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ABSTRACT
One of the most fundamental problems in network study is community detection. The stochastic block
model (SBM) is a widely used model, and various estimation methods have been developed with their
community detection consistency results unveiled. However, the SBM is restricted by the strong assumption
that all nodes in the same community are stochastically equivalent, which may not be suitable for practical
applications. We introduce a pairwise covariates-adjusted stochastic block model (PCABM), a generalization
of SBM that incorporates pairwise covariate information. We study the maximum likelihood estimators of
the coefficients for the covariates as well as the community assignments, and show they are consistent
under suitable sparsity conditions. Spectral clustering with adjustment (SCWA) is introduced to efficiently
solve PCABM. Under certain conditions, we derive the error bound of community detection for SCWA and
show that it is community detection consistent. In addition, we investigate model selection in terms of the
number of communities and feature selection for the pairwise covariates, and propose two corresponding
algorithms. PCABM compares favorably with the SBM or degree-corrected stochastic block model (DCBM)
under a wide range of simulated and real networks when covariate information is accessible. Supplementary
materials for this article are available online.
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1. Introduction

Networks are used to represent connections among subjects
within a population of interest, and their wide range of appli-
cations has drawn researchers from various fields. In social
media, network analysis can reveal people’s behaviors and inter-
ests through their connections, such as Facebook friends and
Twitter followers. In ecology, a food web depicting predator–
prey interactions offers valuable insights into individual habits
and the structure of biocoenosis. Network analysis also has
extensive applications in computer science, biology, physics, and
economics (Newman 1963; Getoor and Diehl 2005; Goldenberg
et al. 2010; Graham 2014).

Community detection, one of the most studied problems for
network data, is concerned with identifying groups of nodes
that are densely connected within groups and sparsely con-
nected between groups. Detecting network communities not
only aids in understanding the structural features of networks,
but also has practical applications. For instance, communities in
social networks often share similar interests, which can help the
development of recommendation systems. Community detec-
tion methods primarily fall into two categories: algorithm-based
and model-based. Algorithm-based methods (Newman 2006;
Bickel and Chen 2009; Zhao, Levina, and Zhu 2011; Wilson
et al. 2014, 2017) involve devising an objective function (e.g.,
modularity) and optimizing it for community detection, while
model-based methods assume that edges are generated from a
probabilistic model. Popular models include the stochastic block
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model (Holland, Laskey, and Leinhardt 1983), mixture model
(Newman and Leicht 2007), degree-corrected stochastic block
model (Karrer and Newman 2011), latent space model (Hoff,
Raftery, and Handcock 2002; Handcock, Raftery, and Tantrum
2007; Hoff 2008), and hypergraph block model (Ghoshdastidar
and Dukkipati 2014; Yuan et al. 2022). For a comprehensive
review of statistical network models, refer to Goldenberg et al.
(2010) and Fortunato (2010).

The classical stochastic block model (SBM) posits that
the connection between each pair of nodes depends solely
on their community labels. For SBM, community detection
consistency has been established for various methods, such as
modularity maximization (Newman 2006), profile likelihood
(Bickel and Chen 2009; Choi, Wolfe, and Airoldi 2012), spectral
clustering (Rohe, Chatterjee, and Yu 2011; Lei and Rinaldo 2015),
variational inference (Bickel et al. 2013), and penalized local
maximum likelihood estimation (Gao et al. 2017), among others.
However, in real-world scenarios, node connections may depend
not only on community structure but also on nodal or pairwise
covariates. For example, in an ecological network, predator–
prey links between species could be influenced by factors such
as prey types, habits, body sizes, and living environments. By
incorporating nodal and pairwise information into network
models, a more accurate community structure can be obtained.

Depending on the relationship between communities and
covariates, there are generally two classes of models, as depicted
in Figure 1: covariates-adjusted and covariates-confounding.

© 2023 American Statistical Association
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Figure 1. Two different network models including covariates.

The symbols c, Z, and A represent latent community labels,
pairwise covariates, and the adjacency matrix, respectively.
In Figure 1(a), the latent community and covariates jointly
determine the network structure. One example of this model is
the friendship network among students. Students may become
friends for various reasons, such as being in the same class,
sharing hobbies, or belonging to the same ethnic group. Without
adjusting for these covariates, it is difficult to infer a single
community membership from A. We will analyze one such
example in detail in Section 8. Conversely, covariates may carry
the same community information as the adjacency matrix,
as shown in Figure 1(b). The term “confounding” originates
from graph models (Greenland, Robins, and Pearl 1999). The
citation network serves as an excellent example of this model
(Tan, Chan, and Zheng 2016). When research topics are treated
as community labels for articles, citation links largely depend
on the research topics of the article pair. Simultaneously, the
distribution of keywords is likely driven by the specific topic an
article addresses.

Researchers often modify the SBM in the above two ways
to incorporate covariate information. For the covariates-
confounding model, Newman and Clauset (2016) uses covari-
ates to construct the prior for community labels and then
generates edges using a degree-corrected model. Zhang, Levina,
and Zhu (2016) proposes a joint community detection criterion,
an analog of modularity, to incorporate nodal features. Desh-
pande et al. (2018) establishes information-theoretic bounds for
combining a block model and a spike covariance model that
are conditionally independent given class assignments. Yan and
Sarkar (2021) suggests a semidefinite programming framework
to aggregate network and covariate information, while Xu,
Zhen, and Wang (2022) considers an augmented adjacency
tensor approach under an analogous setting in multilayer SBM.
Weng and Feng (2022) employs a logistic model as the prior for
community labels. For the covariates-adjusted model, Yan et al.
(2019) proposes a directed network model with a logistic func-
tion, but it does not consider potential community structures.
Wu, Levina, and Zhu (2017) introduces a generalized linear
model with low-rank effects to model network edges, which
could imply a community structure or a latent space structure,
although not explicitly mentioned; Ma, Ma, and Yuan (2020)
presents algorithms for a latent space model that incorporates
edge covariates; both of these works consider penalized MLE
with convex relaxation and gradient-based algorithms.

In this work, we propose a simple yet effective model
called Pairwise Covariates-Adjusted Stochastic Block Model
(PCABM), which extends the SBM by adjusting the probability
of connections according to the contribution of pairwise

covariates.1 Through this model, we can learn how each
covariate affects the connections by examining its corresponding
regression coefficient, for which asymptotic normality is
established. In addition, we investigate the likelihood-based
community detection method and propose an efficient pseudo-
likelihood expectation-maximization (PLEM) algorithm. Con-
sistency results for both the MLE and the PLEM algorithm are
provided. Apart from likelihood methods, we also propose
a novel spectral clustering method for PCABM. We prove
desirable theoretical properties for the spectral clustering
method, and demonstrate that, as a fast algorithm, using it
as an initial estimator for the likelihood method results in
more accurate community detection than random initialization.
Furthermore, we consider the model selection problems of
estimating the number of communities and selecting the
important confounding covariates, providing algorithms to
address these two issues based on the edge cross-validation
framework proposed by Li, Levina, and Zhu (2020).

The remainder of the article is organized as follows. In Sec-
tion 2, we introduce the PCABM. We then present the asymp-
totic properties of the coefficient estimates in Section 3. After
that, we introduce two methods for community detection: a
likelihood approach in Section 4 and a spectral approach in
Section 5. In addition, we present two algorithms for model
selection in Section 6. Simulations and applications on real
networks are discussed in Sections 7 and 8, respectively. We
conclude the article with a brief discussion in Section 9. All
proofs are relegated to the supplementary materials.

Here, we introduce some notations to facilitate the dis-
cussion. For a square matrix M ∈ R

n×n, let ‖M‖ be the
operator norm of M, ‖M‖F = √

trace(MTM), ‖M‖∞ =
maxi

∑n
j=1 |Mij|, ‖M‖0 = #{(i, j)|Mij �= 0}, and ‖M‖max =

maxij |Mij|. λmin(M) is the minimum eigenvalue of M. For
index sets I, J ⊂ [n] := {1, 2, . . . , n}, MI· and M·J are the sub-
matrices of M consisting the corresponding rows and columns,
respectively. For a vector x ∈ R

n, let ‖x‖ =
√∑n

i=1 x2
i

and ‖x‖∞ = maxi |xi|. We define the Kronecker power by
x⊗(k+1) = x⊗k ⊗ x, where ⊗ is the Kronecker product.

For any positive integer K, we define IK ∈ R
K×K to be the

identity matrix and 1K to be the all-one vector. When there
is no confusion, we will sometimes omit the subscript K. For
a vector x ∈ R

K , D(x) ∈ R
K×K represents the diagonal

matrix whose diagonal elements take the value of x. For an
event A, its indicator function is written as 1(A). For two real
number sequences xn and yn, we say xn = o(yn) or yn =
ω(xn) if limn→∞ xn/yn = 0, xn = O(yn) or yn = �(xn) if
lim supn→∞ |xn/yn| ≤ ∞.

2. Pairwise Covariates-Adjusted Stochastic Block
Model

We consider a graph with n nodes and K communities, where
K could be fixed or increase with n. In this article, we focus on

1Note that these are “edge-level” covariates instead of the nodal or vertex-
level covariates that are often considered in other parts of the literature.
Having said that, one can incorporate nodal information into our model by
converting it into pairwise covariates, where an example will be presented
in Section 8.1.
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undirected weighted graphs without self-loops. All edge infor-
mation is incorporated into a symmetric adjacency matrix A =
[Aij] ∈ N

n×n with diagonal elements being zero, where N

represents the set of nonnegative integers. The total number
of possible edges is denoted by Nn = n(n − 1)/2. The true
node labels c = {c1, . . . , cn} ∈ {1, . . . , K}n are drawn indepen-
dently from a multinomial distribution with parameter vector
π = (π1, . . . , πK)T , where

∑K
k=1 πk = 1 and πk > 0 for

all k. The community detection problem aims to find a disjoint
partition of the nodes, or equivalently, estimated node labels e =
{e1, . . . , en} ∈ {1, . . . , K}n that is close to c, where ei ∈ {1, . . . , K}
is the label for node i.

In the classical SBM, we assume Pr(Aij = 1|c) = Bcicj ,
where B = [Bab] ∈ [0, 1]K×K is a symmetric matrix with no
identical rows. In practice, the connection between two nodes
may depend not only on the communities they belong to, but
also on the nodal information (e.g., gender, age, religion). To fix
the idea, assume in addition to A, we have observed a pairwise
p-dimensional vector zij between nodes i and j. Denote the
collection of the pairwise covariates among nodes as Z = [zT

ij ] ∈
R

n2×p. Here, we assume zij = zji and zii = 0, for all i and j.
Now, we are ready to introduce the Pairwise Covariates-

Adjusted Stochastic Block Model (PCABM). For i < j, con-
ditional on the community label c and the pairwise covariate
matrix Z, Aij’s are independent and

Aij ∼ Poisson(λij), λij = Bcicj e
zT

ij γ
0
,

where γ 0 is the true coefficient vector for the pairwise covariates.
In addition to the goal of recovering the community member-
ship vector c, we would also like to get an accurate estimate for
γ 0.

The specific term exp(zT
ij γ

0) is introduced here to adjust the
connectivity between nodes i and j. Here, as in the vanilla SBM,
we assume a sparse setting for B = ρnB̄, with B̄ fixed and ρn → 0
as n → ∞. Note that due to the contribution of Z, ϕn = nρn
is no longer the expected degree as in the vanilla SBM (Zhao,
Levina, and Zhu 2012), but it is still useful as a measure of the
network sparsity. It is easy to observe that when γ 0 = 0, PCABM
reduces into the vanilla Poisson SBM.

Under PCABM, the likelihood function is

L(e, γ , B, π |A, Z) ∝
n∏

i=1
πei

∏
i<j

BAij
eiej e

AijzT
ij γ exp

(
−Beiej e

zT
ij γ

)
.

Define

nk(e) =
n∑

i=1
1(ei = k), Okl(e) =

∑
ij

Aij1(ei = k, ej = l),

Ekl(e, γ ) =
∑
i �=j

ezT
ij γ1(ei = k, ej = l) =

∑
(i,j)∈se(k,l)

ezT
ij γ ,

where se(k, l) = {(i, j)|ei = k, ej = l, i �= j}. Under the
assignment e, nk(e) represents the number of nodes estimated
to be in the community k. For k �= l, Okl is the total number of
edges between estimated communities k and l; for k = l, Okk
is twice the number of edges within estimated community k.
Ekl is the summation of all pair-level factors between estimated

communities k and l. Up to a constant term, we can write the
log-likelihood function as

logL(e, γ , B, π |A, Z) =
∑

k
nk(e) log πk + 1

2
∑

kl
Okl(e) log Bkl

− 1
2

∑
kl

BklEkl(e, γ ) +
∑
i<j

AijzT
ij γ .

Given e and γ , we derive the MLE π̂k(e) = nk(e)
n and

B̂kl(e, γ ) = Okl(e)
Ekl(e,γ )

. Plugging B̂(e, γ ) and π̂(e) into the original
log-likelihood and discarding the constant terms, we have

logL(e, γ , B̂, π̂ |A, Z) ∝ 1
2

∑
kl

Okl(e) log
Okl(e)

Ekl(e, γ )

+
∑
i<j

AijzT
ij γ +

∑
k

nk(e) log
nk(e)

n
.

(1)

Out target is to maximize (1) with respect to e and γ . We
consider a two-step sequential estimation procedure by first
studying the estimation of γ 0 in Section 3 and then the estima-
tion of c in Section 4 (likelihood method) and Section 5 (spectral
method).

It is worth mentioning that the proposed model includes
DCBM in the following sense: by choosing p = 1, zij = log(didj)
and γ = 1 where di is the degree of node i, (1) becomes

logL
(

e, γ = 1, B̂, π̂ |A, Z = (log(didj))n2×1

)

∝ 1
2

∑
kl

Okl(e) log
Okl(e)

nk(e)nl(e)
,

which is exactly the profile log-likelihood under DCBM derived
by maximizing over “θ and P” (degree parameter and block
connection probability) in DCBM. From this perspective, one
can view PCABM as a generalization of DCBM.

3. Estimation of Coefficients for Pairwise Covariates

As the first step to maximize the log-likelihood, we consider the
estimation of coefficients γ 0 for pairwise covariates. To this end,
we impose the following conditions on Z.

Condition 1. {zij, i < j} are iid and uniformly bounded, that is,
for ∀i < j, ‖zij‖∞ ≤ ζ , where ζ > 0 is some constant. ‖γ 0‖1 is
also bounded by a constant. Denote ξ = exp(ζ‖γ 0‖1).

Remark 1. The bounded support condition for zij is introduced
to simplify the proof. It could be relaxed to zij to have a light tail
or to allow the upper bound to grow slowly with network size n.
For example, our proofs could still go through if exp(z

ij γ
0) fol-

lows a sub-Gaussian distribution (with ‖γ 0‖1 bounded), under
slightly stronger conditions on the sparsity of the network.

Under Condition 1, the following expectations exist: θ(γ 0) ≡
EezT

ij γ
0 ∈ R

+, μ(γ 0) ≡ EzijezT
ij γ

0 ∈ R
p, and �(γ 0) ≡

EzijzT
ij ezT

ij γ
0 ∈ R

p×p. To ensure that γ 0 is the unique solution to
maximize the likelihood in the population version, we impose
the following regularity condition at the true γ 0.
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Condition 2. �(γ 0) − θ(γ 0)−1μ(γ 0)⊗2 is positive definite.

Remark 2. To understand the implication of Condition 2, con-
sider the function g(γ ) = θ(γ )�(γ ) − μ(γ )⊗2. In the special
case of SBM where γ 0 = 0, we have g(0) = E[z⊗2] −E[z]⊗2 =
cov(z). To avoid multicollinearity, it’s natural for us to require
cov(z) to be positive definite. For a general PCABM, we require
g(γ ) to be positive definite at the true value γ 0.

For a given initial community assignment e0, denote by �e0
the log-likelihood terms in (1) containing γ , which is

�e0(γ ) ≡
∑
i<j

AijzT
ij γ − 1

2
∑

kl
Okl(e0) log Ekl(e0, γ ).

We consider the following estimate:

γ̂ (e0) = arg max
γ

�e0(γ ). (2)

We point out that �e0(γ ) is concave in γ , so the global optimizer
in (2) can be efficiently solved by a BFGS algorithm. When
there is no ambiguity, we will just write it as γ̂ . As we will see
in the theory that under some mild conditions, the asymptotic
property does not depend on the choice of e0. In fact, one could
simply choose e0 = 1n, the all-one vector, when estimating γ 0.

To accommodate the “K growing with n” case, we also need
the following stability condition.

Condition 3. B̄lim = limn→∞
∑K

a=1
∑K

b=1 πaπbB̄ab exists.

Remark 3. Note that when K is fixed, Condition 3 is automat-
ically satisfied. When K grows with n, we need the π-weighted
average of matrix B̄ to have a limit. This is a mild condition since,
otherwise, the sequence of observed graphs indexed by n does
not come from a consistent data generating process.

Now we are ready to present the consistency and asymptotic
normality of γ̂ .

Theorem 1 (Consistency and asymptotic normality of MLE of γ ).
Under PCABM, assume Conditions 1, 2, and 3 hold, where the
number of communities K could either be fixed or grow to ∞ at
an arbitrary rate. Then fixing e0 = 1n, as n → ∞, if Nnρn → ∞
and ρn → 0, we have γ̂ (e0)

p→ γ 0 and

√
Nnρn

[
γ̂ (e0) − γ 0] d→ N (0, �−1∞ (γ 0)), (3)

where �∞(γ 0) = B̄lim[�(γ 0) − θ(γ 0)−1μ(γ 0)⊗2].
Different from Yan et al. (2019), in which the network is

dense, the convergence rate is
√

Nnρn rather than
√

Nn since
the effective number of edges is reduced from Nn to Nnρn.
The asymptotic covariance matrix �−1∞ (γ 0) depends on θ(γ 0),
μ(γ 0), and �(γ 0), which can be estimated empirically by the
plug-in method.

Now, with a consistent estimate of γ 0, we are ready to study
the estimation of c. In the next two sections, we will present two
different methods for estimating c, namely the likelihood-based
estimate in Section 4 and the spectral method in Section 5.

4. Likelihood Based Estimate for Community Labels

This section presents a likelihood-based estimate for commu-
nity labels by maximizing logL regarding e0 with γ̂ from Sec-
tion 3. We only present the fixed K setting here, and the results
for the growing K scenario are relegated to the supplementary
materials, partly because in the class label MLE for growing K,
we consider a slightly different regime from B = ρnB̄: we need
the signal-noise-ratio, or approximately in-class probability over
between-class probability, to also grow with n and K; and the
conditions are imposed on

∑
i<j Bcicj rather than ρn. See Section

A.4 in the supplementary materials for details.
We will show that with γ̂ (e0) satisfying the conclusions in

Theorem 1, the consistency of ĉ(γ̂ ) is guaranteed. Plugging γ̂

into (1), the log-likelihood function can be rewritten as

�γ̂ (e) = 1
2

∑
kl

Okl(e) log
Okl(e)

Ekl(e, γ̂ )
+

∑
k

nk(e) log
nk(e)

n
.

Then, our maximum likelihood estimate for the community
label is

ĉ = ĉ(γ̂ ) := arg max
e

�γ̂ (e). (4)

Note that here we omit e0 to avoid confusion. Following Zhao,
Levina, and Zhu (2012), we consider two versions of community
detection consistency. Note that the consistency in community
detection is understood under any permutation of the labels.
To be more precise, let PK be the collection of all permutation
functions of [K]. (a) We say the label estimate ĉ is weakly
consistent if Pr[n−1 minσ∈PK

∑n
i=1 1(σ (ĉi) �= ci) < ε] → 1

for any ε > 0 as n → ∞. (b) We say ĉ is strongly consistent
if Pr[minσ∈PK

∑n
i=1 1(σ (ĉi) �= ci) = 0] → 1, as n → ∞. We

establish both versions of consistency for MLE ĉ in the following
theorem.

Theorem 2. Under PCABM that satisfies the Conditions 1 and
2, when K is fixed, the community label estimate ĉ defined in
(4) is weakly consistent if ϕn → ∞ and strongly consistent if
ϕn/ log n → ∞, where ϕn = nρn.

In addition to the fixed K case considered in Theorem 2, we
have also shown that ĉ is consistent when K grows as fast as
K = O(

√
n), where we require a slightly stronger condition on

the sparsity, ϕn/(log n)3+δ → ∞. Details are presented in the
supplementary materials, Section A.4.

Finding the MLE involves optimizing over all possible label
assignments, which is, in principle, NP-hard. General discrete
optimization methods such as the tabu search (Beasley 1998;
Zhao, Levina, and Zhu 2012) could be time-consuming and
unstable. Taking advantage of the specific structure in our prob-
lem, we propose a pseudo-likelihood EM algorithm (PLEM) that
computes an approximate solution to (4) efficiently.

The algorithm is outlined in Algorithm 1. In the outer loop,
we update the label estimate and related quantities in each
iteration. The inner loop employs a latent class EM algorithm
to derive a new label estimate based on an initial one. For each
edge Aij, the pseudo-likelihood treats node i as belonging to
the true community ci and node j as belonging to an estimated
community ej. With this approximation, the latent class variables
ci’s are separated in the pseudo log-likelihood function, enabling
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Algorithm 1: PCABM.PLEM
Input : Adjacency matrix A; pairwise covariates Z;

initial community assignment e; number of
communities K; iteration number T.

Output: Coefficient estimate γ̂ ; community estimate ĉ.
1 Maximize �(γ ) in (2) by some optimization algorithm

(e.g., BFGS) to get γ̂ .
2 Initialization:

π̂l = nl(e)
n , Êlk(e) = ∑

(i,j)∈se(l,k) ez
ij γ̂γγ , B̂lk = Olk(e)

Êlk(e)
.

3 for t = 1 to T do
4 Calculate bik(e) = ∑n

j=1 Aij1(ej = k) and

�̂ik(e) = ∑n
j=1 ez

ij γ̂γγ1(ej = k);
5 while pseudo-likelihood has not converged do

6 E-step: π̂il = π̂l
∏K

k=1 exp(bik log B̂lk−�̂ikB̂lk)∑K
m=1 π̂m

∏K
k=1 exp(bik log B̂mk−�̂ikB̂mk)

;

7 M-step: π̂l = 1
n

∑n
i=1 π̂il, B̂lk =

∑n
i=1 π̂ilbik∑n
i=1 π̂il�̂ik

;

8 Update label estimates: ei = arg maxl π̂il.
9 Output ĉ with ĉi = ei.

an analytic expression for the EM updates. A similar idea was
proposed in Amini et al. (2013) for SBM and DCBM. In the case
of PCABM, we adjust the algorithm to account for the covariates.
A detailed derivation of the PLEM algorithm under PCABM, as
well as its theoretical guarantees, are provided in Section A.5 of
the supplementary materials.

5. Spectral Clustering with Adjustment

Though the likelihood-based method has appealing theoretical
properties, it can sometimes be computationally slow when the
network size is large. In addition, the community detection
results can be sensitive to the initial label assignments e. With
that in mind, we aim to propose a computationally efficient
algorithm in the flavor of spectral clustering (Rohe, Chatterjee,
and Yu 2011), which can also be used as the initial community
label assignments for the likelihood-based methods.

5.1. A Brief Review on Spectral Clustering

First, we introduce some notations and briefly review the classi-
cal spectral clustering with K-means for SBM. Let Mn,K be the
space of all n × K matrices where each row has exactly one 1
and (K − 1) 0’s. We usually call M ∈ Mn,K a membership matrix
with Mici = 1 for node i with community label ci. Note that M
contains the same information as c, and is only introduced to
facilitate the discussion.

From now on, we use PCABM(M, B, Z, γ 0) to represent
PCABM generated with parameters in parentheses. Let Gk =
Gk(M) = {1 ≤ i ≤ n : ci = k} and nk = |Gk| for k = 1, . . . , K.
Let nmin = min1≤k≤K nk, nmax = max1≤k≤K nk and n′

max is the
second largest community size.

For convenience, we define matrix P = [Pij] ∈ [0, ∞)n×n,
where Pij = Bcicj . Then it is easy to observe P = MBMT . When A
is generated from a SBM with (M, B), the K-dimensional eigen-
decomposition of P = UDUT and A = ÛD̂ÛT are expected
to be close, where ÛTÛ = IK and D, D̂ ∈ R

K×K . Since U has
only K unique rows, which represent the community labels, the
K-means clustering on the rows of Û usually leads to a good
estimate of M. While finding a global minimizer for the K-
means problem is NP-hard (Aloise et al. 2009), for any positive
constant ε, we have efficient algorithms to find an (1 + ε)-
approximate solution (Kumar, Sabharwal, and Sen 2004; Lu and
Zhou 2016):

(M̂, X̂) ∈ Mn,K × R
K×K

s.t. ‖M̂X̂ − Û‖2
F ≤ (1 + ε) min

M∈Mn,K ,X∈RK×K
‖MX − Û‖2

F .

The goal of community detection is to find M̂ that is close to
M. To define a loss function, we need to take permutation into
account. Let SK be the space of all K × K permutation matrices.
Following Lei and Rinaldo (2015), we define two measures of
estimation error: the overall error and the worst-case relative
error:

L1(M̂, M) = n−1 min
S∈SK

‖M̂S − M‖0,

L2(M̂, M) = min
S∈SK

max
1≤k≤K

n−1
k ‖(M̂S)Gk· − MGk·‖0.

It can be seen that 0 ≤ L1(M̂, M) ≤ L2(M̂, M) ≤ 2. While
L1 measures the overall proportion of mis-clustered nodes, L2
measures the worst-case performance across all communities.

Vanilla spectral clustering on SBM requires the average
degree of the network to be of the order �(log n) (Lei and
Rinaldo 2015), mainly because sparser networks do not have
desired concentration properties like ||A − EA|| = O(

√
ϕn).

In particular, because the true EA has elements of the same
scale, one can imagine a node with a very large degree will
harm the closeness between A and EA, which is the basis that
spectral clustering lies on. Recent works (Joseph and Yu 2016;
Le, Levina, and Vershynin 2017; Gao et al. 2017) have shown
that regularized versions of spectral clustering (Amini et al.
2013; Qin and Rohe 2013), which basically means performing
spectral clustering on a regularized adjacency matrix, could
enable the concentration of the adjacency matrix under sparser
settings and thus relax the average degree assumption required
in vanilla spectral clustering. In our algorithms, we adopt the
“reduce weight of edges proportionally to the excess of degrees”
version of regularization (Le, Levina, and Vershynin 2017), that
is, assigning weight

√
λiλj to Aij, where λi := min{2d/di, 1},

d = maxij nPij, and di is the degree of node i. As d is unknown, in
practice we can take λi = min{λRd̄/di, 1}, where d̄ = ∑n

i=1 di/n
is the average degree, and λR is a constant. For theoretical
guarantee we need λR to be large enough, but in practice λR = 2
is sufficient to give satisfactory results from our simulation
experience.

5.2. Regularized Spectral Clustering with Adjustment

The existence of covariates in PCABM prevents us from apply-
ing (regularized) spectral clustering directly on A. Unlike SBM
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where A is generated from a low-rank matrix P, A in PCABM
consists of both community and covariate information. Since
Pij = E[Aij/ezT

ij γ
0], an intuitive idea to take advantage of the low-

rank structure is to remove the covariate effects, that is, using the
adjusted adjacency matrix [Aij/ezT

ij γ
0] for spectral clustering.

In practice, we don’t know the true value of the parameter γ 0.
Naturally, we replace γ 0 with the empirical estimate γ̂ from (2),
and define the adjusted adjacency matrix as A′ = [A′

ij] where
A′

ij = Aij exp(−zT
ij γ̂ ). Furthermore, for regularized spectral

clustering, define the weighted version of A′ to be A′R, called
weighted adjusted adjacency matrix. By the asymptotic proper-
ties of γ̂ proved in Theorem 1, we show that ‖A′R − P‖ achieves
the desirable spectral bound of order Op(

√
ϕn); the proof is

given in Section A.6 of the supplementary materials.
Based on this bound, we could then apply the regularized

spectral clustering algorithm on matrix A′ to detect the commu-
nities. We call this adjustment scheme the Spectral Clustering
with Adjustment (SCWA) algorithm, which is elaborated in
Algorithm 2.

To show the consistency of Algorithm 2, one natural require-
ment is that A′R and P are close enough, which is stated rigor-
ously in the following theorem.

Theorem 3 (Spectral bound of adjusted, regularized Poisson ran-
dom matrices). Let A be the adjacency matrix generated by
the undirected PCABM (M, B, Z, γ 0). Assume Conditions 1, 2,
3 hold. Further assume each element of B̄ is bounded from
above by a constant CB̄ and below by a constant cB̄. For any
r > 1, the following holds with probability at least 1 − 5n−r −
Cη exp(−vηn) (where η = (pζ )−1, Cη and vη are constants in
Lemma A.6.11 of the supplementary materials): the regularized
adjusted adjacency matrix A′R in Algorithm 2 satisfies

‖A′R − P‖ ≤ C
√

ϕn (5)

where C is a constant that depends on p, r, ξ , ζ , CB̄ and cB̄.

Algorithm 2: PCABM.SCWA
Input : Adjacency matrix A; pairwise covariates Z;

initial community assignment e; number of
communities K; approximation parameter ε;
constant λR.

Output: Coefficient estimate γ̂ ; community estimate ĉ.
1 Maximize �(γ ) as in (2) by some optimization algorithm

(e.g., BFGS) to derive γ̂ .
2 Compute the adjusted adjacency matrix A′ = [A′

ij]
where A′

ij = Aij exp(−zT
ij γ̂ ).

3 Compute the regularized adjusted adjacency matrix
A′R = [A′R

ij ], where A′R
ij = A′

ij
√

λiλj,
λi = min{λRd′/d′

i, 1}, d′
i is the degree of node i in A′

and d′ = ∑
i d′

i/n.
4 Calculate Û ∈ R

n×K consisting of the leading K
eigenvectors (ordered in absolute eigenvalue) of A′R.

5 Calculate the (1 + ε)-approximate solution M̂ to the
K-means problem with K clusters and input matrix Û.

6 Output ĉ according to M̂.

Similarly to the proof of Theorem 3.1 in Lei and Rinaldo
(2015), we can prove the following Theorem 4 by combining
Lemmas 5.1 and 5.3 in Lei and Rinaldo (2015), and Theorem 3.

Theorem 4. In addition to the conditions of Theorem 3, assume
that P = MBMT is of rank K with the smallest absolute nonzero
eigenvalue at least �n, and that maxkl B̄(k, l) = 1. Let M̂ be the
output of spectral clustering using (1+ε) approximate K-means
on A′R (defined in Algorithm 2, step 3). For any constant r > 0,
there exists an absolute constant C > 0, such that, if

(2 + ε)
Knρn
�2

n
< C, (6)

then, with probability at least 1 − 5n−r − Cη exp(−vηn), there
exist subsets Hk ⊂ Gk for k = 1, . . . , K, and a K×K permutation
matrix J such that M̂G·J = MG·, where G = ∪K

k=1(Gk \ Hk), and

K∑
k=1

|Hk|
nk

≤ C−1(2 + ε)
Knρn
�2

n
. (7)

Inequality (7) provides an error bound for the overall relative
error. Theorem 4 doesn’t provide us with an error bound in
a straightforward form since �n contains ρn. The following
corollary gives us a clearer view of the error bound in terms of
model parameters. The condition that the maximum normal-
ized probability equals 1 can be replaced by any constant, but we
just use 1 here for simplicity, since any constant can always be
absorbed into the sparsity parameter ρn.

Corollary 1. In addition to the conditions of Theorem 3, assume
that B̄′s minimum absolute eigenvalue is bounded below by
τ > 0 and maxkl B̄(k, l) = 1. Let M̂ be the output of spectral
clustering using (1 + ε) approximate K-means on A′R. For any
constant r > 0, there exists an absolute constant C such that if

(2 + ε)
Kn

n2
minτ 2ρn

< C,

then with probability at least 1 − 5n−r − Cη exp(−vηn),

L2(M̂, M) ≤ C−1(2 + ε)
Kn

n2
minτ 2ρn

,

L1(M̂, M) ≤ C−1(2 + ε)
Kn′

max
n2

minτ 2ρn
.

It is worth mentioning that Theorems 3, 4, and Corollary 1
all allow K to go to infinity with n.

Compared to SCWA, the pseudo-likelihood EM algorithm
can yield more accurate results, especially when provided with
good initial labels. On the other hand, the SCWA algorithm is
computationally more efficient. To combine the advantages of
these two methods, we propose using the results of SCWA as
the initial estimate for the pseudo-likelihood EM (PCABM.PL
as described in Algorithm 3). We will conduct extensive simu-
lation studies in Section 7 to evaluate the performance of both
PCABM.SCWA and PCABM.PL.
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Algorithm 3: PCABM.PL
Input : Adjacency matrix A; pairwise covariates Z;

initial community assignment e; number of
communities K; approximation parameter ε;
iteration number T; constant λR.

Output: Community estimate ĉ.
1 Use Algorithm 2 to get an initial community estimate ê.
2 Use Algorithm 1 with initial community estimate ê to

get the community estimate ĉ.

6. Model Selection

So far, we have been treating the number of communities K as
given. In practice, the true value of K may be unknown to us. In
that case, we would be interested in estimating K. Some existing
work for estimating K include Wang and Bickel (2017), Saldana,
Yu, and Feng (2017), Chen and Lei (2018), and Li, Levina,
and Zhu (2020). To provide a systematic approach, we propose
adapting the edge-sampling cross-validation (ECV) method (Li,
Levina, and Zhu 2020) to the PCABM. The main idea of the
ECV procedure can be summarized as follows: in each iteration,
we randomly sample a certain proportion of node pairs in the
network, and predict the remaining node pairs under specific
models based on matrix completion on the adjacency matrix
containing the true edge information of the selected node pairs.
After all iterations, we compare the average prediction perfor-
mance or hold-out losses under different models and choose the
best model accordingly. Algorithm 4 presents a detailed process
of applying this idea to estimate K in the PCABM. The notation
P�A represents the matrix that retains all elements of A in the
index set � while setting other elements to 0.

In step 5 of Algorithm 4, Â′
K denotes the rank-K matrix

completion from P�A′. As suggested in Li, Levina, and Zhu
(2020), we use the SVD truncation approach to obtain Â′

K . In
the SVD of P�A′ = UDV, we keep the K largest elements
of diagonal D and set Â′

K = 1
p UDKV. This simple matrix

completion method efficiently serves our model selection goal
while remaining computationally inexpensive.

For the loss evaluated in step 7 of Algorithm 4, there
are two options: the scaled negative log-likelihood (snll)∑

(i,j)∈�c

[
B̂êiêj − Aij exp(−z

ij γ̂ ) log B̂êiêj

]
and the scaled L2 loss

∑
(i,j)∈�c

[
B̂êiêj − Aij exp(−z

ij γ̂ )
]2

. We scale the loss functions
by the covariate effect since the cross-validation is based on the
block structure.

We present a theorem establishing the consistency of select-
ing K using Algorithm 4.

Theorem 5 (Consistency of Algorithm 4 under PCABM). Let A
be the adjacency matrix generated by the undirected PCABM
(M, B, Z, γ 0). Assume Conditions 1, 2 hold, and each element
of B̄ is bounded above by a constant CB̄, that is, ‖B̄‖max ≤ CB̄.
The training proportion p ∈ (0, 1) is a constant. The number
of communities K is fixed and to be estimated. Further assume
ϕn/ log n → ∞. Let K̂ be the selected number of communities
by using Algorithm 4 with the scaled L2 loss. Then we have
Pr(K̂ < K) → 0.

Algorithm 4: ECV for selecting K in PCABM
Input : Adjacency matrix A, covariates Z, the

maximum number of communities to consider
Kmax, training proportion p, number of
replications (folds) Nrep.

Output: Estimated number of communities K̂.
1 Calculate MLE γ̂ with A, Z with e being all 1 vector.
2 for m = 1 to Nrep do
3 Randomly choose a subset of node pairs �: selecting

each pair (i, j), i < j independently with probability
p, and adding (j, i) if (i, j) is selected.

4 for K = 1 to Kmax do
5 Apply matrix completion to P�A′ with rank

constraint K to obtain Â′
K , where A′ denotes the

adjusted adjacency matrix A′
ij = Aij/ exp(z

ij γ̂ ).
6 Run spectral clustering on Â′

K to obtain the
estimated membership vector ê(m)

K .
7 Estimate the probability matrix B̂(m)

K with
B̂kl(ê, γ̂ ) = O(�)

kl (ê)/E(�)

kl (ê, γ̂ ), and evaluate the
corresponding losses L(m)

K , by applying the loss
function L with the estimated parameters to
Aij, (i, j) ∈ �c.

8 Let LK = ∑Nrep
m=1 L(m)

K /Nrep. Return
K̂ = arg min{K=1,...,Kmax} LK .

If we assume ϕn/
√

n → ∞ and additionally assume all
entries of B̄ are bounded below by a constant cB̄, then the same
result also holds for the scaled negative log-likelihood loss.

In addition to choosing the number of communities, another
model selection problem of interest is distinguishing between
covariate-adjusted and covariate-confounding models. In the
covariate-adjusted model, covariates and class labels are inde-
pendent, while in the covariate-confounding model, the distri-
bution of covariates is governed by the community labels.

Given prior knowledge that a covariate is correlated with the
block effect, one can extract cluster information from both the
covariate and the network to improve the estimation accuracy
of community labels. However, without that prior knowledge,
fitting a confounding covariate in a covariate-adjusted model
can undermine clustering performance. This phenomenon is
illustrated in a simulation example provided in Section B of
the supplementary material. A heuristic explanation is that the
incorrect model mistakenly identifies the true underlying block
effect as the covariate effect of the confounding covariate.

Motivated by the model-selection nature of the problem,
we propose a covariate selection procedure based on the ECV
framework. We present the detailed procedure in Algorithm 5
in Section B of the supplementary material and demonstrate
that the proposed algorithm almost perfectly screens out false
covariates and selects the correct model under various simula-
tion study settings.

We note that while the proposed feature selection algorithm
represents an interesting initial attempt to address confounding
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covariates, it is still based on the PCABM, which only models
covariate adjusting. It would be desirable to propose a compre-
hensive covariate block model and corresponding community
detection methods that could integrate both covariate-adjusted
and covariate-confounding models.

7. Simulations

For all simulations, we consider K communities with prior prob-
abilities πi = 1/K, i = 1, . . ., K. In addition, we fix B̄ to have all
diagonal elements equaling 2 and off-diagonal elements 1; and
we fix K = 2 except in Section 7.5 where K varies. We generate
data by applying the following procedure:

S1. Determine parameters ρn and γ 0. Generate zij from cer-
tain distributions.

S2. Generate adjacency matrix A = [Aij] using PCABM with
parameters in S1.

7.1. γ Estimation

For PCABM, estimating γ would be the first step, so we check
the consistency and asymptotic normality of γ̂ claimed in our
theory section.

The pairwise covariate vector zij has five variables, generated
independently from Bernoulli(0.1), Poisson(0.1), Uniform[0, 1],
Exponential(0.3), and N(0, 0.3), respectively. The parameters
for each distribution are chosen to make the variances of
covariates similar.

We ran 100 simulations respectively for n = 100, 300, 500.
The parameters are set as ρn = 5 log n/n, γ 0 = (0.4, 0.8, 1.2, 1.6,
2)T . We obtained γ̂ by using BFGS to optimize the likelihood
function under the initial community assignment e0 = 1n. We
present the mean and standard deviation of γ̂ in Table 1. It is
clear that γ̂ is very close to γ 0 even for a small network. The
shrinkage of standard deviation implies the consistency of γ̂ . We
also repeated the experiment by initializing with random com-
munity assignments, which leads to very similar results (Table
C.3 of supplementary materials). This validates the observation
that estimating γ and communities is decoupled.

By taking a closer look at the network of size n = 500, we
compare the distribution of γ̂ with the theoretical asymptotic
normal distribution derived in Theorem 1. We show the his-
togram for the first three coefficients in Figure 2. We can see
that the empirical distribution matches well with the theoretical
counterpart.

7.2. Community Detection

After obtaining γ̂ , we now move on to the estimation of com-
munity labels. There are three parameters that we could tune to
change the property of the network: γ 0, ρn, and n. To illustrate
the impact of these parameters on the performance of commu-
nity detection, we vary one parameter while fixing the remaining
two in each experiment. More specifically, we consider the form
ρn = cρ log n/n and γ 0 = cγ (0.4, 0.8, 1.2, 1.6, 2) in which
we will vary the multipliers cρ and cγ . The detailed parameter
settings for the three experiments are as follows.

(a) n ∈ {200, 400, 600, 800, 1000}, with cρ = 5 and cγ = 1.2.
(b) cρ ∈ {2, 3, 4, 5, 6}, with n = 200 and cγ = 1.2.
(c) cγ ∈ {0, 0.4, 0.8, 1.2, 1.6, 2.0}, with n = 200 and cρ = 5.
The results for the three experiments are presented in panels

(a), (b), and (c) in Figure 3. Each setting is simulated 100 times.
The error rate is reported in terms of the average Adjusted Rand
Index (ARI) (Hubert and Arabie 1985), which is a measure
of the similarity between two data clusterings. SBM.MLE and
SBM.SC refer to the likelihood and spectral clustering methods
under SBM, respectively; DCBM.MLE is the maximum likeli-
hood method based on DCBM (Zhao, Levina, and Zhu 2012);
PCABM.PL and PCABM.SCWA refer to Algorithms 3 and 2,
respectively.

As the number of nodes increases, it is evident from the
first panel (a) in Figure 3 that both PCABM-based algorithms
perform exceptionally well, with PCABM.PL achieving nearly
perfect community detection performance across all values of n.
Spectral clustering under SBM results in nearly random guesses.
DCBM and MLE under SBM perform better when n is large but
still underperform PCABM-based algorithms. As the density
of the network increases, the performance does not change
significantly within this range. When the scale of γ 0 is changed,

Table 1. Simulated results of γ̂ over 100 repetitions, displayed as mean (standard deviation).

n γ 0
1 = 0.4 γ 0

2 = 0.8 γ 0
3 = 1.2 γ 0

4 = 1.6 γ 0
5 = 2

100 0.393(0.0471) 0.796(0.0345) 1.206(0.0560) 1.596(0.0410) 2.005(0.0454)
300 0.399(0.0198) 0.801(0.0160) 1.198(0.0256) 1.603(0.0180) 2.003(0.0213)
500 0.399(0.0147) 0.800(0.0117) 1.197(0.0162) 1.599(0.0148) 2.002(0.0155)

Figure 2. Simulation results for γ̂ compared with theoretical values.
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Figure 3. Simulation results under PCABM for different parameter settings

both PCABM algorithms continue to yield good results. As we
know, when γ 0 = 0, our model reduces to SBM, so it is
not surprising that SBM.MLE and SBM.SC both perform well
when the magnitude of γ 0 is relatively small and fail when the
magnitude increases.

7.3. Impact of Initial Assignments Accuracy

The performance of the pseudo-likelihood EM (Algorithm 1)
depends on the initial assignments. To further understand its
influence on our algorithm, we simulate initial community
assignments with different accuracy rates and examine how
they affect prediction accuracy. The parameters are fixed to be
n = 200, cρ = 2, cγ = 1.5. We change the accuracy of initial
assignments from 0.5 to 1. To make the results easier to interpret,
we use accuracy rather than ARI to evaluate performance. Note
that SCWA does not use class assignment initialization, and we
plot its accuracy as a reference flat line in panel (d) of Figure 3.
On one hand, even with completely random initial assignments,
the PLEM algorithm yields satisfactory clustering accuracy. On
the other hand, as the accuracy of initial assignments increases,
the prediction accuracy of the PLEM method also improves. If
we use the prediction of SCWA, with an accuracy of around 0.82,
as the initial assignments for the PLEM method, we can enhance
the prediction accuracy from around 0.9 (random initial) to
almost 1. Therefore, it is preferable to use the output of SCWA
as initial assignments for the PLEM method.

7.4. DCBM

Considering that PCABM includes DCBM as a special case in
terms of having the same profile likelihood, we are curious about

the performance of Algorithms 2 and 3 on networks generated
by DCBM. The degree parameter for each node is chosen from
{1, 4} with equal probability, B̄ = ( 2 1

1 2
)
, and ρn = cρ log n/n.

For covariates, we take zij = log di+log dj, where di is the degree
of node i. As a comparison, we also implemented the likelihood
method in Zhao, Levina, and Zhu (2012) (DCBM.MLE) and the
SCORE method in Jin (2015). As in Section 7.2, we vary one
parameter while fixing the remaining one in each experiment.
The detailed parameter settings for the two experiments are as
follows, with results presented in Figure 4.

(a) n ∈ {200, 400, 600, 800, 1000}, with cρ = 3.
(b) cρ ∈ {2, 3, 4, 5, 6}, with n = 200.
From the results, we observe that, except for SBM.MLE and

SBM.SC, all the other methods work well, with the ARI being
almost 1 when n or cρ is large. The flexibility of PCABM allows
us to model any factors that may contribute to the network
structure in addition to the underlying communities.

7.5. Estimation of the Number of Communities K

In this section, we study the performance of our approach for
selecting the number of communities K, that is, Algorithm 4. We
set B̄ to have diagonal elements of 2 and off-diagonal elements
of 1. Additionally, we set n = 1000 and ρn = 5 log n/n.
Coefficient γ 0 and covariates Z are generated in the same way
as in Section 7.1. The ECV parameters are set as p = 0.9 and
Nrep = 5. We consider cases where the true underlying K is 2, 3,
or 4, and let Kmax = 6, that is, selecting K̂ from {1, 2, . . ., 6}. The
simulation results are presented in Table 2.

The results show that Algorithm 4 selects the correct K with
a high probability.
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Figure 4. Simulation results under DCBM for different parameter settings

Table 2. Accuracy of ECV estimation of community number K in 100 realizations
under scaled negative log-likelihood (snll) and scaled L2 loss.

Loss snll loss scaled L2 loss

K̂ Pr(K̂ = K) Pr(K̂ ≥ K) Pr(K̂ = K) Pr(K̂ ≥ K)

K = 2 97% 100% 97% 100%
K = 3 100% 100% 100% 100%
K = 4 92% 100% 93% 93%

Table 3. Performance comparison on political blogs data.

DCBM.MLE DCBM.RSC DCBM.CMM SCORE PCABM.PL

ARI 0.819 – – 0.819 0.813
NMI 0.72 – – 0.725 0.725
Errors – – 62 58 60
Accuracy – 95% 94.9% 95.3% 95.1%

NOTE: The performance of DCBM.MLE is taken from Karrer and Newman (2011) and
Zhao, Levina, and Zhu (2012); the performance of SCORE is from Jin (2015); the
performance of regularized spectral clustering (RSC) based on DCBM is reported
in Joseph and Yu (2016); the performance of convexified modularity maximization
(CMM) for DCBM is from Chen, Li, and Xu (2018).

8. Real Data Examples

8.1. Example 1: Political Blogs

The first real-world dataset we used is the network of political
blogs created by Adamic and Glance (2005). The nodes rep-
resent blogs about U.S. politics, and the edges indicate hyper-
links between them. We treated the network as undirected and
focused only on the largest connected component of the net-
work, resulting in a subnetwork with 1222 nodes and 16,714
edges.

Since there are no other nodal covariates available in this
dataset, we created one pairwise covariate by aggregating degree
information. We set zij = log(di × dj), where di is the degree
for the ith node. The coefficient estimate for the covariate γ̂

is 1.0005 with a 95% confidence interval of (0.9898, 1.0111).
Table 3 summarizes the performance comparison of PCABM
with some existing results on this dataset. In addition to ARI, we
also evaluated normalized mutual information (NMI) (Danon
et al. 2005), which is a measure of mutual dependence.

We observed that the performance of our model is on par
with previous methods designed specifically for DCBM, and
the error rate is very close to the ideal results mentioned in
Jin (2015), which is 55/1222. This demonstrates that PCABM

provides an alternative approach to DCBM by incorporating
degree information into a specific pairwise covariate. As a more
flexible model, PCABM also suggests that DCBM is indeed a
suitable model for this dataset since the coefficient estimate is
close to 1. This is consistent with our argument that PCABM
includes DCBM from a profile likelihood perspective. Lastly,
PCABM offers a significant improvement over the vanilla SBM,
whose NMI is only 0.0001, as reported in Karrer and Newman
(2011).

8.2. Example 2: School Friendship

In real networks, people often use specific nodal covariates as
the ground “truth” for community labels to evaluate the per-
formance of various community detection methods. However,
there could be different “true” community assignments based
on different nodal covariates (e.g., gender, job, and age). Peel,
Larremore, and Clauset (2017) mentioned that communities
and covariates might capture various aspects of the network,
which is in line with the idea presented in this article. To examine
whether PCABM can discover different community structures,
in our second example, we treat one covariate as the indicator
for the unknown “true” community assignments while using the
remaining covariates to construct the pairwise covariates in our
PCABM model.

The dataset is a friendship network of school students from
the National Longitudinal Study of Adolescent to Adult Health
(Add Health). It contains 795 students from a high school
(Grades 9–12) and its feeder middle school (Grades 7–8).
The nodal covariates include grade, gender, ethnicity, and the
number of friends nominated (up to 10). We focused on the
largest connected component with at least one non-missing
covariate and treated the network as undirected, resulting in a
network with 777 nodes and 4124 edges. For the nodes without
gender, we assigned them to the female group, which is the
smaller group. For those without grades, we generated a random
grade within their schools.

Unlike traditional community detection methods that can
only detect one underlying community structure, PCABM pro-
vides us with more flexibility to uncover different community
structures by controlling different covariates. Our intuition is
that social network is usually determined by multiple underlying
structures and cannot be simply explained by one covariate.
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Sometimes one community structure seems to dominate the
network, but if we adjust the covariate associated with that struc-
ture, we may discover other interesting community structures.

In this example, we conducted two community detection
experiments. In each experiment, out of the two nodal covari-
ates, school and ethnicity, one was viewed as the proxy for the
“true” underlying community, and community detection was
carried out using the pairwise covariates constructed with other
covariates. For school and ethnicity, we created indicator vari-
ables to represent whether the corresponding covariate values
were the same for the pair of nodes. For example, if two students
come from the same school, the corresponding pairwise covari-
ate equals 1; if they have different genders, the corresponding
pairwise covariate equals 0. We also considered the number of
nominated friends in all experiments and grades for predicting
ethnicity and gender. For the number of nominated friends, we
used log(ni + 1) + log(nj + 1) as one pairwise covariate, where
ni is the number of nominated friends by the ith student. We
added “+1” because some students did not nominate anyone.
For grades, we used the absolute difference to form a pairwise
covariate. Using random initial community labels, we computed
the estimates γ̂ in each experiment. In Tables 4 and 5, we show
respectively the estimates when school and ethnicity are taken
as the targeted community.

In both tables, the standard error is calculated using The-
orem 1, with the theoretical values replaced by the estimated
counterparts. Thus, we can calculate the t value for each coef-
ficient and perform the corresponding statistical tests. We can
see that in both experiments, the coefficients for gender and
the number of nominations are positive and significant in the
creation of the friendship network. The significant positive coef-
ficient of nominations shows that students with a large number
of nominations have a higher chance to be friends with each
other, which is intuitive. The positive coefficients of gender and
school indicate that students of the same gender and school are
more likely to be friends with each other, which aligns with
our expectations. The negative coefficient of grade means that
students with closer grades are more likely to be friends. If we
examine the coefficients of different ethnic groups in Table 4,
we find that only those corresponding to white and black are
significant. This is understandable, as we observe that among
777 students, 476 are white, and 221 are black. As for school and

Table 4. Inference results when school is targeted community.

Covariate Estimate t value Pr(> |t|)
White 1.251 29.002 < 0.001***
Black 1.999 38.886 < 0.001***
Hispanic 0.048 0.091 0.927
Others 0.019 0.035 0.972
Gender 0.192 5.620 < 0.001***
Nomination 0.438 18.584 < 0.001***

Table 5. Inference results when ethnicity is targeted community.

Covariate Estimate t value Pr(> |t|)
School 1.005 13.168 < 0.001***
Grade –1.100 –39.182 < 0.001***
Gender 0.198 5.813 < 0.001***
Nomination 0.498 21.679 < 0.001***

Table 6. ARI comparison on school friendship data.

PCABM.PL SBM.MLE SBM.SC DCBM.MLE SCORE

School 0.924 0.048 0.043 0.909 0.799
Ethnicity 0.909 0.138 –0.024 0.001 0.012

grade, students in the same school or grade tend to be friends
with each other, as expected.

The network is divided into two communities each time (we
only look at white and black students in the second experiment
because the sizes of other ethnicities are very small). We apply
our algorithm PCABM.PL, as well as some classic methods on
SBM and DCBM, to cluster the network in both experiments.
The results in terms of ARI are shown in Table 6. It can be
seen that while DCBM can capture one main structure of the
network, “School,” which is likely the dominating structure,
our method can not only capture “School” but also capture
“Ethnicity” when adjusting for the covariate “School”. Note that
for all methods other than ours, we would obtain only one
community structure, whose performance is bound to be subop-
timal for capturing different community structures. Compared
to the SBM or DCBM, the proposed PCABM can adjust some
known structures in the network to discover additional latent
structures.

9. Discussion

In this article, we extend the classical stochastic block model to
allow the connection rate between nodes to depend on not only
the community memberships but also the pairwise covariates.
We prove consistency in terms of both coefficient estimates
and community label assignments for MLE under PCABM, and
provide an efficient algorithm to solve an approximate MLE.
Additionally, we introduce a fast spectral method, SCWA, with
theoretical justification, which could serve as a good initial solu-
tion for the likelihood-based method. Furthermore, we propose
cross-validation-based algorithms for estimating the number of
communities and feature selection.

There are many interesting future research directions
on PCABM. In our article, we assume the entries in the
adjacency matrix are nonnegative integers. However, this
can be relaxed to be any nonnegative numbers, and we
expect similar theoretical results to hold. It would also be
interesting to consider highly imbalanced community sizes,
where nmin/nmax = o(1). Moreover, when we have high-
dimensional pairwise covariates, adding a penalty term to
conduct variable selection is worth investigating. For instance,
in the estimation of γ , we can regularize (2) with an L1 penalty
γ̂ λ(e0) = arg maxγ

{
�e0(γ ) − λ‖γ ‖1

}
to estimate a sparse

high-dimensional γ .
One model assumption in PCABM is the independence

among edges conditional on observed covariates. However,
the assumption might be inappropriate if there are unobserved
covariates. To address this, one possible extension is a degree-
corrected PCABM, which can incorporate unobserved nodal
covariates. The adjacency matrix could be modeled as, for
example, Aij|c, Z, θ ∼ Poisson(Bcicjθiθj exp(z

ij γ )), where θ

represents degree correction parameters. From a modeling
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perspective, the θ term could be one way of incorporating
unobserved nodal covariates or random effects. From a model
fitting point of view, the first question to ask about this model
is whether it is, in some sense, equivalent to PCABM by adding
the covariate log(didj), where di is the degree of the ith node, or
the degree after scaling by the covariate effect.

The Python and Matlab codes for implementing the pro-
posed algorithms are available on GitHub at https://github.com/
sihanhuang/pcabm_code.

Supplementary Materials

The supplementary material contains the proofs of the theoretical results,
presents some technical lemmas, and shows additional simulation results.
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