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ABSTRACT
In this work, we study the transfer learning problem under high-dimensional generalized linear models
(GLMs), which aim to improve the fit on target data by borrowing information from useful source data.
Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its �1/�2-
estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows
that when the target and sources are sufficiently close to each other, these bounds could be improved over
those of the classical penalized estimator using only target data under mild conditions. When we don’t know
which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect
informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning
setting. We also propose an algorithm to construct confidence intervals of each coefficient component,
and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the
effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new
R package glmtrans, which is available on CRAN. Supplementary materials for this article are available
online.
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1. Introduction

Nowadays, a great deal of machine learning algorithms has
been successfully applied in our daily life. Many of these algo-
rithms require sufficient training data to perform well, which
sometimes can be limited. For example, from an online mer-
chant’s view, it could be difficult to collect enough personal
purchase data for predicting the customers’ purchase behavior
and recommending corresponding items. However, in many
cases, some related datasets may be available in addition to the
limited data for the original task. In the merchant-customer
example, we may also have the customers’ clicking data in hand,
which is not exactly the same as but shares similarities with
the purchase data. How to use these additional data to help
with the original target task motivates a well-known concept in
computer science: transfer learning (Torrey and Shavlik 2010;
Weiss, Khoshgoftaar, and Wang 2016). As its name indicates,
in a transfer learning problem, we aim to transfer some useful
information from similar tasks (sources) to the original task
(target), in order to boost the performance on the target. To
date, transfer learning has been widely applied in a number of
machine learning applications, including the customer review
classification (Pan and Yang 2009), medical diagnosis (Haji-
ramezanali and Zamani 2018), and ride dispatching in ride-
sharing platforms (Wang et al. 2018), etc. Compared with the
rapidly growing applications, there has been little discussion
about the theoretical guarantee of transfer learning. Besides,
although transfer learning has been prevailing in computer
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science community for decades, far less attention has been paid
to it among statisticians. More specifically, transfer learning can
be promising in the high-dimensional data analysis, where the
sample size is much less than the dimension with some sparsity
structure in the data (Tibshirani 1996). The impact of transfer
learning in high-dimensional generalized linear models (GLMs)
with sparsity structure is not quite clear up to now. In this article,
we are trying to fill the gap by developing transfer learning tools
in high-dimensional GLM inference problem, and providing
corresponding theoretical guarantees.

Prior to our article, there are a few pioneering works explor-
ing transfer learning under the high-dimensional setting. Bas-
tani (2021) studied the single-source case when the target data
comes from a high-dimensional GLM with limited sample size
while the source data size is sufficiently large than the dimen-
sion. A two-step transfer learning algorithm was developed,
and the estimation error bound was derived when the contrast
between target and source coefficients is �0-sparse. Li, Cai, and
Li (2021) further explored the multi-source high-dimensional
linear regression problem where both target and source samples
are high-dimensional. The �2-estimation error bound under
�q-regularization (q ∈ [0, 1]) was derived and proved to be
minimax optimal under some conditions. In Li, Cai, and Li
(2020), the analysis was extended to the Gaussian graphical
models with false discovery rate control. Other related research
on transfer learning with theoretical guarantee includes the
nonparametric classification model (Cai and Wei 2021; Reeve,
Cannings, and Samworth 2021) and the analysis under general
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functional classes via transfer exponents (Hanneke and Kpotufe
2020a, 2020b), etc. In addition, during the past few years, there
have been some related works studying parameter sharing under
the regression setting. For instance, Chen, Owen, and Shi (2015)
and Zheng et al. (2019) developed the so-called “data enriched
model” for linear and logistic regression under a single-source
setting, where the properties of the oracle tuned estimator with a
quadratic penalty were studied. Gross and Tibshirani (2016) and
Ollier and Viallon (2017) explored the so-called “data shared
Lasso” under the multi-task learning setting, where �1 penalties
of all contrasts are considered.

In this work, we contribute to transfer learning under a high-
dimensional context from three perspectives. First, we extend
the results of Bastani (2021) and Li, Cai, and Li (2021), by
proposing multi-source transfer learning algorithms on gener-
alized linear models (GLMs) and we assume both target and
source data to be high-dimensional. We assume the contrast
between target and source coefficients to be �1-sparse, which
differs from the �0-sparsity considered in Bastani (2021). The
theoretical analysis shows that when the target and sources are
sufficiently close to each other, the estimation error bound of
target coefficients could be improved over that of the classical
penalized estimator using only target data under mild condi-
tions. Moreover, the error rate is shown to be minimax opti-
mal under certain conditions. To the best of our knowledge,
this is the initial study of the multi-source transfer learning
framework under the high-dimensional GLM setting. Second,
as we mentioned, transferring sources that are close to the
target can bring benefits. However, some sources might be far
away from the target, and transferring them can be harmful.
This phenomenon is often called negative transfer in literature
(Torrey and Shavlik 2010). We will show the impact of negative
transfer in simulation studies in Section 4.1. To avoid this issue,
we develop an algorithm-free transferable source detection algo-
rithm, which can help identify informative sources. And with
certain conditions satisfied, the algorithm is shown to be able to
distinguish useful sources from useless ones. Third, all existing
works of transfer learning on high-dimensional regression only
focus on the point estimate of the coefficient, which is not
sufficient for statistical inference. How transfer learning can
benefit the confidence interval construction remains unclear.
We propose an algorithm on the basis of our two-step transfer
learning procedure and nodewise regression (Van de Geer et al.
2014), to construct the confidence interval for each coefficient
component. The corresponding asymptotic theories are estab-
lished.

The rest of this article is organized as follows. Section 2 first
introduces GLM basics and transfer learning settings under
high-dimensional GLM, then presents a general algorithm
(where we know which sources are useful) and the transferable
source detection algorithm (where useful sources are auto-
matically detected). At the end of Section 2, we develop an
algorithm to construct confidence intervals. Section 3 provides
the theoretical analysis on the algorithms, including �1 and �2-
estimation error bounds of the general algorithm, detection
consistency property of the transferable source detection
algorithm, and asymptotic theories for the confidence interval
construction. We conduct extensive simulations and a real-data
study in Section 4, and the results demonstrate the effectiveness

of our GLM transfer learning algorithms. In Section 5, we
review our contributions and shed light on some interesting
future research directions. Additional simulation results and
theoretical analysis, as well as all the proofs, are relegated to
supplementary materials.

2. Methodology

We first introduce some notations to be used throughout the
article. We use bold capitalized letters (e.g., X, A) to denote
matrices, and use bold little letters (e.g., x, y) to denote vectors.
For a p-dimensional vector x = (x1, . . . , xp)T , we denote its �q-
norm as ‖x‖ = (

∑p
i=1 |xi|q)1/q (q ∈ (0, 2]), and �0-“norm”

as ‖x‖0 = #{j : xj �= 0}. For a matrix Ap×q = [aij]p×q,
its 1-norm, 2-norm, ∞-norm, and max-norm are defined as
‖A‖1 = supj

∑p
i=1 |aij|, ‖A‖2 = maxx:‖x‖2=1 ‖Ax‖2, ‖A‖∞ =

supi
∑q

j=1 |aij|, and ‖A‖max = supi,j |aij|, respectively. For two
nonzero real sequences {an}∞n=1 and {bn}∞n=1, we use an � bn,
bn � an or an = O(bn) to represent |an/bn| → 0, where
we defined the new command “O” at the beginning to the tex
file as follows: as n → ∞. And an � bn or an = O(bn)
means supn |an/bn| < ∞. Expression an 	 bn means that
an/bn converges to some positive constant. For two random
variable sequences {xn}∞n=1 and {yn}∞n=1, notation xn �p yn
or xn = Op(yn) means that for any ε > 0, there exists a
positive constant M such that supn P(|xn/yn| > M) ≤ ε.
And for two real numbers a and b, we use a ∨ b and a ∧ b to
represent max(a, b) and min(a, b), respectively. Without specific
notes, the expectation E, variance var, and covariance cov are
calculated based on all randomness.

2.1. Generalized Linear Models (GLMs)

Given the predictors x ∈ R
p, if the response y follows the gen-

eralized linear models (GLMs), then its conditional distribution
takes the form

y|x ∼ P(y|x) = ρ(y) exp{yxTw − ψ(xTw)},

where w ∈ R
p is the coefficient, ρ and ψ are some known

univariate functions. ψ ′(xTw) = E(y|x) is called the inverse
link function (McCullagh and Nelder 1989). Another important
property is that var(y|x) = ψ ′′(xTw), which follows from the
fact that the distribution belongs to the exponential family. It
is ψ that characterizes different GLMs. For example, in linear
model with Gaussian noise, we have a continuous response y
and ψ(u) = 1

2 u2; in the logistic regression model, y is binary
and ψ(u) = log(1 + eu); and in Poisson regression model, y
is a nonnegative integer and ψ(u) = eu. For most GLMs, ψ is
strictly convex and infinitely differentiable.

2.2. Target Data, Source Data, and Transferring Level

In this article, we consider the following multi-source transfer
learning problem. Suppose we have the target dataset (X(0), y(0))

and K source datasets with the kth source denoted as (X(k), y(k)),
where X(k) ∈ R

nk×p, y(k) ∈ R
nk for k = 0, . . . , K. The ith

row of X(k) and the ith element of y(k) are denoted as x(k)
i and
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y(k)
i , respectively. The goal is to transfer useful information from

source data to obtain a better model for the target data. We
assume the responses in the target and source data all follow the
generalized linear model:

y(k)|x ∼ P(y|x) = ρ(y) exp{yxTw(k) − ψ(xTw(k))}, (1)

for k = 0, . . . , K, with possibly different coefficient w(k) ∈ R
p,

the predictor x ∈ R
p, and some known univariate functions

ρ and ψ . Denote the target parameter as β = w(0). Suppose
the target model is �0-sparse, which satisfies ‖β‖0 = s � p.
This means that only s of the p variables contribute to the target
response. Intuitively, if w(k) is close to β , the kth source could be
useful for transfer learning.

Define the kth contrast δ(k) = β − w(k). Given some A ⊆
{1, . . . , K}, we denote h = maxk∈A ‖δ(k)‖ and we call this h as
the transferring level of A. We denote this index set A as Ah to
emphasize its associated transferring level. Note that in general,
h can be any positive value. However, in our regime of interest, h
shall be reasonably small to guarantee that transferring sources
in Ah is beneficial. Denote nAh = ∑

k∈Ah
nk, αk = nk

nAh +n0
for

k ∈ {0} ∪ Ah and KAh = |Ah|.
Note that in (1), we assume GLMs of the target and all sources

share the same inverse link function ψ . After a careful examina-
tion of our proofs for theoretical properties in Section 3, we find
that these theoretical results still hold even when the target and
each source have their own function ψ , as long as these GLMs
satisfy Assumptions 1 and 3 (to be presented in Section 3.1).
It means that transferring information across different GLM
families is possible. For simplicity, in the following discussion,
we assume all these GLMs belong to the same family and hence
have the same function ψ .

2.3. Two-Step GLM Transfer Learning

We first introduce a general transfer learning algorithm on
GLMs, which can be applied to transfer all sources in a given
index set A. The algorithm is motivated by the ideas in Bastani
(2021) and Li, Cai, and Li (2021), which we call a two-step trans-
fer learning algorithm. The main strategy is to first transfer the
information from those sources by pooling all the data to obtain
a rough estimator, then correct the bias in the second step using
the target data. More specifically, we fit a GLM with �1-penalty
by pooled samples first, then fit the contrast in the second step
using only the target by another �1-regularization. The detailed
algorithm (A-Trans-GLM) is presented in Algorithm 1. The
transferring step could be understood as to solve the following
equation w.r.t. w ∈ R

p:∑
k∈{0}∪A

[
(X(k))Ty(k) −

nk∑
i=1

ψ ′((w)Tx(k)
i )x(k)

i

]
= 0p,

which converges to the solution of its population version under
certain conditions∑

k∈{0}∪A
αkE

{
[ψ ′((wA)Tx(k)) − ψ ′((w(k))Tx(k))]x(k)

}
= 0p,

(2)
where αk = nk

nA+n0
. Notice that in the linear case, wA can be

explicitly expressed as a linear transformation of the true param-
eter w(k), that is, wA = �−1 ∑

k∈{0}∪A αk�
(k)w(k), where

�(k) = E[x(k)(x(k))T] and � = ∑
k∈{0}∪A αkE[x(k)(x(k))T] (Li,

Cai, and Li 2021).
To help readers better understand the algorithm, we draw a

schematic in Section S.1.1 of supplementary materials. We refer
interested readers who want to get more intuitions to that.

Algorithm 1: A-Trans-GLM
Input: target data (X(0), y(0)), source data {(X(k), y(k))}K

k=1,
penalty parameters λw and λδ , transferring set A

Output: the estimated coefficient vector β̂

1 Transferring step: Compute ŵA ←

arg minw

{
1

nA+n0

∑
k∈{0}∪A

[
−(y(k))TX(k)w +

nk∑
i=1

ψ(wTx(k)
i )

]
+ λw‖w‖1

}
2 Debiasing step: Compute

δ̂
A ← arg minδ

{
− 1

n0
(y(0))TX(0)(ŵA + δ) + 1

n0

n0∑
i=1

ψ((ŵA + δ)Tx(0)
i ) + λδ‖δ‖1

}
3 Let β̂ ← ŵA + δ̂

A

4 Output β̂

2.4. Transferable Source Detection

As we described, Algorithm 1 can be applied only if we are
certain about which sources to transfer, which in practice may
not be known as a priori. Transferring certain sources may not
improve the performance of the fitted model based on only
target, and can even lead to worse performance. In transfer
learning, we say negative transfer happens when the source data
leads to an inferior performance on the target task (Pan and
Yang 2009; Torrey and Shavlik 2010; Weiss, Khoshgoftaar, and
Wang 2016). How to avoid negative transfer has become an
increasingly popular research topic.

Here we propose a simple, algorithm-free, and data-driven
method to determine an informative transferring set Â. We call
this approach a transferable source detection algorithm and refer
to it as Trans-GLM.

We sketch this detection algorithm as follows. First, divide
the target data into three folds, that is, {(X(0)[r], y(0)[r])}3

r=1.
Note that we choose three folds only for convenience. We also
explored other fold number choices in the simulation. See Sec-
tion S.1.3.3 in the supplementary materials. Second, run the
transferring step on each source data and every two folds of
target data. Then, for a given loss function, we calculate its value
on the left-out fold of target data and compute the average cross-
validation loss L̂(k)

0 for each source. As a benchmark, we also fit
Lasso on every choice of two folds of target data and calculate
the loss on the remaining fold. The average cross-validation loss
L̂(0)

0 is viewed as the loss of target. Finally, the difference between
L̂(k)

0 and L̂(0)
0 is calculated and compared with some threshold,

and sources with a difference less than the threshold will be
recruited into Â. Under the GLM setting, a natural loss function
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is the negative log-likelihood. For convenience, suppose n0 is
divisible by 3. According to (1), for any coefficient estimate w,
the average of negative log-likelihood on the rth fold of target
data (X(0)[r], y(0)[r]) is

L̂[r]
0 (w) = − 1

n0/3

n0/3∑
i=1

log ρ(y(0)[r]
i ) − 1

n0/3
(y(0)[r])TX(0)w

+ 1
n0/3

n0/3∑
i=1

ψ(wTx(0)[r]
i ). (3)

The detailed algorithm is presented as Algorithm 2.

Algorithm 2: Trans-GLM
Input: target data (X(0), y(0)), all source data

{(X(k), y(k))}K
k=1, a constant C0 > 0, penalty

parameters {{λ(k)[r]}K
k=0}3

r=1
Output: the estimated coefficient vector β̂ , and the

determined transferring set Â
1 Transferable source detection: Randomly divide

(X(0), y(0)) into three sets of equal size as
{(X(0)[i], y(0)[i])}3

i=1
2 for r = 1 to 3 do
3 β̂

(0)[r] ← fit the Lasso on
{(X(0)[i], y(0)[i])}3

i=1\(X(0)[r], y(0)[r]) with penalty
parameter λ(0)[r]

4 β̂
(k)[r] ← run Step 1 in Algorithm 1 with

({(X(0)[i], y(0)[i])}3
i=1\(X(0)[r], y(0)[r])) ∪ (X(k), y(k)) and

penalty parameter λ(k)[r] for all k �= 0
5 Calculate the loss function L̂[r]

0 (β̂
(k)[r]

) on
(X(0)[r], y(0)[r]) for k = 1, . . . , K

6 end
7 L̂(k)

0 ← ∑3
r=1 L̂[r]

0 (β̂
(k)[r]

)/3, L̂(0)
0 ← ∑3

r=1 L̂[r]
0 (β̂

(0)[r]
)/3,

σ̂ =
√∑3

r=1(L̂[r]
0 (β̂

(0)[r]
) − L̂(0)

0 )2/2
8 Â ← {k �= 0 : L̂(k)

0 − L̂(0)
0 ≤ C0(σ̂ ∨ 0.01)}

9 Â-Trans-GLM: β̂ ← run Algorithm 1 using
{(X(k), y(k))}k∈{0}∪Â

10 Output β̂ and Â

It’s important to point out that Algorithm 2 does not require
the input of h. We will show that Â = Ah for some specific
h if certain conditions hold, in Section 3.2. Furthermore, under
these conditions, transferring with Âwill lead to a faster conver-
gence rate compared to Lasso fitted on only the target data, when
target sample size n0 falls into some regime. This is the reason
that this algorithm is called the transferable source detection
algorithm.

2.5. Confidence Intervals

In previous sections, we’ve discussed how to obtain a point
estimator of the target coefficient vector β from the two-step
transfer learning approach. In this section, we would like to

construct the asymptotic confidence interval (CI) for each com-
ponent of β based on that point estimate.

As described in the introduction, there have been quite a few
works on high-dimensional GLM inference in the literature. In
the following, we will propose a transfer learning procedure to
construct CI based on the desparsified Lasso (Van de Geer et al.
2014). Recall that desparsified Lasso contains two main steps.
The first step is to learn the inverse Fisher information matrix
of GLM by nodewise regression (Meinshausen and Bühlmann
2006). The second step is to “debias” the initial point estimator
and then construct the asymptotic CI. Here, the estimator β̂

from Algorithm 1 can be used as an initial point estimator. Intu-
itively, if the predictors from target and source data are similar
and satisfy some sparsity conditions, it might be possible to use
Algorithm 1 for learning the inverse Fisher information matrix
of target data, which effectively combines the information from
target and source data.

Before formalizing the procedure to construct the CI, let’s
first define several additional notations. For any W ∈ �

p,

denote W(k)
w = diag

(√
ψ ′′((x(k)

1 )Tw), . . . ,
√

ψ ′′((x(k)
nk )Tw)

)
,

X(k)
w = W(k)

w X(k), �
(k)
w = E[x(k)(x(k))Tψ ′′((x(k))Tw)] and

�̂
(k)
w = n−1

k (X(k)
w )TX(k)

w . X(k)
w,j represents the jth column of X(k)

w

and X(k)
w,−j represents the matrix X(k)

w without the jth column.

�̂
(k)
w,j,−j represents the jth row of �̂

(k)
w without the diagonal (j, j)

element, and �̂
(k)
w,j,j is the diagonal (j, j) element of �̂

(k)
w .

Next, we explain the details of the CI construction procedure
in Algorithm 3. In Step 1, we obtain a point estimator β̂ from
A-Trans-GLM (Algorithm 1), given a specific transferring set
A. Then in Steps 2–4, we estimate the target inverse Fisher
information matrix (�

(0)
β )−1 as

�̂ = diag(τ̂−2
1 , . . . , τ̂−2

p )

⎛⎜⎜⎜⎜⎝
1 −γ̂

(0)
1,2 . . . −γ̂

(0)
1,p

−γ̂
(0)
2,1 1 . . . −γ̂

(0)
2,p

...
...

. . .
...

−γ̂
(0)
p,1 −γ̂

(0)
p,2 . . . 1

⎞⎟⎟⎟⎟⎠ .

(4)
Finally in Step 5, we “debias” β̂ using the target data to get a new
point estimator b̂ which is asymptotically unbiased as

b̂ = β̂ + 1
n0

�̂(X(0))T[Y(0) − ψ ′(X(0)β̂)], (5)

where ψ ′(X(0)β̂) := (ψ ′((x(0)
1 )T β̂), . . . , ψ ′((x(0)

n0 )T β̂))T ∈ R
n0 .

It’s necessary to emphasize that the confidence level (1 − α)

is for every single CI rather than for all p CIs simultaneously. As
discussed in Sections 2.2 and 2.3 of Van de Geer et al. (2014),
it is possible to get simultaneous CIs for different coefficient
components and do multiple hypothesis tests when the design
is fixed. In other cases, for example, random design in different
replications (which we focus on in this article), multiple hypoth-
esis testing might be more challenging.

3. Theory

In this section, we will establish theoretical guarantees on the
three proposed algorithms. Section 3.1 provides a detailed anal-
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Algorithm 3: Confidence interval construction via node-
wise regression

Input: target data (X(0), y(0)), source data {(X(k), y(k))}K
k=1,

penalty parameters {λj}p
j=1 and {λ̃j}p

j=1, transferring
set A, confidence level (1 − α)

Output: Level-(1 − α) confidence interval Ij for βj with
j = 1, . . . , p

1 Compute β̂ via Algorithm 1
2 Compute γ̂

A
j ←

arg minγ

{
− 1

2(nA+n0)

∑
k∈{0}∪A ‖X(k)

β̂ ,j
− X(k)

β̂ ,−j
γ ‖2

2 + λj‖γ ‖1

}
for j = 1, . . . , p

3 Compute �̂j ←
arg min�

{
− 1

2n0
‖X(0)

β̂ ,j
− X(0)

β̂ ,−j
(γ̂

A
j + �)‖2 + λ̃j‖�‖1

}
4 Compute γ̂

(0)
j ← γ̂

A
j + �̂j, �̂β̂

← ∑
k∈{0}∪A

nk
nA+n0

�̂
(k)
β̂

,
τ̂ 2

j = �̂
β̂ ,j,j − �̂

β̂ ,j,−jγ̂ j and calculate �̂ via (4), where

γ̂
(0)
j = (γ̂

(0)
j,1 , . . . , γ̂ (0)

j,j−1, γ̂ (0)
j,j+1, . . . , γ̂ (0)

j,p )T .
5 Compute
Ij ← [b̂j − �̂

T
j �̂

β̂
�̂jqα/2/

√n0, b̂j + �̂
T
j �̂

β̂
�̂jqα/2/

√n0]
for j = 1, . . . , p, where b̂j is the jth component of b̂ in (5),
and qα/2 is the α/2-left tail quantile of N (0, 1)

6 Output {Ij}p
j=1

ysis of Algorithm 1 with transferring set Ah, which we denote
as Ah-Trans-GLM. Section 3.2 introduces certain conditions,
under which we show that the transferring set Â detected by
Algorithm 2 (Trans-GLM) is equal to Ah for some h with high
probability. Section 3.3 presents the analysis of Algorithm 3 with
transferring set Ah, where we prove a central limit theorem.
For the proofs and some additional theoretical results, refer to
supplementary materials.

3.1. Theory on Ah-Trans-GLM

We first impose some common assumptions about GLM.

Assumption 1. ψ is infinitely differentiable and strictly convex.
We call a second-order differentiable function ψ strictly convex
if ψ ′′(x) > 0.

Assumption 2. For any a ∈ R
p, aTx(k)

i ’s are iid κu‖a‖2
2-sub-

Gaussian variables with zero mean for all k = 0, . . . , K, where
κu is a positive constant. Denote the covariance matrix of x(k) as
�(k), with infk λmin(�(k)) ≥ κl > 0, where κl is a constant.

Assumption 3. At least one of the following assumptions hold:
(Mψ , U and Ū are some positive constants)

(i) ‖ψ ′′‖∞ ≤ Mψ < ∞ a.s.;
(ii) sup

k
‖x(k)‖∞ ≤ U < ∞ a.s., sup

k
sup

|z|≤Ū
ψ ′′((x(k))Tw(k)+z) ≤

Mψ < ∞ a.s.

Assumption 1 imposes the strict convexity and differentiabil-
ity of ψ , which is satisfied by many popular distribution families,
such as Gaussian, binomial, and Poisson distributions. Note that
we do not require ψ to be strongly convex (that is, ∃C > 0,
such that ψ ′′(x) > C), which relaxes Assumption 4 in Bastani
(2021). It is easy to show that ψ in logistic regression is in general
not strongly convex with unbounded predictors. Assumption 2
requires the predictors in each source to be sub-Gaussian with a
well-behaved correlation structure. Assumption 3 is motivated
by Assumption (GLM 2) in the full-length version of Negahban
et al. (2009), which is imposed to restrict ψ ′′ in a bounded region
in some sense. Note that linear regression and logistic regression
satisfy condition (i), while Poisson regression with coordinate-
wise bounded predictors and �1-bounded coefficients satisfies
condition (ii).

Besides these common conditions on GLM, as discussed in
Section 2.3, to guarantee the success of Ah-Trans-GLM, we
have to make sure that the estimator from the transferring step
is close enough to β . Therefore, we introduce the following
assumption, which guarantees wAh defined in (2) with A = Ah
is close to β .

Assumption 4. Denote �̃h = ∑
k∈{0}∪Ah

αkE
[ ∫ 1

0 ψ ′′((x(k))Tβ

+t(x(k))T(wAh−β))dt·x(k)(x(k))T
]

and �̃
(k)
h =E

[∫ 1
0 ψ ′′((x(k))T

β+t(x(k))T(w(k)−β))dt ·x(k)(x(k))T
]

. It holds that supk∈{0}∪Ah

‖�̃−1
h �̃

(k)
h ‖1 < ∞.

Remark 1. A sufficient condition for Assumption 4 to hold
is (�̃

(k)
wAh ,β)−1�̃

(k′)
w(k′),β has positive diagonal elements and is

diagonally dominant, for any k �= k′ in Ah, where �̃
(k)
w,β :=

E

[ ∫ 1
0 ψ ′′((x(k))Tβ + t(x(k))T(w − β))dt · x(k)(x(k))T

]
for any

w ∈ R
p.

In the linear case, this assumption can be further simplified
as a restriction on heterogeneity between target predictors and
source predictors. More discussions can be found in Condition
4 of Li, Cai, and Li (2021). Now, we are ready to present the
following main result for the Ah-Trans-GLM algorithm. Given
some A ⊆ {1, . . . , K}, define the parameter space as

(s, h) =
{
β , {W(k)}K

k=1 : ‖β‖0 ≤ s, sup
k∈A

‖W(k) − β‖1 ≤ h
}

.

Again, we denote the index set A as Ah to emphasize its associ-
ated transferring level.

Theorem 1 (�1/�2-estimation error bound of Ah-Trans-GLM
with Assumption 4). Assume Assumptions 1, 2, and 4 hold.
Suppose h �

√
n0

log p , h ≤ C, n0 ≥ C log p and nAh ≥ Cs log p,
where C > 0 is a constant. Also assume Assumption 3.(i) holds
or Assumption 3.(ii) with h ≤ C′U−1Ū for some C′ > 0

holds. We take λw = Cw

√
log p

nAh +n0
and λδ = Cδ

√
log p
n0

,

where Cw and Cδ are sufficiently large positive constants.
Then
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sup
ξ∈(s,h)

P

(
‖β̂ − β‖2 �

(
s log p

nAh + n0

)1/2

+
[(

log p
n0

)1/4
h1/2

]
∧ h

)
≥ 1 − n−1

0 , (6)

sup
ξ∈(s,h)

P

(
‖β̂ − β‖1 � s

(
log p

nAh + n0

)1/2
+ h

)
≥ 1 − n−1

0 .

(7)

Remark 2. When h � s
√

log p
n0

, nAh � n0, the upper bounds
in (6) and (7) are better than the classical Lasso �2-bound

Op

(√
s log p

n0

)
and �1-bound Op

(
s
√

log p
n0

)
using only target

data.

Similar to Theorem 2 in Li, Cai, and Li (2021), we can show
the following lower bound of �1/�2-estimation error in regime
(s, h) in the minimax sense.

Theorem 2 (�1/�2-minimax estimation error bound). Assume
Assumptions 1, 2, and 4 hold. Also assume Assumption 3.(i)
holds or Assumption 3.(ii) with n0 � s2 log p holds. Then

inf
β̂

sup
ξ∈(s,h)

P

(
‖β̂ − β‖2 �

(
s log p

nAh + n0

)1/2

+
(

s log p
n0

)1/2
∧

[(
log p

n0

)1/4
h1/2

]
∧ h

)
≥ 1

2
,

inf
β̂

sup
ξ∈(s,h)

P

(
‖β̂ − β‖1 � s

(
log p

nAh + n0

)1/2

+
[

s
(

log p
n0

)1/2
]

∧ h

)
≥ 1

2
.

Remark 3. Theorem 2 indicates that under conditions on h
required by Theorem 1 (h � s

√
log p/n0), Ah-Trans-GLM

achieves the minimax optimal rate of �1/�2-estimation error
bound.

Next, we present a similar upper bound, which is weaker than
the bound above but holds without requiring Assumption 4.

Theorem 3 (�1/�2-estimation error bound of Ah-Trans-GLM
without Assumption 4). Assume Assumptions 1 and 2 hold.
Suppose h �

√
n0

log p , h ≤ Cs−1/2, n0 ≥ C log p and
nAh ≥ Cs log p, where C > 0 is a constant. Also assume
Assumption 3.(i) holds or Assumption 3.(ii) with h ≤ C′U−1Ū

for some C′ > 0 holds. We take λw = Cw

(√
log p

nAh +n0
+ h

)
and

λδ = Cδ

√
log p
n0

, where Cw and Cδ are sufficiently large positive
constants. Then

sup
ξ∈(s,h)

P

(
‖β̂ − β‖2 �

(
s log p

nAh + n0

)1/2
+ √

sh

+
[(

log p
n0

)1/4
h1/2

]
∧ h

)
≥ 1 − n−1

0 ,

sup
ξ∈(s,h)

P

(
‖β̂ − β‖1 � s

√
log p

nAh + n0
+ sh

)
≥ 1 − n−1

0 .

Remark 4. When h �
√

log p
n0

and nAh � n0, the upper
bounds in (i) and (ii) are better than the classical Lasso bound

Op

(√
log p
n0

)
with target data.

Comparing the results in Theorems 1 and 3, we know that
with Assumption 4, we could get sharper �1/�2-estimation error
bounds.

3.2. Theory on the Transferable Source Detection
Algorithm

In this section, we will show that under certain conditions, our
transferable set detection algorithm (Trans-GLM) can recover
the level-h transferring set Ah for some specific h, that is, Â =
Ah with high probability. Under these conditions, transferring
with Â will lead to a faster convergence rate compared to Lasso
fitted on the target data, when the target sample size n0 falls into
certain regime. But as we described in Section 2.4, Algorithm 2
does not require any explicit input of h.

The corresponding population version of L̂[r]
0 (w) defined in

(3) is

L0(w) = −E[log ρ(y(0))] − E[y(0)wTx(0)] + E[ψ(wTx(0))]

= −E[log ρ(y(0))] − E[ψ ′(wTx(0))wTx(0)]

+ E[ψ(wTx(0))].

Based on Assumption 6, similar to (2), for {k}-Trans-
GLM (Algorithm 1 with A = {k}) used in Algorithm 2,
consider the following population version of estimators
from the transferring step with respect to target data and
the kth source data, which is the solution β(k) of equation∑

j∈{0,k} α
(k)
j E

{
[ψ ′((β(k))Tx(k)) − ψ ′((w(k))Tx(k))]x(k)

}
=

0, where α
(k)
0 = 2n0/3

2n0/3+nk
and α

(k)
k = nk

2n0/3+nk
. Define

β(0) = β . Next, let’s impose a general assumption to ensure
the identifiability of some Ah by Trans-GLM.

Assumption 5 (Identifiability of Ah). Denote Ac
h = {1, . . . , K}

\Ah. Suppose for some h and for all k, we have

P

(
sup

r
|L̂[r]

0 (β̂
(k)[r]

) − L̂[r]
0 (β(k))| > ϒ

(k)
1 + ζ�

(k)
1

)
� g(k)

1 (ζ ),

P

(
sup

r
|L̂[r]

0 (β(k)) − L0(β
(k))| > ζ�

(k)
2

)
� g(k)

2 (ζ ),

where g(k)
1 (ζ ), g(k)

2 (ζ ) → 0 as ζ → ∞. Assume inf
k∈Ac

h

λmin(E[∫ 1
0

ψ ′′((1 − t)(x(0))Tβ + t(x(0))Tβ(k))dt · x(0)(x(0))T]) := λ > 0,
and
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‖β(k) − β‖2 ≥ λ−1/2
[

C1

(√
�

(0)
1 ∨

√
�

(0)
2 ∨ 1

)
+

√
2ϒ

(k)
1

]
,

∀k ∈ Ac
h (8)

ϒ
(k)
1 + �

(k)
1 + �

(k)
2 + h2 = O(1), ∀k ∈ Ah;

�
(k)
1 = O(1), �(k)

2 = O(1), ∀k ∈ Ac
h, (9)

where C1 > 0 is sufficiently large.

Remark 5. Here we use generic notations ϒ
(k)
1 , �

(k)
1 , �

(k)
2 ,

g(k)
1 (ζ ), and g(k)

2 (ζ ). We show their explicit forms under linear,
logistic, and Poisson regression models in Proposition 1 in
Section S.1.2.1 of supplementary materials.

Remark 6. Condition (8) guarantees that for the sources not
in Ah, there is a sufficiently large gap between the population-
level coefficient from the transferring step and the true coeffi-
cient of target data. Condition (9) guarantees the variations of
supr |L̂[r]

0 (β̂
(k)[r]

) − L̂[r]
0 (β(k))| and supr |L̂[r]

0 (β(k)) − L0(β
(k))|

are shrinking as the sample sizes go to infinity.

Based on Assumption 5, we have the following detection
consistency property.

Theorem 4 (Detection consistency of Ah). For Algorithm 2
(Trans-GLM), with Assumption 5 satisfied for some h, for any
δ > 0, there exist constants C′(δ) and N = N(δ) > 0 such that
when C0 = C′(δ) and mink∈{0}∪Ah nk > N(δ),

P(Â = Ah) ≥ 1 − δ.

Then Algorithm 2 has the same high-probability upper bounds
of �1/�2-estimation error as those in Theorems 1 and 3 under
the same conditions, respectively.

Remark 7. We would like to emphasize again that Algorithm 2
does not require the explicit input of h. Theorem 4 tells us that
the transferring set Â suggested by Trans-GLM will be Ah for
some h, under certain conditions.

Next, we attempt to provide a sufficient and more explicit
condition (Corollary 1) to ensure that Assumption 5 hold.
Recalling the procedure of Algorithm 2, we note that it
relies on using the negative log-likelihood as the similarity
metric between target and source data, where the accurate
estimation of coefficients or log-likelihood for GLM under the
high-dimensional setting depends on the sparsity structure.
Therefore, in order to provide an explicit and sufficient
condition for Assumption 6 to hold, we now impose a “weak”
sparsity assumption on both w(k) and β(k) with k ∈ Ac

h for
some h. Note that the source data in Ah automatically satisfy
the sparsity condition due to the definition of Ah.

Assumption 6. For some h and any k ∈ Ac
h, we assume w(k) and

β(k) can be decomposed as follows with some s′ and h′ > 0:

(i) w(k) = ς (k) + ϑ (k), where ‖ς (k)‖0 ≤ s′ and ‖ϑ (k)‖1 ≤ h′;
(ii) β(k) = ι(k) +  (k), where ‖ι(k)‖0 ≤ s′ and ‖ (k)‖1 ≤ h′.

Corollary 1. Assume Assumptions 1, 2, 6, and inf
k∈Ac

h

λmin
(
E[∫ 1

0

ψ ′′((1 − t)(x(0))Tβ + t(x(0))Tβ(k))dt · x(0)(x(0))T]) := λ > 0
hold. Also assume supk∈Ac

h
‖β(k)‖∞ < ∞, supk ‖w(k)‖∞ < ∞.

Let λ(k)[r] = C
(√

log p
nk+n0

+ h
)

when k ∈ Ah, λ(k)[r] =

C
√

log p
nk+n0

· (1 ∨ ‖β(k) − β‖2 ∨ ‖w(k) − β‖2) when k ∈ Ac
h

and λ(0)[r] = C
√

log p
n0

for some sufficiently large constant
C > 0. Then we have the following sufficient conditions
to make Assumption 5 hold for logistic, linear and Poisson

regression models. Denote � = √
h′

(
log p

mink∈Ah nk+n0

)1/4 +(
s′ log p

mink∈Ah nk+n0

)1/4 [(s∨s′)1/4+√
h′]+

(
log p

mink∈Ah nk+n0

)1/8
(h′)1/4[(s∨

s′)1/8 + (h′)1/4].
(i) For logistic regression models, we require

inf
k∈Ah

nk � s log p, n0 � {[s ∨ s′ + (h′)2] ∨ �2} · log K,

inf
k∈Ac

h

‖β(k) − β‖2 �
(

s log p
n0

)1/4
∨ 1 + �, h � s−1/2.

(ii) For linear models, we require

inf
k∈Ah

nk � s2 log p,

n0 �
{
[(s ∨ s′)2 + (h′)4] ∨ [(s ∨ s′ + (h′)2)�2]

}
· log K,

inf
k∈Ac

h
‖β(k) − β‖2 �

(
s2 log p

n0

)1/4

∨ 1 +
[
(s′)1/4 + √

h′
]
�,

h � s−1.

(iii) For Poisson regression models, we require

inf
k∈Ah

nk � s2 log p,

n0 �
[
(s ∨ s′ + h′) ∨ �2

]
· log K, U(s ∨ s′ + h ∨ h′) � 1,

inf
k∈Ac

h
‖β(k) − β‖2 �

(
s log p

n0

)1/4
∨ 1 +

[
(s′)1/4 + √

h′
]
�,

h � s−1.

Under Assumptions 1, 2, and the sufficient conditions
derived in Corollary 1, by Theorem 4, we can conclude that
Â = Ah for some h. Note that we don’t impose Assumption 4
here. Remark 4 indicates that, for Ah-Trans-GLM to have a
faster convergence rate than Lasso on target data, we need
h �

√
log p
n0

and nAh � n0. Suppose s′ 	 s and h′ � s1/2.
Then for logistic regression models, when n0 � s log(p ∨ K),
we can claim that as long as the source is “helpful”, i.e. there exists
such an h �

√
log p
n0

, Trans-GLM is able to detect Ah. The same
conclusion holds for linear models when n0 � s2 log(p ∨ K)

and for Poisson models when n0 � (s log K) ∨ (s2 log p). This
implies that when target sample size n0 is large enough and there
exists an h such that Ah is helpful, Trans-GLM can successfully
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detect it with high probability and subsequently lead to a better
�1/�2-estimation error bound than that of the classical Lasso on
target data.

3.3. Theory on Confidence Interval Construction

In this section, we will establish the theory for our confidence
interval construction procedure described in Algorithm 3. First,
we would like to review and introduce some notations. In Sec-
tion 2.5, we defined �

(k)
β = E[x(k)(x(k))Tψ ′′((x(k))Tβ)]. Let

� = (�
(0)
β )−1 and KAh = |Ah|. Define

γ
(k)
j = arg minγ∈Rp−1E

{
ψ ′′(βTx(k)) · [x(k)

j − (x(k)
−j )

Tγ ]2
}

= (�
(k)
β ,−j,−j)

−1�(k)
β ,−j,j,

which is closely related to (�
(k)
β )−1 and γ

(0)
j can be viewed as the

population version of γ̂
(0)
j . And �

(k)
β ,j,−j represents the jth row

without the (j, j) diagonal element of �
(k)
β . �(k)

β ,−j,−j denotes the
submatrix of �

(k)
β without the jth row and jth column. Suppose

sup
k∈Ah,j=1:p

‖(�(0)
β ,−j,−j)

−1�(0)
β ,−j,j − (�

(k)
β ,−j,−j)

−1�(k)
β ,−j,j‖1 ≤ h1,

sup
k∈Ah,j=1:p

[
|�(k)

β ,j,j − �
(0)
β ,j,j| ∨ |(�(k)

β ,j,−j − �
(0)
β ,j,−j)γ

(0)
j |

]
≤ hmax.

Then by the definition of γ
(k)
j ,

sup
k∈Ah,j=1:p

‖γ (k)
j − γ

(0)
j ‖1 � h1,

which is similar to our previous setting supk∈Ah
‖w(k) − β‖1 ≤

h. This motivates us to apply a similar two-step transfer learning
procedure (Steps 2–4 in Algorithm 3) to learn γ

(0)
j for j =

1, . . . , p. We impose the following set of conditions.

Assumption 7. Suppose the following conditions hold:

(i) supk∈{0}∪Ah
‖x(k)‖∞ ≤ U < ∞, supk∈{0}∪Ah

|(x(k))Tw(k)|
≤ U ′ < ∞ a.s.;

(ii) supj ‖γ (0)
j ‖0/s < ∞, supj∈1:p,k∈{0}∪Ah

|(x(k))Tγ
(0)
j | ≤

U ′′ < ∞ a.s.;
(iii) infk∈{0}∪Ah λmin(�

(k)
w(k) ) ≥ U > 0;

(iv) sup
k∈{0}∪Ah

sup
|z|≤Ū

ψ ′′′((x(k))Tw(k) + z) ≤ Mψ < ∞ a.s.

(v) supk∈{0}∪Ah
‖(�Ah

β ,−j,−j)
−1�(k)

β ,−j,−j‖1 < ∞, where �
Ah
β =∑

k∈{0}∪Ah
αk�

(k)
β ;

(vi) mink∈Ah nk � n0, n0 � s3(log p)2

K2
Ah

∨ KAh , nAh + n0 �
s2 log p;

(vii) h1 � s−1/2∧
[√

n0
log p

(√
KAh
s ∧ 1

)]
, h1∨h � KAh n1/2

0
s2(log p)3/2 ∧

n1/4
0

s1/2(log p)1/4 , hh1/2
1 � n−1/4

0 (log p)−1/4
(KAh

s ∧ 1
)

,

h5/2h1 � n−3/4
0 (s log p)−1/4, h1 � K1/2

Ah
n1/2

0
s3/2(log p)1/2 ∧

K3/2
Ah

n1/2
0

s5/2(log p)3/2 , h1h1/2 � n1/4
0

s(log p)1/4 ∧ KAh n1/4
0

s2(log p)5/4 , h �
K1/2
Ah

(s log p)1/2 ∧ 1
n1/4

0 (log p)1/2 , hmax � s−1/2 ∧
(

1
s

√
KAh
log p

)
,

hhmax � n−1/2
0 .

Remark 8. Conditions (i)–(iii) are motivated from conditions of
Theorem 3.3 in Van de Geer et al. (2014). Note that in Van de
Geer et al. (2014), they define sj = ‖γ (0)

j ‖0 and treat sj and s
as two different parameters. Here we require supj sj � s just
for simplicity (otherwise condition (vii) would be more com-
plicated). Condition (iv) requires the inverse link function to
behave well, which is similar to Assumption 3. Condition (v) is
similar to Assumption 4 to guarantee the success of the two-step
transfer learning procedure to learn γ (0) in Algorithm 3 with a
fast rate. Without condition (v), the conclusions in the following
Theorem 5 may still hold but under a stronger condition on
h, h1 and hmax, and the rate (11) may be worse. We do not
explore the details in this article and leave them to interested
readers. Conditions (vi) and (vii) require that the sample size
is sufficiently large and the distance between target and source
is not too large. In condition (vi), mink∈Ah nk � n0 is not
necessary and the only reason we add it here is to simplify
condition (vii).

Remark 9. When x(k)’s are from the same distribution, h1 =
hmax = 0. In this case, we can drop the debiasing step to estimate
γ̂

(0)
j in Algorithm 3 as well as condition (v). Furthermore,

condition (vii) can be significantly simplified and only h �
KAh n1/2

0
s2(log p)3/2 ∧ n1/4

0
s1/2(log p)1/4 ∧ K1/2

Ah
(s log p)1/2 ∧ 1

n1/4
0 (log p)1/2 is needed.

Remark 10. From conditions (vi) and (vii), we can see that as
long as KAh � s(log p)2/3, the conditions become milder as KAh
increases.

Now, we are ready to present our main result for Algorithm 3.

Theorem 5. Under Assumptions 1–4 and Assumption 7,

√n0(b̂j − βj)√
�̂

T
j �̂

β̂
�̂j

d−→ N (0, 1), (10)

and

|�̂T
j �̂

β̂
�̂j − �jj|

� s

√
log p

nAh + n0
+ √

s

[
h1/2

(
log p

n0

)1/4
∧ h

]

+ (sh1)
1/2

(
log p

n0

)1/4

+ (sh1)
1/2

[(
s log p

nAh + n0

)1/4
+

(
h1/4

(
log p

n0

)1/8
)

∧ h1/2

]
+ √

shmax, (11)

for j = 1, . . . , p, with probability at least 1 − KAh n−1
0 .
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Theorem 5 guarantees that under certain conditions, the (1−
α)-confidence interval for each coefficient component obtained
in Algorithm 3 has approximately level (1−α) when the sample
size is large. Also, if we compare the rate of (11) with the rate
Op(s

√
log p/n0) in Van de Geer et al. (2014) (see the proof of

Theorem 3.1), we can see that when h � s
√

log p
n0

, h1 �
√

s log p
n0

·[
s1/2 ∧

(nAh +n0
n0

)1/4
]

, h1/2
1 h1/4 � s1/2

(
log p
n0

)3/8
and hmax �√

s log p
n0

, the rate is better than that of desparsified Lasso using
only target data.

4. Numerical Experiments

In this section, we demonstrate the power of our GLM transfer
learning algorithms via extensive simulation studies and a real-
data application. In the simulation part, we study the perfor-
mance of different methods under various settings of h. The
methods include Trans-GLM (Algorithm 2), naïve-Lasso (Lasso
on target data), Ah-Trans-GLM (Algorithm 1 with A = Ah)
and Pooled-Trans-GLM (Algorithm 1 with all sources). In the
real-data study, besides naïve-Lasso, Pooled-Trans-GLM, and
Trans-GLM, additional methods are explored for comparison,
including support vector machines (SVM), decision trees (Tree),
random forests (RF) and Adaboost algorithm with trees (Boost-
ing). We run these benchmark methods twice. First, we fit the
models on only the target data, then at the second time, we
fit them a combined data of target and all sources, which is
called a pooled version. We use the original method name to
denote the corresponding method implemented on target data,
and add a prefix “Pooled” to denote the corresponding method
implemented on target and all source data. For example, Pooled-
SVM represents SVM fitted on all data from target and sources.

All experiments are conducted in R. We implement our GLM
transfer learning algorithms in a new R package glmtrans,
which is available on CRAN. More implementation details can
be found in Section S.1.3.1 in the supplementary materials.

4.1. Simulations

4.1.1. Transfer Learning on Ah
In this section, we study the performance of Ah-Trans-GLM
and compare it with that of naïve-Lasso. The purpose of the
simulation is to verify that Ah-Trans-GLM can outperform
naïve-Lasso in terms of the target coefficient estimation error,
when h is not too large.

Consider the simulation setting as follows. We set the target
sample size n0 = 200 and source sample sample size nk = 100
for each k �= 0. The dimension p = 500 for both target and
source data. For the target, the coefficient is set to be β =
(0.5 · 1s, 0p−s)T , where 1s has all s elements 1 and 0p−s has all
(p − s) elements 0, where s is set to be 5. Denote R

(k)
p as p

independent Rademacher variables (being −1 or 1 with equal
probability) for any k. R(k)

p is independent with R
(k′)
p for any

k �= k′. For any source data k inAh, we set w(k) = β+(h/p)R
(k)
p .

For linear and logistic regression models, predictors from target
x(0)

i
iid∼ N (0p, �) with � = [�jj′ ]p×p where �jj′ = 0.5|j−j′|, for

all i = 1, . . . , n. And for k ∈ Ah, we generate p-dimensional

predictors from N (0p, � + εεT), where ε ∼ N (0p, 0.32Ip)
and is independently generated. For Poisson regression model,
predictors are from the same Gaussian distributions as those
in linear and binomial cases with coordinate-wise truncation at
±0.5.

Note that naïve-Lasso is fitted on only target data, and Ah-
Trans-GLM denotes Algorithm 1 on source data in Ah as well
as target data. We train naïve-Lasso and Ah-Trans-GLM models
under different settings of h and KAh , then calculate the �2-
estimation error of β . All the experiments are replicated 200
times and the average �2-estimation errors of Ah-Trans-GLM
and naïve-Lasso under linear, logistic, and Poisson regression
models are shown in Figure 1.

From Figure 1, it can be seen that Ah-Trans-GLM outper-
forms naïve-Lasso for most combinations of h and K. As more
and more source data become available, the performance of Ah-
Trans-GLM improves significantly. This matches our theoretical
analysis because the �2-estimation error bounds in Theorems 1
and 3 become sharper as nAh grows. When h increases, the
performance of Ah-Trans-GLM becomes worse.

We also apply the inference Algorithm 3 with Ah and com-
pare it with desparsified Lasso (Van de Geer et al. 2014) on only
target data. Recall the notations we used in Section 3.3. Here
we consider 95% confidence intervals (CIs) for each component
of coefficient β , and report three evaluation metrics in Figure 2
when h = 20 under different KAh : (i) the average of estimation
error of �jj over variables in the signal set S and noise set Sc

(including the intercept), respectively (which we call “average
estimation error”); (ii) the average CI coverage probability over
variables in the signal set S and noise set Sc; (iii) the average CI
length over j ∈ signal set S and noise set Sc. Note that there
is no explicit formula of � for logistic and Poisson regression
models. Here we approximated it through 5 × 106 Monte Carlo
simulations. Notice that the average estimation error of Ah-
Trans-GLM declines as K increases, which agrees with our the-
oretical analysis in Section 3.3. As for the coverage probability,
although CIs obtained by desparsified Lasso can achieve 95%
coverage probability on Sc in linear and binomial cases, it fails
to meet the 95% requirement of coverage probability on S in
all three cases. In contrast, CIs provided by Ah-Trans-GLM can
achieve approximately 95% level when K is large on both S and
Sc. Finally, the results of average CI length reveal that the CIs
obtained by Ah-Trans-GLM tend to be wider as K increases.
Considering this together with the average estimation error
and coverage probability, a possible explanation could be that
desparsified Lasso might down-estimate �jj which leads to too
narrow CIs to cover the true coefficients. And Ah-Trans-GLM
offers a more accurate estimate of �jj which results in wider CIs.

We also consider different ({nk}K
k=0, p, s) settings with the

results in the supplementary materials.

4.1.2. Transfer Learning When Ah is Unknown
Different from the previous section, now we fix the total num-
ber of sources as K = 10. There are two types of sources,
which belong to either Ah or Ac

h. Sources from Ah have similar
coefficients to the target one, while the coefficients of sources
outsideAh can be quite different. Intuitively, using more sources
from Ah benefits the estimation of the target coefficient. But in
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Figure 1. The average �2-estimation error of Ah-Trans-GLM and naïve-Lasso under linear, logistic and Poisson regression models with different settings of h and K . n0 =
200 and nk = 100 for all k = 1, . . . , p, p = 500, s = 5. Error bars denote the standard deviations.

Figure 2. Three evaluation metrics of Algorithm 3 with Ah (we denote it as Ah-Trans-GLM) and desparsified Lasso on target data, under linear, logistic and Poisson
regression models, with different settings of K . h = 20. n0 = 200 and nk = 100 for all k = 1, . . . , p, p = 500, s = 5. Error bars denote the standard deviations.
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Figure 3. The average �2-estimation error of various models with different settings of h and KAh when K = 10. nk = 200 for all k = 0, . . . , K , p = 2000, s = 20. Error
bars denote the standard deviations.

practice, Ah may not be known as a priori. As we argued before,
Trans-GLM can detect useful sources automatically, therefore, it
is expected to be helpful in such a scenario. Simulations in this
section aim to justify the effectiveness of Trans-GLM.

Here is the detailed setting. We set the target sample size
n0 = 200 and source sample sample size nk = 200 for all k �= 0.
The dimension p = 2000. Target coefficient is the same as the
one used in Section 4.1.1 and we fix the signal number s = 20.
Recall R(k)

p denotes p independent Rademacher variables and
R

(k′)
p are independent for any k �= k′. Consider h = 20 and

40. For any source data k in Ah, we set w(k) = β + (h/p)R
(k)
p .

For linear and logistic regression models, predictors from target
x(0)

i
iid∼ N(0, �) with � = [�jj′ ]p×p where �jj′ = 0.9|j−j′|, for all

i = 1, . . . , n0. For the source, we generate p-dimensional predic-
tors from independent t-distribution with degrees of freedom
4. For the target and sources of Poisson regression model, we
generate predictors from the same Gaussian distribution and t-
distribution, respectively, and truncate each predictor at ±0.5.

To generate the coefficient w(k) for k /∈ Ah, we randomly gen-
erate S(k) of size s from {2s+1, . . . , p}. Then, the jth component
of coefficient w(k) is set to be

w(k)
j =

{
0.5 + 2hr(k)

j /p, j ∈ {s + 1, . . . , 2s} ∪ S(k),
2hr(k)

j /p, otherwise,

where r(k)
j is a Rademacher variable. We also add an intercept

0.5. The generating process of each source data is independent.
Compared to the setting in Section 4.1.1, the current setting
is more challenging because source predictors come from t-
distribution with heavier tails than sub-Gaussian tails. However,

although Assumption 2 is violated, in the following analysis, we
will see that Trans-GLM can still succeed in detecting informa-
tive sources.

As before, we fit naïve-Lasso on only target data. Ah-Trans-
GLM and Pooled-Trans-GLM represent Algorithm 1 on source
data in Ah and target data or all sources and target data, respec-
tively. Trans-GLM runs Algorithm 2 by first identifying the
informative source set Â, then applying Algorithm 1 to fit the
model on sources in Â. We vary the values of KAh and h, and
repeat simulations in each setting 200 times. The average �2-
estimation errors are summarized in Figure 3.

From Figure 3, it can be observed that in all three models,Ah-
Trans-GLM always achieves the best performance as expected
since it transfers information from sources in Ah. Trans-GLM
mimics the behavior of Ah-Trans-GLM very well, implying
that the transferable source detection algorithm can successfully
recover Ah. When KAh is small, Pooled-Trans-GLM performs
worse than naïve-Lasso because of the negative transfer. As KAh
increases, the performance of Pooled-Trans-GLM improves and
finally matches those of Ah-Trans-GLM and Trans-GLM when
KAh = K = 10.

4.2. A Real-Data Study

In this section, we study the 2020 U.S. presidential election
results of each county. We only consider win or lose between
two main parties, Democrats and Republicans, in each county.
The 2020 county-level election result is available at https://
github.com/tonmcg/US_County_Level_Election_Results_08-20.
The response is the election result of each county. If Democrats
win, we denote this county as class 1, otherwise, we denote it

https://github.com/tonmcg/US_County_Level_Election_Results_08-20
https://github.com/tonmcg/US_County_Level_Election_Results_08-20
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Figure 4. The transferability between different states for Trans-GLM.

as class 0. And we also collect the county-level information as
the predictors, including the population and race proportions,
from https://www.kaggle.com/benhamner/2016-us-election.

The goal is to explore the relationship between states in the
election using transfer learning. We are interested in swing states
with a large number of counties. Among 49 states (Alaska and
Washington, D.C. excluded), we select the states where the pro-
portion of counties voting Democrats falls in [10%, 90%], and
have at least 75 counties as target states. They include Arkansas
(AR), Georgia (GA), Illinois (IL), Michigan (MI), Minnesota
(MN), Mississippi (MS), North Carolina (NC), and Virginia
(VA).

The original data includes 3111 counties and 52 county-
level predictors. We also consider the pairwise interaction terms
between predictors. After preprocessing, there are 3111 counties
and 1081 predictors in the final data, belonging to 49 U.S. states.

We would like to investigate which states have a closer rela-
tionship with these target states by our transferable source detec-
tion algorithm. For each target state, we use it as the target
data and the remaining 48 states as source datasets. Each time
we randomly sample 80% of target data as training data and
the remaining 20% is used for testing. Then we run Trans-
GLM (Algorithm 2) and see which states are in the estimated
transferring set Â. We repeat the simulation 500 times and count
the transferring frequency between every state pair. The 25
(directed) state pairs with the highest transferring frequencies
are visualized in Figure 4. Each orange node represents a target
state we mentioned above and blue nodes are source states.
States with the top 25 transferring frequencies are connected
with a directed edge.

From Figure 4, we observe that Michigan has a strong rela-
tionship with other states, since there is a lot of information
transferable when predicting the county-level results in Michi-
gan, Minnesota, and North Carolina. Another interesting find-
ing is that states which are geographically close to each other

may share more similarities. For instance, see the connection
between Indiana and Michigan, Ohio and Michigan, North
Carolina and Virginia, South Carolina and Georgia, Alabama
and Georgia, etc. In addition, one can observe that states in the
Rust Belt also share more similarities. As examples, see the edges
among Pennsylvania, Minnesota, Illinois, Michigan, New York,
and Ohio, etc.

To further verify the effectiveness of our GLM transfer learn-
ing framework on this dataset and make our findings more con-
vincing, we calculate the average test misclassification error rates
for each of the eight target states. For comparison, we compare
the performances of Trans-GLM and Pooled-Trans-GLM with
naïve-Lasso, SVM, trees, random forests (RF), boosting trees
(Boosting) as well as their pooled version. Average test errors
and the standard deviations of various methods are summarized
in Table 1. The best method and other top three methods for
each target are highlighted in bold and italics, respectively.

Table 1 shows that in four out of eight scenarios, Trans-GLM
performs the best among all approaches. Moreover, Trans-GLM
is always ranked in the top three except in the case of target state
MS. This verifies the effectiveness of our GLM transfer learning
algorithm. Besides, Pooled-Trans-GLM can always improve the
performance of naïve-Lasso, while for other methods, pooling
the data can sometimes lead to worse performance than that
of the model fitted on only the target data. This marks the
success of our two-step transfer learning framework and the
importance of the debiasing step. Combining the results with
Figure 4, it can be seen that the performance improvement of
Trans-GLM (compared to naïve-Lasso) for the target states with
more connections (share more similarities with other states) are
larger. For example, Trans-GLM outperforms naïve-Lasso a lot
on Michigan, Minnesota and North Carolina, while it performs
similarly to naïve-Lasso on Mississippi.

We also try to identify significant variables by Algorithm 3.
Due to the space limit, we put the results and analysis in Section

https://www.kaggle.com/benhamner/2016-us-election
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Table 1. The average test error rate (in percentage) of various methods with different targets among 500 replications.

Methods Target states

AR GA IL MI MN MS NC VA

naïve-Lasso 4.793.36 6.983.90 5.734.14 11.492.44 12.462.70 7.536.57 15.606.73 9.484.88
Pooled-Lasso 3.594.71 9.984.22 7.895.56 7.045.80 10.385.18 22.017.18 12.735.35 21.445.46
Pooled-Trans-GLM 1.833.12 4.863.60 2.523.55 5.624.54 10.755.60 7.236.65 9.715.75 7.154.23
Trans-GLM 1.542.94 4.743.54 2.513.45 5.534.73 10.345.73 7.246.81 9.345.57 7.184.67
SVM 6.711.70 17.093.89 7.005.40 12.591.87 13.292.29 23.928.90 12.666.86 10.785.29
Pooled-SVM 7.846.32 13.474.73 7.755.24 7.586.40 13.015.69 27.328.72 12.305.75 17.315.46
Tree 2.233.58 8.374.40 4.625.27 10.055.53 10.978.42 5.975.26 18.298.01 14.466.88
Pooled-tree 7.816.89 7.684.59 4.634.26 7.426.18 10.535.91 16.737.30 14.767.26 17.435.85
RF 3.603.57 6.043.59 4.083.98 6.424.79 10.515.10 7.275.72 11.296.29 7.734.77
Pooled-RF 3.734.82 7.493.90 4.353.63 5.344.99 10.864.96 12.566.88 11.046.03 10.405.18
Boosting 2.233.58 4.653.77 2.553.82 7.795.52 10.646.51 5.285.16 10.886.47 7.535.10
Pooled-boosting 3.104.84 5.713.53 3.823.85 5.815.27 11.215.13 14.317.42 10.825.99 11.955.25

NOTE: The cutoff for all binary classification methods is set to be 1/2. Numbers in the subscript indicate the standard deviations.

S.1.3.4 of supplementary materials. Interested readers can find
the details there. Furthermore, since we have considered all
main effects and their interactions, one reviewer pointed out
that besides the classical Lasso penalty, there are other variants
like group Lasso (Yuan and Lin 2006) or Lasso with hierarchy
restriction (Bien, Taylor, and Tibshirani 2013), which may bring
better practical performance and model interpretation. To be
consistent with our theories, we only consider the Lasso penalty
here and leave other options for future study.

5. Discussions

In this work, we study the GLM transfer learning problem.
To the best of our knowledge, this is the first article to study
high-dimensional GLM under a transfer learning framework,
which can be seen as an extension to Bastani (2021) and Li,
Cai, and Li (2021). We propose GLM transfer learning algo-
rithms, and derive bounds for �1/�2-estimation error and a
prediction error measure with fast and slow rates under differ-
ent conditions. In addition, to avoid the negative transfer, an
algorithm-free transferable source detection algorithm is devel-
oped and its theoretical properties are presented in detail. More-
over, we accommodate the two-step transfer learning method
to construct confidence intervals of each coefficient compo-
nent with theoretical guarantees. Finally, we demonstrate the
effectiveness of our algorithms via simulations and a real-data
study.

There are several promising future avenues that are worth
further research. The first interesting problem is how to
extend the current framework and theoretical analysis to
other models, such as multinomial regression and the Cox
model. Second, Algorithm 1 is shown to achieve the min-
imax �1/�2 estimation error rate when the homogeneity
assumption (Assumption 4) holds. Without homogeneity of
predictors between target and source, only suboptimal rates
are obtained. This problem exists in the line of most existing
high-dimensional transfer learning research (Li, Cai, and Li
2020, 2021; Bastani 2021). It remains unclear how to achieve
the minimax rate when source predictors’ distribution deviates
a lot from the target one. Another promising direction is to
explore similar frameworks for other machine learning models,
including support vector machines, decision trees, and random
forests.

Supplementary Materials

We summarize the additional simulation and real data analysis results,
more theoretical details as well as all the proofs in the supplements.
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