices based on coauthorship data. Left: 2-uniform hypergraph; Middle: 3-uniform hy-
pergraph; Right: nonuniform hypergraph.

popular degree-corrected stochastic block models. However, based on the current second-
moment technique, the bounded degree results are not easy to establish. The main reason is
that the moments of the likelihood ratio do not have an explicit expression in terms of a, b,
κ . Even in the ordinary graph setting with m = 2, this is already very difficult. To see this,
when σi = σj and ηi = ηj for all i < j , it can be shown that

EWEW ∗
∏
i<j

(
pij (σ,W)pij (η,W ∗)

p0
+ qij (σ,W)qij (η,W ∗)

q0

)

≈ EWEW ∗ exp
(
β

∑
i<j

(WiWja − d)
(
W ∗

i W ∗
j a − d

))
,

(18)

where β = 1
dnα + 1

n2α . The expected value (18) seems difficult to analyze under general ran-
dom weights W , W ∗, even for the above special choice of σ , η. Hence, a precise contiguity
region in terms of a, b, κ is not available using the current second-moment method.

The third line is to test more general and complicated hypotheses. The current paper only
deals with the relatively simple Erdős–Rényi null hypotheses, whereas the proposed methods
may be extended to more general settings. For instance, in light of Theorem 2.3, the test
statistics based on long loose cycles may also test the null hypothesis that the hypergraph
is an SBM with k communities in which k > 1 is given; in light of Theorems 2.8 and 2.9,
the test statistics based on sub-hypergraph counts may be extended to the null hypothesis
that the model is a degree-corrected SBM with k communities. It is a worthwhile project to
investigate the validity of these methods, especially in real-world situations.

TABLE 4
Values of test statistics based on global network and four subnetworks. Symbols ∗∗ and ∗ indicate the strength of

rejection, that is, p-value < 0.001 and p-value < 0.05 respectively

Global Network SubNetwork 1 SubNetwork 2 SubNetwork 3 SubNetwork 4

n 58 7 13 14 24
Z2 8.360∗∗ 0.161 −0.030 2.667∗ 1.661
Z3 1.451 −0.100 −0.211 −0.289 −0.052
Z 6.938∗∗ 0.043 −0.171 1.682 1.137
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