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ABSTRACT

Variable screening methods have been shown to be effective in dimension reduction under the ultra-high
dimensional setting. Most existing screening methods are designed to rank the predictors according to
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their individual contributions to the response. As a result, variables that are marginally independent but

jointly dependent with the response could be missed. In this work, we propose a new framework for variable
screening, random subspace ensemble (RaSE), which works by evaluating the quality of random subspaces
that may cover multiple predictors. This new screening framework can be naturally combined with any
subspace evaluation criterion, which leads to an array of screening methods. The framework is capable
to identify signals with no marginal effect or with high-order interaction effects. It is shown to enjoy the
sure screening property and rank consistency. We also develop an iterative version of RaSE screening with
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theoretical support. Extensive simulation studies and real-data analysis show the effectiveness of the new

screening framework.

1. Introduction

With the rapid advancement of computing power and tech-
nology, high-dimensional data become ubiquitous in many
disciplines such as genomics, image analysis, and tomography.
With high-dimensional data, the number of variables p could
be much larger than the sample size n. What makes statistical
inference possible is the sparsity assumption, which assumes
only a few variables have contributions to the response. Under
this sparsity assumption, there has been a rich literature on the
topic of variable selection, including lease absolute shrinkage
and selection operator (LASSO) (Tibshirani 1996), smoothly
clipped absolute deviation (SCAD) (Fan and Li 2001), elastic
net (Zou and Hastie 2005), and MCP (Zhang 2010). Despite
the success of these methods in many applications, for the
ultra-high-dimensional scenario where the dimension p grows
exponentially with n, they may not work well due to the “curse
of dimensionality” in terms of simultaneous challenges to
computational expediency, statistical accuracy, and algorithmic
stability (Fan, Samworth, and Wu 2009).

To conquer these difficulties, Fan and Lv (2008) proposed
a novel procedure called sure independence screening (SIS)
with solid theoretical support. In the past decade, the power
of feature screening has been well recognized and a myriad of
screening methods have been proposed. The existing screening
methods can be broadly classified into two categories, model-
based methods and model-free ones. Model-based screening
methods rely on specific models, such as SIS (Fan and Lv
2008) and its extensions to generalized linear models (Fan,
Samworth, and Wu 2009), Cox model (Fan, Feng, and Wu 2010;
Zhao and Li 2012), nonparametric independence screening
method based on additive models (Fan, Feng, and Song

2011; Cheng et al. 2014), and screening via high-dimensional
ordinary least-square projection (HOLP) (Wang and Leng
2016). Recently, model-free approaches become more popular
because of less stringent requirements. Examples of such
approaches include the sure independent ranking and screening
(SIRS) (Zhu et al. 2011), the screening method based on distance
correlation (DC-SIS) and its iterative version (Li, Zhong, and
Zhu 2012; Zhong and Zhu 2015), screening procedure via
martingale difference correlation (MDC-SIS) (Shao and Zhang
2014), screening via Kolmogorov filter (Mai and Zou 2013,
2015), the screening approach for discriminant analysis (MV-
SIS) (Cui, Li, and Zhong 2015), interaction pursuit via Pearson
correlation (IP) and the distance correlation (IPDC) (Fan et al.
2016; Kong et al. 2017), the screening method based on ball
correlation (Pan et al. 2019), the nonparametric screening
under conditional strictly convex loss (Han 2019), and the
screening method via covariate information number (CIS)
(Nandy, Chiaromonte, and Li 2020).

For variables that are marginally independent but jointly
dependent with the response, many existing screening methods
could miss them. This issue has been recognized in the literature
(Fan and Lv 2008; Fan, Samworth, and Wu 2009; Zhu et al. 2011;
Zhong and Zhu 2015) and iterative screening procedures were
developed, which were shown to be effective empirically. How-
ever, to the best of our knowledge, there is not much theoretical
development for the iterative screening methods. In addition,
some iterative screening methods (e.g., iterative SIS) are coupled
with a variable selection method like LASSO or SCAD, making
its performance dependent on the specific choice of the regular-
ization method. Besides, some other iterative screening meth-
ods (e.g., iterative SIRS and iterative DC-SIS) recruit variables
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step by step through residuals until a prespecified number of
variables are picked. Thus, their success hinges on a key tuning
parameter, that is, how many variables to recruit in each step,
making these procedures potentially less robust.

These issues mentioned above motivate us to propose a new
screening framework which goes beyond marginal utilities. In
the new framework, we investigate multiple features at the same
time, via the random subspace method (Ho 1998). Tian and
Feng (2021) proposed a new random subspace ensemble (RaSE)
classification method based on a similar idea, RaSE, according
to a specific aggregation framework first introduced in Can-
nings and Samworth (2017). They advocated applying RaSE on
sparse classification problems. The main idea of RaSE can be
simply described as follows. First, B; B, random subspaces are
generated from a specific distribution on subspaces, which are
evenly divided into B; groups. Next, the best subspace within
each group is picked according to some criterion and a base
learner is trained in that subspace. Hence, we obtain B; base
learners, each of which corresponds to a subspace. Finally, these
Bj base learners are aggregated on average and the ensemble will
be used in prediction. The vanilla RaSE algorithm is reviewed in
Algorithm 3 in Appendix A.1. It is important to note that there
is a by-product of RaSE, which is the selected proportion of each
variable within B; selected subspaces. In this work, we will use
this selected proportion to do variable screening, and call this
the RaSE screening framework.

We highlight the merits of RaSE screening framework as
follows. First, by looking at different feature subspaces, variables
marginally independent but jointly dependent with the response
can be identified. Second, instead of proposing only a single
screening approach, the flexible framework of RaSE allows us to
use any criterion function for comparing subspaces, leading to
an array of screening methods. One possible way to construct
such a criterion function is to choose a base learner and a
specific measure for comparing the subspaces. For example, if
we know linear methods are suitable for the data, then we can
apply RaSE by picking subspaces achieving lower BIC under
linear models. If k-nearest neighbor (kKNN) is believed to per-
form better, then we can apply RaSE by choosing subspaces
with the smallest cross-validation error on kNN. Third, under
general conditions, we show the sure screening property and
rank consistency for RaSE screening framework. Finally, we
develop a novel iterative RaSE screening framework with sure
screening property established without the need to use a variable
selection step or specify the number of variables to recruit in
each step.

The rest of this article is organized as follows. Section 2
introduces the vanilla RaSE screening framework and its iter-
ative version in detail, and discusses the relationship between
RaSE and marginal screening methods. In Section 3, we present
the theoretical properties for vanilla RaSE and iterative RaSE
screening, including sure screening property and rank consis-
tency. In Section 4, extensive simulation studies and real-data
analysis are conducted to demonstrate the power of our new
screening framework. We summarize our contributions and
point out some promising future avenues in Section 5. The
supplementary materials include all the technical proofs as well
as additional details.

2. RaSE: A General Variable Screening Framework

In what follows, we consider predictors x = (x,. .. ,xP)T and
response y. For regression problems, y takes value from the real
line R, while for classification problems, y takes value from an
integer set {1, ..., K}, where K > 1 is a known integer. Denote
the training data as {(x;, y;)}7_;. Denote by Span = {1,...,p}
the full feature set. The signal set S* C Sgyy is defined as the
set S with minimal cardinality satisfying y|xslLxs; \s. Denote
p* = |S*|. [a] is used to represent the largest integer no larger
than a.

To introduce the RaSE framework, we denote the BB, ran-
dom subspaces as {Sp,p,,b1 = 1...,B1,b, = 1...,B,}, the

bith group of subspaces as {Sblbz}fz2 and the selected B,

=1’
subspaces as {Sbl*}fllzl. The objective function corresponding
to the specific criterion to choose subspaces is written as Cry, :
S — R, where S is the collection of all subspaces. Assume a
smaller value of Cr, leads to a better subspace. Although the
original RaSE (Tian and Feng 2021) was introduced to solve
classification problems, we now consider the general prediction
framework, including both classification and regression.

2.1. Vanilla RaSE Screening Framework

Following the idea of Tian and Feng (2021), we use the pro-
portion of each feature among the selected B; subspaces as the
importance measure. Therefore, a natural screening procedure
is to rank variables based on this proportion vector, then pick
the variables with the largest proportions. The RaSE screening
framework is summarized in Algorithm 1.

In the algorithm, the subspace distribution D is chosen as a
hierarchical uniform distribution over the subspaces by default.
Specifically, with D as the upper bound of the subspace size, we
first generate the subspace size d from the uniform distribution
over {1,...,D}. Then, the subspace S;; follows the uniform
distribution overall size-d subspaces {S € Spyy : |S| = d}. In
practice, the subspace distribution can be adjusted if we have
prior information about the data structure.

Algorithm 1: Vanilla RaSE screening

Input: training data {(x;, y;)}}_,, subspace distribution D,
criterion function Cry, integers B; and B, number
of variables N to select

Output: the selected proportion of each feature 7, the

selected subset
1 Independently generate random subspaces
Stib, ~D,1 < by <By,1 <b, <B
2 for b; < 1to B; do
3 | Select the optimal subspace Sp,« = Sp, 5, where

b5 =arg min Cr,(Sp,p,)
2 glgbngz n{Obyb,

4 end
5 Output the selected proportion of each feature

0= (ﬁl,.-.,ﬁp)Twhere
. 1B . .
fj=Br' Y, 1G €Spu)j=1,...,p

6 Output S={1<j<p: f)j is among the N largest of all}




Algorithm 1 is not the end of the story because it ranks all the
variables but does not determine how many variables to keep.
To facilitate the theoretical analysis, we define the final feature
subset to be selected as follows:

30, = {1 <j < p: njis among the [aD/c;,] largest of all}, (1)

where ¢, is a constant (to be specified in the next section)
depending on n, B,, D, and the criterion Cr which is a popula-
tion counterpart of Cr,,. Here, o can be any constant larger than
1, which will appear in the upper bound introduced in the sure
screening theorem of Section 3.

2.2. Iterative RaSE Screening

As we mentioned in the introduction, the existing iterative
screening methods have various tuning components such as the
number of variables to recruit in each step and/or a specific vari-
able selection method. We propose the iterative RaSE screening
in Algorithm 2 to tackle these issues.

The main idea of iterative RaSE screening is to update the
subspace distribution based on the selected proportion in the
preceding steps and not to conduct variable screening until
the final step. To understand the details in the algorithm, we
introduce a new subspace distribution.

Note that each subspace S can be equivalently represented
as J = (]1,...,]p)T, where J; = 1(G € S),j = L...,p.
A subspace following the hierarchical restrictive multinomial
distribution R(U, p, 1), where Zle i = land 7 > 0, is
equivalent to the procedure:

Algorithm 2: Iterative RaSE screening (RaSE7)

Input: training data {(x;, y;)}}_,, initial subspace
distribution DI, criterion function Cr,, integers
By and B,, the number of iterations T, positive
constant Cp, number of variables N to select
Output: the selected proportion of each feature L7, the
selected subset S
1 fort <~ 0to T do
2 | Independently generate random subspaces

ngﬂbz ~DU,1<b <B,,1<b, <B
for b; < 1to B; do
4 Select the optimal subspace Sgl]* = S[btl]b;” where

by = arg 1?123 Cry, (Sblbz)

5 | end

6 | Update 7" where

A =B e G e Sy, = 1 p

7 | Update DU*1l < hierarchical restrictive multinomial
distribution R(Uy, p, i'][t]), where

il o [“”ﬂ(ﬁ‘” > Co/logp) + L1} < Co/logp)]

and ¥ 1 r/]
8 end

9 Output the selected proportion of each feature T

10 Output S= {1 <j<p: ﬁ]m is among the N largest of all}
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1. Draw d from distribution I/ on {1, ..., D};

2. DrawJ = (J1,..., ]p)T from a restrictive multinomial dis-
tribution with parameter (p,d, 7)), where the restriction is
J; € {0,1}.

For example, the hierarchical uniform distribution belongs to
this family where I/ is the uniform distribution ¢, on {1, ..., D}
and 7j = %forallj: L...,p.

With the hierarchical restrictive multinomial distribution
in hand, we can depict the iterative algorithm more precisely.
At iteration t, the algorithm updates the subspace distribution
of next round DU+ by the hierarchical restrictive multino-
mial distribution R(Uo, p, ) where n[t] x [A[t IL(A[t >

Co/logp) + %ﬂ(ﬁ}ﬂ < Co/logp)] and 7 n] 1] is the proportion

of variable j in the B, selected subspaces {S } b=1-

2.3. Connections With Marginal Screening and Interaction
Detection

Before closing this section and moving into theoretical analysis,
we want to point out the connection of RaSE screening approach
with the classical marginal screening methods as well as the
important problem of interaction detection.

First of all, it is easy to observe that when D = 1 in
Algorithm 1, with proper measure, RaSE screening method
reduces to the marginal screening approaches. In this sense,
RaSE screening method can be seen as an extension of classical
marginal screening frameworks by evaluating subspaces
instead of individual predictors. In addition, when there are
signals with no marginal contribution, one intuitive idea
is to screen all possible interaction terms, which demands
extremely high computational costs. For example, screening
all the order-d interactions leads to a computational cost of
O(p%). Instead of screening all possible interactions, RaSE
randomly chooses some feature subspaces and explores their
contributions to the response via a specific criterion. The
carefully designed mechanism of generating random subspaces
along with the iterative step greatly alleviate the requirement on
computation.

Second, there has been a great interest in studying screening
methods for interaction detection (Hao and Zhang 2014; Fan
et al. 2016; Kong et al. 2017). The proposed RaSE screening
framework works in a different fashion, by evaluating the con-
tribution of variables through the joint contributions in different
subspaces. A simulation example (Example 4) where we have 4-
way interactions among predictors will be studied to show the
effectiveness of RaSE.

3. Theoretical Analysis

In this section, we investigate the theoretical properties of RaSE
screening method to help readers understand how it works and
why it can succeed in practice. We are not claiming that the
assumptions we make are the weakest and conclusions we obtain
are the strongest.

Before moving forward, we first define some notations. For
two numbers a and b, we denote a V b = max(a,b) and
a A b = min(a, b). For two numerical sequences {a,}5°, and
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{bn}o0 |, we denote a, = o(by) or a, K by if lim |a,/b,| = 0.
n—oo

Denote a, = O(by,) or a, S by if limsupla,/b,| < oo.
n—oo
When a, < b, and a, 2 by, hold at the same time, we

write it as a, < b,. Denote Euclidean norm for a length-p

,xp)T as ||x||, = ‘/Zlesz. 1, represents

a length-p vector with all entries 1. For a p x p’ matrix A =
(aij) pxp'> define the 1-norm ||A|[; = sup P |ajl, the opera-

vector x = (x1,...

J
tor norm ||Allz = sup [|Ax||2, the infinity norm ||A||cc =

x:[|x[]=1
sup Z 1 lajj| and the maximum norm |[|A[|max = sup |a;j|. We
i
also denote the minimal and maximal eigenvalues of a square
matrix A as Amin (A) and Amax (A), respectively. Besides, we use
different probability notations P, [P, P to represent probabilities
w.r.t. randomness from subspaces, randomness from training
samples, and all randomness, respectively. And we use the same
fonts E,EE,E to represent the corresponding expectations. In
addition, throughout this section, we assume p* = |S*| is fixed.

3.1. Sure Screening Property

First, note that the success of RaSE relies on the large selected
proportions of all signals. According to Algorithm 1, the selected
proportion of signal j depends on the comparison of two dif-
ferent types of subspaces, namely “covering signal ;7 or “not
covering signal j”. To understand when RaSE can succeed, we
also need to compare subspaces “coveringa subset S;  j” or “not
covering S;”, which is essential when signal j has no marginal
effect. Next, we analyze the joint distribution of these two types
of subspaces given the number of B, subspaces covering some
§j > j, in the following useful lemma.

id _
Lemma 1. Let {8152}522:1 < R(Z/{o,p,p_llp). For any set §; >

j with cardinality |Sj| < D, letpj = P(S;;y 2 §) =
PI5;1
_ D d—|Si| . _
D lZd:\Sjl T)J Given N; = #{by S, 2 S} =

k. dividing {S1,);°_, into (S¥ }¥ _, and {S{;”}}°ZF, where
0 -z )
Slb ) S'and Slb2 2 S,

(1) {S1 by 3b }kz:1 independently follow the distribution

-1
p(s(i) =) = |:D p]<|‘§|)i| -1 2 Sj); (2)

(ii) {Si ])}b2 , independently follow the distribution

-1
P(S(fj) =8) = |:D(1 )<|§|>] 1S 2 Ej); (3)

(i) {81, 15,1 LS, Yoo
The proof of Lemma 1 can be found in Appendix B. It shows
us that given N‘ = #{b, Sip, 2 :9} = {8?22}h2=1

and {Si DB } 1 are independent. And each ng ,S( 7 follows
a “weighted hierarchical uniform distribution by ad]ustmg the

sampling weight based on the cardinality of subspace.

Now, we introduce a concentration of Cr, on its population
version Cr for a collection of subsets. In particular, for any D,
there exists a sequence {€, := €(n, D)}5° | and positive constant
c1n — 0 such that

Pl sup |Cr,(S) —
S$S|<D

Cr(9)| > 6n> = CIn (4)

holds for any n. Such a sequence {€,,};2 ; always exists, though
we would like it to be small to have a uniform concentration as
described in the following assumption, which is important to
establish the sure screening property of RaSE.

Assumption 1. Foranyj=1,...,p, there exists a subset §; > j,
and we denote §;(S) := 8j(n,D,S) = Pg; (Cr(S) — Cr(s") <
26€,|S), where S9 follows the distribution in Equation (2) w.r.t.
S;. It holds that

D> sup|S]| B, 1npr > 1,
jes*

lim sup {Bz sup Eg—j [Sj(s(—j)) %szj] } < 00,

n,D,B,— 00 jes*

where S follows the distribution in Equation (3) and p; =
(o |SJ ‘)

PSu28)=D" 3 7=

d=15j|

Remark 1. In Assumption 1, §; measures the strength of signal j
via comparing the two types of feature subspaces introduced in
Lemma 1. From the assumption, we need a large B, when §; is
small.

Theorem 1 (Sure screening property). Define

Con = ¢3(1,B2,D) := (1 — c1p)

B,
X (1 — sup Eg—) [5j(s(—j))§BzPJ]>

jest
(e pnl)

Foranya > 1,letS, = {1 <j < p: f)j is among the
[@D/can] largest of all}. Under Assumption 1, when B; >
log p* and n — o0, we have

M) P 80 = 1-prexp {2813, (1= 1)} > 15
(ii) The selected model size |S| <D.

Next, we would like to analyze the restriction on B, imposed
by Assumption 1, which depends on §;. We first introduce a
useful notion called detection complexity.

Definition I (Detection complexity). We say feature j € S* is
detectable in complexity d, if there exists a subset S; > j with
cardinality d and another subset S;’ C Spun\{j} with cardinality

pJQ, such that

inf [Cr(s) —

Cr(S)] > 2¢,,
Se.”.Se.s! ( )] "



where . = Z(j,D) = {S : |S| < D,|SN (§* US;))| < d},
S = '(G,D) = S : |S| < D,S 2 §}, and €, satisfies
(4). We define the detection complexity of j, which is denoted
by 4, as the minimal integer d to make j € S* detectable in
complexity d.

Remark 2. The detection complexity d; actually indicates the
difficulty to identify signal j. When d; = 1, §; is actually equal
to {jland . = {S: |S| < D,SN (S* U s]‘?) = @}. It implies that
the given criterion function performs better at subsets covering
j than at subsets not intersecting with $* U S?. S](-) is introduced
to avoid cases that some noises might have strong marginal
effects. This condition is similar to marginal conditions in the
literature; see, for example, Fan and Lv (2008), Fan, Feng, and
Song (2011), Zhu et al. (2011), Li, Zhong, and Zhu (2012), Shao
and Zhang (2014), Cui, Li, and Zhong (2015), Pan et al. (2019),
and Nandy, Chiaromonte, and Li (2020). The difference is that
here we state it via subspaces instead of single features used in
existing works. And when Lg > 2, the definition of detection
complexity allows us to consider the joint contribution of mul-
tiple features. See Examples 1 and 6 in our numerical studies as
examples.

Now we introduce an assumption under which the restric-
tion on B, can be explicitly calculated.

Assumption 2. All signals in S$* are detectable in complexity 4,

where d = max 4.
jes*

Intuitively speaking, this assumption requires all signals to
be detectable under the same level, which equals the largest
detection complexity of signals. In some sense, it is necessary
for the sure screening property. Signal j with large detection
complexity is associated with a larger set S;, requiring a larger B,
to sample subsets that cover S; with sufficiently high probability.
Proposition 1. Under Assumption 2, when B, < (%)J,Assump—
tion 1 hold.

In the ideal case, in Assumption 1, then we can set §; = {j} for
allj € §*, implying 4 = 1, which leads to the weakest restriction
on By, that is, B, = %. If a signal j does not have marginal
contribution to the response, we have 4; > 2, requiring a larger
order of B, to satisfy Assumption 1. This motivates the iterative
RaSE screening (Algorithm 2) which usually has a less stringent
restriction on Bj, making the framework more applicable to
high-dimensional settings.

Next, we study the sure screening property for iterative RaSE,
and discuss how the restriction on B, can be relaxed. For sim-
plicity, we only study the one-step iteration, that is, the case
when T = 1. Its not very hard to generalize the conditions
and conclusions to the general case when T > 1. To better
state the results, we first generalize Lemma 1 to understand the
distribution of two aforementioned types of subspaces after one
iteration.

Lemma 2. For any set S; > j with cardinality |Sj| < D, let

id ~
{8152}522:1 ~ some distribution F such that Ps ~7(S11 2 ) €

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 5

(0,1). Givean == #{by : Sy, 2 §} = k, dividing {S1p,};_,
into {S }k by=1 and {S( ])} _l,where S(l) D S andS( ]) 2S,

(i) {Sijzz}b _, independently follow the distribution
. 1(S2S)
PV =8) =P~ rSu =8 —————; (5)

Ps,~7(Sn 2 §)’
(ii) {S( - )}b2 | independently follow the distribution

» 182S)
PGS =8 =Ps ~r(S;1 =8) - ——— I~ . (6
( ) S11 .7:( 11 ) PSIIN]_'(SH 28]) ()

(=)\B
(iii) {Slbz}bz 1 LS, }bz 1

We omit the proof of Lemma 2 as it is very similar
to Lemma 1. Next, we introduce the following technical
assumption analogous to Assumption 1.

Assumption 3. Suppose the signal set S* can be decomposed

as §* = §j; U S}j), where S, and S}, satisfy the following

conditions:

(i) (The first-step detection) For anyj € S[O], denote 5],[0] S =
Py (Cr(8) — Cr(S) < 2€419), p° = P(j € S$11) = B,

where §% follows the distribution in Equation (2) w.r.t. Sj =

{j}. Then,

~ 1 0
B2 L, timewp {B sup gy [j[o] (s(=yzB2p! ]] < o0,
n,D,By— 00 j€Sig)

where S¢7 follows the distribution in Equation (3) w.r.t. S;.

(ii) (The second-step detection) Denote 5][1] (S) = P (Cr(S) —
Cr(s) < 2¢,19), pt1 = 2(5;%5)‘}), where SO follows the

distribution in Equation (5) w.r.t. Sj = {j}, and Cp is a
constant from Algorithm 2. Y = {R (U, p, i)} is a family of
hierarchical restrictive multinomial distributions satisfying

*
@)

inf 7> —2
jeSiy; (D + Cp)

for a constant ¢§ > 0. Then,

1
By 2 p, limsup {B; sup sup Eg—j [ [1J(S(—J))2szf ]]
n,D,By — 00 FeT jeS*

where S follows the distribution in Equation (6) w.r.t.
_ ) iid
Sj = {j} and {Sp b, }or b, ~ F € Y.

Remark 3. Condition (i) is a relaxed version of Assumption 1,
which replaces §* by a subset Sf;,. This can be seen as a first-
step detection condition for RaSE screening method to capture
Sjoj- The remaining signals in §}}; that might be missed in the
first step will be captured in the second step. The family of
distributions Y is introduced to incorporate the randomness in
the first step of RaSE screening. This type of stepwise detection
condition is very common in the literature (Jiang and Liu 2014;
Liand Liu 2019; Zhou et al. 2020; Tian and Feng 2021).



6 Y. TIAN AND Y. FENG

Theorem 2 (Sure screening property for one-step iterative RaSE
screening). Define

= M, By, D) i= (1 — c1p)

B
" (1 — sup Eg [ ol sty 3ar" ])

jes
Cexp L= 2B N2
X (1 exp { 2832(]? ) }) , (7)

where [ = 0, 1. Forg([xl] ={1<j<p: A[l]

is among the
[aD/ cg ]] largest of all}, where ¢ > 1, under Assumptlon 3, if

[0]
Con

> ¢ and B; > log p*, we have
0 P < & =

p*exp { ZBl(c[l])2 (
i) 185" < D.

1 — p* exp{ ZBl(c[O] —c}‘)z} —

2
—) }—) 1,as n — o0;

The lower bound in (i) comes from the two steps of Algo-
rithm 2, which is very intuitive. The general iterative RaSE
screening algorithm with any T > 1 can be studied similarly by
imposing analogous conditions, which we leave as future work.

The restriction on B, can be discussed in a similar fashion
as the vanilla RaSE screening for some specific scenarios. For
instance, similar to Definition 1, we can define the detection
complexity of the second step based on the distribution of sub-
sets from the first step. If a similar assumption like Assumption 2
(see Assumption 5 in Appendix A.2 for the precise statement)
holds, then we can expect that there exist B, < p/D in the
first step and B, < Dlsfoll(log ‘D)lsﬁl‘_1 p in the second step to
make Assumption 3 hold (see Proposition 3 in Appendix A.2 for
a precise description), which relaxes the requirement shown in
Proposition 1 (B, < (p/D) 15{o) |+1) to a great extent. In Section 4,
an array of simulations and real data analyses will show the
effectiveness of iterative RaSE screening.

3.2. Rank Consistency

Next, we study another important property of the RaSE screen-
ing, namely the rank consistency. First, we impose the following
assumption.

Assumption 4. Suppose the following conditions hold:

(i) Denote §;(S) = Py (Cr(S) — 26, < Cr(S“7)|S) and
§i(8) = §j(n,D,S) = Py (Cr(S) — Cr(SY) < 2€,(9),
where S(_J_) follows the distribution in Equation (3) with
respect to S; = {j} while S follows the distribution in (2)
with respect to some subset Sj > j. We have

y(n,D,By) := (1 — c1) ( —2exp {—%Bz 1nfp]})

eS*

B
(wa%mwmﬁﬁmﬂ

jes*

3B2p

~ - 3

+ (1 — sup Eg) [(Sj(S(’))BZ_ZBZPMD -1
Jjgs*

—cCin >0,

where S% and =7 follow the distributions in Equations (2)
and (3), respectively.
(ii) By > y(n,D,By)™% Vv logp.

Remark 4. Condition (i) is introduced to make sure the signals
are separable from the noises. Here, Sj is a parallel definition
to §;, measuring the noise level via comparing the two types of
feature subspaces introduced in Lemma 1. A related condition
can be found in Assumption (C3) of Cui, Li, and Zhong (2015).

Theorem 3 (Rank consistency). Under Assumption 4,

1
1nfn]>supn] > l—pexp{——Blyz(n,D,Bz)} -1
jeS* ¢S 2

as n, By, B, — o0.

In addition, under Assumption 2 with 4 = 1, when B; is
restricted to some level, we have Assumption 4 holds by default.

Proposition 2. Under Assumption 2 with 4 = 1, there exist
constants C; > C; > 0, such that, when B, € (C1p/D, Cyp/D),
Assumption 4 holds.

4. Numerical Studies

In this section, we will investigate the performance of RaSE
screening methods via extensive simulations and real data
experiments. Each setting is replicated 200 times. In simula-
tions, we evaluate different screening approaches by calculating
the 5%, 25%, 50%, 75%, and 95% quantiles of the minimum
model size (MMS) to include all signals. The smaller the
quantile is, the better the screening approach is. For real
data, since S* is unknown, we compare different methods
by investigating the performance of the corresponding post-
screening procedure. That is, after screening, we keep the same
number of variables for each screening method, then the same
model is fitted based on those selected variables and their
prediction performance on an independent test data is reported.

We compare RaSE screening methods with SIS (Fan and Lv
2008), ISIS (Fan and Lv 2008; Fan, Samworth, and Wu 2009),
SIRS (Zhu et al. 2011), DC-SIS (Li, Zhong, and Zhu 2012),
MDC-SIS (Shao and Zhang 2014), MV-SIS (Cui, Li, and Zhong
2015), HOLP (Wang and Leng 2016), IPDC (Kong et al. 2017),
and CIS (Nandy, Chiaromonte, and Li 2020).

All the experiments are conducted in R. We implement RaSE
screening methods in RaSEn package. R package SIS is used
to implement SIS. Corresponding to one-step iterative RaSE, we
report the results of ISIS with two screening steps and one selec-
tion step (Saldana and Feng 2018).! R package screening
(https://github.com/wwrechard/screening) is used to implement

TFor more details, please refer to the toy example in Appendix A.3.1.


https://github.com/wwrechard/screening

Table 1. Quantiles of MMS in Examples 1 and 2.
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Method/MMS Example 1 Example 2

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
SIS 227 317 397 647 922 6 28 105 592 1855
ISIS 14 15 15 15 25 172 861 1415 1825 1963
SIRS 87 370 594 762 949 6 1158 1492 1774 1964
DC-SIS 96 358 610 776 942 6 1083 1460 1752 1976
HOLP 912 949 969 986 999 45 196 576 1252 1906
IPDC 224 442 700 869 980 59 210 386 678 1517
MDC-SIS 146 287 512 734 937 6 20 93 999 1908
[N 203 434 601 780 940 2000 2000 2000 2000 2000
RaSE-BIC 5 12 37 126 650 6 358 1514 1821 1956
RaSE1-BIC 4 4 4 16 55 13 834 1507 1797 1969
RaSE-eBIC 6 21 42 489 852 8 26 1323 1789 1935
RaSEq-eBIC 4 4 4 4 14 907 1485 1739 1878 1971
RaSE-kNN 22 88 233 312 883 5 5 6 76 1190
RaSEq-kNN 6 80 422 694 921 5 5 5 13 1846
RaSE-SVM 13 59 150 336 842 5 5 5 6 68
RaSE1-SVM 4 4 82 126 542 5 5 5 5 1"
HOLP. We conduct SIRS, DC-SIS, and MV-SIS through R pack-  where x = (x1,..., xp)T ~ N(0,%), & = (04)pxp> Oij =

age VariableSelection. IPDC is implemented by call-
ing the function dcor in R package energy. We implement
MDC-SIS through function mdd in R package EDMeasure
to calculate the martingale difference divergence. CIS is imple-
mented via R codes shared in Nandy, Chiaromonte, and Li
(2020).

We combine RaSE framework with various criteria to choose
subspaces, including minimizing BIC (RaSE-BIC) and eBIC
(RaSE-eBIC) in linear model or logistic regression model, min-
imizing the leave-one-out MSE/error in the kNN (RaSE-kNN),
and minimizing the 5-fold cross-validation MSE/error in sup-
port vector machine (SVM) with RBF kernel (RaSE-SVM). We
add a subscript 1 to RaSE to denote the one-step iterative RaSE
(e.g., RaSE;-BIC). In practice, we can choose the criterion based
on the model we prefer in the post-screening procedure. For
example, if we would like to use linear model in post-screening,
then we could set minimizing BIC of linear model as the cri-
terion. If we want to fit a nonlinear model in post-screening,
then minimizing cross-validation error in kNN or SVM with
RBF kernel can be good choices. Some exploratory analysis can
help us choose a proper post-screening method.

For all RaSE methods, we fix By = 200 and B, = 20 x [p/D],
motivated by Proposition 1. In addition, following Weng, Feng,
and Qiao (2019), we fix D = [/n], which is motivated from the
fact that many estimators are 1/n-consistent. And we verify the
effectiveness of this choice in Example 1. For Example 1, we also
investigate the impact of By, B, and D on the median MMS. For
RaSE-kNN and RaSE;-kNN, k is set to be 5. For RaSE-eBIC and
RaSE;-eBIC, we set the penalty parameter y = 0.5 (Chen and
Chen 2008, 2012).

All the codes used in numerical experiments can be found on
GitHub (https://github.com/ytstat/ RaSE-screening-codes).

4.1. Simulations

Example 1 (Example II in Fan and Lv 2008). We generate data
from the following model:

15
—=X4 t €,

/2

y = 5x1 + 5x5 + 5x3 —

0.5107) ¢ ~ N(0,1), and € Lx. The signal set S*
n = 100 and p = 1000.

{1,2,3,4}.

In this example, there is no correlation between y and x4,
further leading to the independence due to normality, there-
fore methods based on the marginal effect will fail to capture
x4. However, after projecting y on the space which is perpen-
dicular with any signals from x;, x and x3, the correlation
appears between the projected y and x4, which motivates the
ISIS. Besides, the proposed RaSE methods are also expected to
succeed since it works with feature subsets instead of a single
variable.

We present the results in the left panel of Table 1. From the
results, it can be seen that all the marginal screening methods
do not perform well in the sense that they need a large model
to cover all 4 signals. ISIS performs much better because it
can detect the signals with a smaller model than SIS with one-
step iteration. For RaSE screening methods with no iteration,
as analyzed in Proposition 1, we have 4 = 2 since x4 has no
marginal contribution to y, leading to a theoretical requirement
B, = (p/D)?, where (p/D)* = 10%. Despite the current small
B, setting, RaSE-BIC and RaSE-eBIC still perform better than
SIS and other marginal screening methods. After one iteration,
RaSE;-BIC and RaSE;-eBIC improve a lot compared to their
vanilla counterparts, with RaSE;-eBIC achieving the best per-
formance.

Note that iterations can usually improve the performance
of vanilla RaSE at small quantiles, but possibly lead to worse
performance at large quantiles. See RaSE-kNN and RaSE;-kNN
for examples. This phenomenon happens because iterative RaSE
is very aggressive and the success of the second step is based on
the accurate capture of some signals in the first step. If the first
step fails to identify enough signals but captures many noises,
these noises will be selected more frequently in the second step.

To further study the impact of (B;, B2), we run this example
for 200 times under different (B, By) settings, where we range
B; from 100 to 1000 with increment 100 and B, from 1000 to
97,000 with increment 6000. The median of MMS with RaSE-
BIC and RaSE; -BIC is summarized in Figure 1. It shows that in
general, larger (B1, B,) leads to better performance. The perfor-


https://github.com/ytstat/RaSE-screening-codes
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Figure 1. Median MMS to capture S* (|S*| = 4) as (B4, By) varies for RaSE-BIC (a) and RaSE;-BIC (b) in Example 1.

Table 2. Average (over 200 replications) computational time in seconds for various
methods in Example 1.

Other methods SIS ISIS  SIRS  DCSIS HOLP  IPDC  MDC-SIS
Time (s) 001 067 028 1.30 0.02 0.49 0.28
RaSE methods BIC BIC;  eBIC eBICq kNN kNN1 SVM
Time (s) 199 403 201 3.94 6.74  13.66 150.41

NOTE: For simplicity, for RaSE methods, we use criteria to differentiate them and the
subscript “1” denotes the one-step iterative version of the corresponding RaSE-
based methods.

mance is stable in terms of B; when B, is large. On the other
hand, the performance improves continuously as B, grows. In
particular, for RaSE-BIC, when B, > 104, it can capture S* very
well, which agrees with Proposition 1. These results indicate
that we can further improve the performance of RaSE screening
if we have sufficient computational resources. RaSE;-BIC can
always achieve a great performance with a small B,, showing its
effectiveness in relaxing the restriction on Bj.

We also run this example 200 times to plot the median of
MMS for RaSE-BIC and RaSE;-BIC under different (D, B;)
while fixing B; = 200 in Figure 3 in Appendix A.3, where D
ranges from 2 to 40 with increment 2 and B, from 200 to 5000
with increment 300. The subfigure (a) shows that for RaSE-BIC,
for a given B;, the impact of D is not monotonic. RaSE-BIC has a
good and stable performance when D is around /n = 10, which
verifies the effectiveness of our choice for D. The subfigure (b)
shows that the performance of RaSE;-BIC is very robust with
respect to D, as long as D and B, are not very small.

To compare the computational time of different methods, we
list the average running time in 200 replications of Example 1
in Table 2. All codes were run on NYU Greene clusters (2x
Intel Xeon Platinum 8268 24C 205W 2.9GHz Processor) with
40 cores and 50 GB memory.? It can be seen that RaSE methods
have heavier computational burdens than other screening meth-
ods since their success leverages generating a large number of
subspaces. This can be alleviated with parallel computing and
more powerful machines.

2For SIS, ISIS, SIRS, DC-SIS, and HOLP, since the packages implementing them
do not provide the option to use multi-cores, we ran them with a single
core only.

Example 2 (Latent clusters). We generate data from the follow-
ing linear model:
cls
118 y=05(x1 + X2 + X3 + X4 + X5 + €),
Where & = (%1,...,%)7 ~ N(0,%), € ~ o, T = (5)pxp =
{%gﬁ*j‘)pxp, and € I x. Generate z ~ Unif({—3,3}) Lx and x =
x+2z1,. The signal set S* = {1,2,3,4,5}.n = 200 and p = 2000.

Figure 2 shows the scatterplots of y vs. x1 (left panel) and y vs.
x10 (right panel). We expect the methods based on the Pearson
correlation to deteriorate due to the partial cancelation of signals
by the averaging of two clusters. For such kind of data, kNN
could be a favorable approach. The performances of various
methods are presented in the right panel of Table 1. SIS and
MDC-SIS perform well at 5% and 25% quantiles. RaSE-kKNN
and RaSE-SVM perform quite well with their performances
further improved by their respective one-step iterative versions.

Example 3 (Example 1.c in Li, Zhong, and Zhu 2012). We
generate data from the following model:

y=2P1x1x2 + 3821 (x12 < 0)x2 + €,

where B; = (—DV(4logn//n + |Z|),j = 1,2, U ~
Bernoulli(0.4), Z ~ N(0,1), ¢ ~ N(0,1), x ~ N(0, X) where
T = (0i)pxp = (0.8, ULZ, €l x, and (U, Z) L(e,x).
Note that we regenerate (U, Z) for each replication, so the results
might differ from those in Li, Zhong, and Zhu (2012). The signal
set $* = {1,2,12,22}. n = 200 and p = 2000.

The left panel of Table 3 exhibits the results of different
screening methods. Due to the interaction term and indicator
function, approaches based on linear models like SIS, ISIS,
HOLP, and RaSE with BIC and eBIC do not perform very well.
CIS and RaSE;-kNN achieve a very good performance at the
5%, 25%, and 50% quantiles. RaSE-kNN performs well at the
5% and 25% quantiles but worse at others. RaSE-SVM performs
well at the first two quantiles. The iteration step improves the
performances of RaSE-kNN and RaSE-SVM significantly, and
RaSE;-SVM outperforms all the other methods except at the
95% quantile.
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Figure 2. Scatterplots of y vs. xq and y vs. x1g for Example 2 (n = 200).
Table 3. Quantiles of MMS in Examples 3 and 4.
Method/MMS Example 3 Example 4

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
SIS 184 810 1370 1732 1957 264 570 709 885 984
ISIS 362 1008 1482 1775 1945 293 626 810 911 978
SIRS 54 741 1294 1634 1920 487 737 867 935 992
DC-SIS 25 456 1222 1638 1923 44 304 603 814 949
HOLP 326 954 1475 1774 1975 316 586 767 886 974
IPDC 128 429 920 1397 1899 7 19 68 158 528
MDC-SIS 52 165 504 1331 1872 189 482 736 889 979
cls 4 5 8 55 548 5 33 136 352 789
RaSE-BIC 637 1242 1619 1842 1959 355 693 825 914 986
RaSE;-BIC 714 1196 1550 1839 1974 424 661 824 918 981
RaSE-eBIC 484 1137 1496 1794 1951 302 553 784 913 987
RaSE-eBIC 725 1330 1617 1806 1948 480 686 860 930 986
RaSE-kNN 5 33 168 1321 1855 5 15 68 290 889
RaSEq-kNN 4 5 8 125 1528 4 8 51 446 910
RaSE-SVM 4 18 504 1282 1848 4 15 132 468 938
RaSE;-SVM 4 4 5 14 1141 4 30 232 645 898
Example 4 (Interactions). We generate data from the following  model:

model:

y =3 I|x1|l + 2/ |x1 |x§ + 4 sin(x;) sin(xy) sinz(x3)
+12 sin(x1) |x2| sin(m)xﬁ + 0.5¢,

id
where x1,...,x, < N(0,1), € ~ N(0,1), and € L x. The signal
set $* = {1,2,3,4}. n = 300 and p = 1000.

This example evaluates the capability of different screen-
ing methods in terms of selecting high-order interactions. The
results are summarized in the right panel of Table 3. It can
be observed that RaSE-kNN, RaSE;-kNN, RaSE-SVM, RaSE; -
SVM, IPDC, and CIS achieve an acceptable performance, par-
ticularly for the lower quantiles. IPDC and CIS perform better at
75% and 95% quantiles than all RaSE methods but worse at the
other three quantiles than RaSE; -kNN. The remaining methods
do not perform well on any of the 5 quantiles. It shows that
RaSE framework equipped with minimizing cross-validation
MSE on kNN or kernel SVM is promising to capture high-order
interactions.

Example 5 (Gaussian mixture, Example 1 in Cannings and Sam-
worth  2017). We generate data from the following

1
y ~ Bernoulli(0.5), x|y =r ~ EN(;L,, )
1
+§N(—;L,, ), r=0,1,

L0 my = (2,2,0,...,007, T isan
200 and p =

where py = (2,-2,0,..
identity matrix. The signal set $* = {1,2}. n =
2000.

From the scatterplots in Figure 4 in Appendix A.3, the
marginal screening methods are expected to fail because all
signals are marginally independent with y. The only way to
capture the signals is to measure the joint contribution of
(x1,x2). We summarize the results in the left panel of Table 4.

The table shows that the marginal methods fail as we
expected. RaSE with BIC and eBIC fail as well because the data
points from the two classes are not linearly separable (Figure 4
in Appendix A.3). SIRS, RaSE;-kNN and RaSE;-SVM achieve
the best performance with very accurate feature ranking.

Example 6 (Multinomial logistic regression, Case 2 in Section
4.5 of Fan, Samworth, and Wu (2009)). We first generate

- . iid - - iid
Xis. .. X4 ~ Unif([—+/3,+/3]) and s, . . . 3 Xp ~ N(0, 1), then
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Table 4. Quantiles of MMS in Examples 5 and 6.

Method/MMS Example 5 Example 6

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
SIS 515 1090 1414 1746 1947 170 471 910 1436 1932
ISIS 445 1001 1470 1784 1967 7 7 7 8 8
SIRS 2 2 2 2 2 821 1242 1551 1813 1966
DC-SIS 451 960 1385 1706 1913 765 1155 1526 1775 1947
MV-SIS 379 957 1366 1692 1895 199 706 1258 1660 1909
HOLP 495 1065 1381 1712 1936 — — — — —
IPDC 495 1010 1344 1673 1908 879 1425 1722 1884 1988
MDC-SIS 462 1038 1332 1708 1948 163 498 1064 1628 1917
s 2000 2000 2000 2000 2000 229 736 1195 1652 1941
RaSE-BIC 506 1081 1487 1804 1946 8 14 20 26 1525
RaSE-BIC 464 968 1360 1692 1927 5 5 5 6 14
RaSE-eBIC 425 1045 1424 1705 1965 26 346 894 1406 1919
RaSEq-eBIC 480 988 1370 1727 1938 5 7 10 14 1184
RaSE-kNN 2 3 5 6 8 38 202 294 1470 1925
RaSE1-kNN 2 2 2 2 2 27 376 967 1486 1828
RaSE-SVM 2 4 6 8 26 1 39 118 343 1743
RaSE1-SVM 2 2 2 2 2 5 5 118 1133 1792

let x; = X1 — /2%, x2 = % + /2%, x3 = X3 — +/2Xs,
X4 = X4 + /2%5 and xj = Xj for j = 5,...,p. The response is
generated from

P(y = r|x) o expl{ff(®)},r =1,...,4,

where f) (X) = —aX; +aXy, f,(X) = ax; —aXy, f3(X) = ax, —ax3
and fi1(x) = ax3 — axq witha = 5/+/3. The signal set $* =
{1,2,3,4,5}. n = 200 and p = 2000.

In this example, x5 is marginally independent of y, therefore
the marginal methods are expected to fail to capture x5. Results
are summarized in the right panel of Table 4.

We observe that ISIS, RaSE;-BIC, and, RaSE;-eBIC lead to
better performances. Without iteration, RaSE-BIC still performs
competitively compared to other non-iterative approaches. Sim-
ilar to Example 1, the iteration usually improves the perfor-
mance of vanilla RaSE at small quantiles, but leads to worse
performance at large quantiles possibly due to the aggressiveness
of iterative RaSE.

To justify the effectiveness of RaSE methods in dealing with
more complicated predictors, we add two additional examples
in Appendix A.3.2. In Example 7, we consider realistic predic-
tors, with the same conditional model y|x as in Example 1. In
Example 8, we use a mix of continuous and discrete variables,
with the same conditional model as in Example 2. While we have
similar findings as in Examples 1 and 2, the performance of most
approaches become slightly worse, showing the challenges for
analyzing real data.

4.2. Real Data Experiments

In this section, we investigate the performance of RaSE screen-
ing methods on two real datasets. Each dataset is randomly
divided into training data and test data. As suggested by Fan and
Lv (2008), we select variables via different screening methods on
training data, then the LASSO, kNN, and SVM are fitted based
on the selected variables on training data, and finally we evaluate
different screening methods based on their corresponding post-
screening performance on test data. As benchmarks, we also fit
LASSO, kNN, and SVM models on the training data without

screening. Following Fan and Lv (2008), we choose the top
[n/log n] variables for all screening methods, that is, let N =
[n/logn] in Algorithms 1 and 2. Note that we could also choose
[D] variables for any o > 1, which is motivated by Equation
(1). Another possibility is to use data-driven strategies. For
instance, we could sample out a separate validation dataset and
use the post-screening validation MSE/classification error to
determine N.> We randomly divide the whole dataset into 90%
training data and 10% test data in each of 200 replications, and
apply various screening methods on training data. Each time,
both training and test data are standardized by using the center
and scale of training data.

4.2.1. Colon Cancer Dataset

This dataset was collected by Alon et al. (1999) and consists of
2000 genes measured on 62 patients, of which 40 are diagnosed
with colon cancer (Class 1) and 22 are healthy (Class 0). The
information on each gene is represented as a continuous vari-
able. The prediction results are summarized in the left panel of
Table 5.

The table shows that SIS, ISIS, MDC-SIS, CIS, RaSE-BIC,
RaSE;-BIC, RaSE-eBIC, and RaSE;-eBIC improve the perfor-
mance of vanilla LASSO. In addition, RaSE-BIC with LASSO
achieves the best performance among all post-screening pro-
cedures based on LASSO. Besides, RaSE-kKNN with kNN and
RaSE;-kNN with kNN lead to better results than those of vanilla
kKNN. RaSE-SVM and RaSE;-SVM also improve the perfor-
mance of vanilla SVM, demonstrating the effectiveness of RaSE
to improve various vanilla methods.

For results of RaSE methods, we also gather the top 10
selected features in 200 replications and calculate the percent-
ages of selection of these top features out of 200 replications.
The 10 features with the highest percentages (selection rates) are
plotted in Figure 5 in Appendix A.3. We notice that the first few
features have high or moderately high selection rates (100% or
> 50%, respectively), implying that they are frequently selected

3For RaSE methods, sometimes there might be less than [n/ log n] variables
which have positive selected proportion. In this case, we randomly choose
from the remaining variables with 0 selected proportions to have the
desired number of selected variables.



Table 5. Average test classification error rate with standard deviations (in paren-
theses) for colon cancer dataset and average test mean square errors (MSEs) with
standard deviations (in parentheses) for rat eye expression dataset.

Screening Post-screening Cancer Eye

— 0.1792(0.1427) 0.0103(0.0091)
SIS 0.1633(0.1407) 0.0091(0.0068)
ISIS 0.1767(0.1444) 0.0091(0.0068)
SIRS 0.2800(0.1734) 0.0132(0.0123)
DC-SIS 0.3000(0.1998) 0.0124(0.0118)
MV-SIS 0.2958(0.1826) —
HOLP LASSO 0.1825(0.1491) 0.0228(0.0269)
IPDC 0.1917(0.1464) 0.0129(0.0132)
MDC-SIS 0.1600(0.1406) 0.0103(0.0071)
cls 0.1550(0.1332) 0.0194(0.0231)
RaSE-BIC 0.1192(0.1277) 0.0090(0.0066)
RaSEq-BIC 0.1417(0.1324) 0.0123(0.0104)
RaSE-eBIC 0.3083(0.2118) 0.0092(0.0069)
RaSE;-eBIC 0.1458(0.1397) 0.0122(0.0098)
— 0.2258(0.1653) 0.0166(0.0206)
RaSE-kNN kNN 0.1533(0.1340) 0.0131(0.0158)
RaSE1-kNN 0.1867(0.1500) 0.0133(0.0161)
— 0.2025(0.1503) 0.0160(0.0243)
RaSE-SVM SVM 0.1375(0.1277) 0.0158(0.0231)
RaSE;-SVM 0.1858(0.1477) 0.0158(0.0232)

NOTE: We boldface the values corresponding to the best performances and italicize
the values corresponding to the subsequent two best performances.

in different replications. These results demonstrate that RaSE-
based variable screening methods are reasonably stable.

4.2.2. Rat Eye Expression Dataset

This dataset was used by Scheetz et al. (2006), Fan, Feng, and
Song (2011), Wang and Leng (2016), Zhong and Zhu (2015),
Nandy, Chiaromonte, and Li (2020) among others. It contains
the gene expression values corresponding to 18,976 probes from
the eyes of 120 twelve-week-old male F2 rats. Among the 18,976
probes, TRIM32 is the response, which is responsible to cause
Bardet-Biedl syndrome. We follow Wang and Leng (2016) to
focus on the top 5000 genes with the highest sample variance.
Therefore, the final sample size is 120 and there are 5000 pre-
dictors. The right panel of Table 5 shows the test average mean
squared error (MSE) coupled with the standard deviation for
each post-screening procedure.

The results show that SIS, ISIS, RaSE-BIC, and RaSE-eBIC
with LASSO achieve comparable performance, which are bet-
ter than that of the vanilla LASSO. RaSE-kNN with kNN and
RaSE;-kNN with kNN enhance the vanilla kNN method as well.
RaSE-SVM with SVM and RaSE;-SVM with SVM only slightly
improve the vanilla SVM for this dataset. Note that MV-SIS is
not directly applicable to this dataset. It is possible to discretize
all the variables to make MV-SIS work. See Section 4.2 in Cui,
Li, and Zhong (2015) for details.

Similar to the colon dataset, we also demonstrate the stability
of RaSE methods in Figure 6.

5. Discussion

In this article, we propose a very general screening framework
named RaSE screening, based on the RaSE method. We can
equip it with any criterion function for comparing subspaces. By
comparing subspaces instead of single predictors, RaSE screen-
ing can capture signals without marginal effects on response.
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Besides, an iterative version of the RaSE screening framework
is introduced to enhance the performance of vanilla RaSE and
relax the restriction on B,. In the theoretical analysis, we estab-
lish sure screening property for both vanilla and iterative RaSE
frameworks under some general conditions. The rank consis-
tency is also proved for the vanilla RaSE. We investigate the
relationship between the signal strength and the appropriate
choice of B, which shows that in some sense the weaker the
signal is, a larger B, is necessary for RaSE to succeed. In the
numerical studies, the effectiveness of RaSE and its iterative
version is verified through multiple simulation examples and
real data analyses.

The success of RaSE leverages on proper choices of Cr (the
criterion), B; (the number of subspace groups), B, (the number
of subspace candidates in each group), and D (the maximum
subspace size). While we have studied their impacts on the
performance of RaSE, there exists potential improvement for
choosing these “tuning” parameters. For example, the subspace
distribution at each iteration step could be further generalized,
for example, we can choose D from the empirical distribution of
the sizes of the selected B; subspaces.

There are many other interesting problems worth further
studying. The first question is that whether there is an adaptive
way to automatically select the number of iterations (7). A
possible solution is cross-validation and to stop the iteration
process when the performance of RaSE on validation data stops
improving further. Another interesting topic is to use different
B, values in different iteration steps, which might further speed
up the computation.
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