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Summary. For high dimensional classification, it is well known that naively performing the
Fisher discriminant rule leads to poor results due to diverging spectra and accumulation of
noise. Therefore, researchers proposed independence rules to circumvent the diverging spec-
tra, and sparse independence rules to mitigate the issue of accumulation of noise. However, in
biological applications, often a group of correlated genes are responsible for clinical outcomes,
and the use of the covariance information can significantly reduce misclassification rates.
In theory the extent of such error rate reductions is unveiled by comparing the misclassification
rates of the Fisher discriminant rule and the independence rule. To materialize the gain on the
basis of finite samples, a regularized optimal affine discriminant (ROAD) is proposed.The ROAD
selects an increasing number of features as the regularization relaxes. Further benefits can be
achieved when a screening method is employed to narrow the feature pool before applying
the ROAD method. An efficient constrained co-ordinate descent algorithm is also developed to
solve the associated optimization problems. Sampling properties of oracle type are established.
Simulation studies and real data analysis support our theoretical results and demonstrate the
advantages of the new classification procedure under a variety of correlation structures. A del-
icate result on continuous piecewise linear solution paths for the ROAD optimization problem
at the population level justifies the linear interpolation of the constrained co-ordinate descent
algorithm.

Keywords: Fisher discriminant; High dimensional classification; Independence rule; Linear
discriminant analysis; Regularized optimal affine discriminant

1. Introduction

Technological innovations have had a deep influence on society and on various areas of scientific
research. High throughput data from microarray and proteomics technologies are frequently
used in many contemporary statistical studies. In the case of microarray data, the dimensionality
is frequently in thousands or beyond, whereas the sample size is typically of the order of tens.
The large p–small n scenario poses challenges for the classification problems. We refer to Fan and
Lv (2010) for an overview of statistical challenges that are associated with high dimensionality.

When the feature space dimension p is very high compared with the sample size n, the Fisher
discriminant rule performs poorly owing to diverging spectra as demonstrated by Bickel and
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Levina (2004), who showed that the independence rule in which the covariance structure is
ignored performs better than the naive Fisher rule (NFR) in the high dimensional setting. Fan
and Fan (2008) demonstrated further that, even for the independence rules, a procedure using
all the features can be as poor as random guessing owing to accumulation of noise in estimating
population centroids in high dimensional feature space. As a result, Fan and Fan (2008) pro-
posed the features annealed independence rule (FAIR) that selects a subset of important features
for classification. Dudoit et al. (2002) reported that, for microarray data, ignoring correlations
between genes leads to better classification results. Tibshirani et al. (2002) proposed the nearest
shrunken centroid (NSC) which likewise employs the working independence structure. Similar
problems are also studied in the machine learning community such as Domingos and Pazzani
(1997) and Lewis (1998).

In microarray studies, correlation between different genes is an essential characteristic of
the data and is usually not negligible. Other examples include proteomics, and metabolomics
data where correlation between biomarkers is commonplace. More details can be found in
Ackermann and Strimmer (2009). Intuitively, the independence assumption among genes leads
to loss of critical information and hence is suboptimal. We believe that, in many cases, the crucial
point is not whether to consider correlations, but how we can incorporate the covariance struc-
ture in the analysis with protection against diverging spectra and significant noise accumulation
effect.

The set-up of the objective classification problem is now introduced. We assume in what fol-
lows that the variability of data under consideration can be described reasonably well by the
means and variances. To be more precise, suppose that random variables representing two classes
C1 and C2 follow p-variate normal distributions X|Y =1∼Np.μ1,Σ/ and X|Y =2∼Np.μ2,Σ/

respectively. Moreover, assume that P.Y =1/= 1
2 . This Gaussian discriminant analysis set-up is

known for its good performance despite its rigid model structure. For any linear discriminant rule

δw.X/= I{wT.X −μa/> 0}, .1/

where μa = .μ2 + μ1/=2, and I denotes the indicator function with value 1 corresponds to
assigning X to class C2 and 0 class C1, the misclassification rate of the (pseudo)classifier δw is

W.δw/= 1
2 P2{δw.X/=0}+ 1

2 P1{δw.X/=1}=1−Φ{wTμd=.wTΣw/1=2}, .2/

where μd = .μ2 −μ1/=2, and Pi is the conditional distribution of X given its class label i. We
shall focus on such a linear classifier δw.·/, and the mission is to find a good data projection
direction w. Note that the Fisher discriminant

δF.X/= I{.Σ−1μd/T.X −μa/> 0} .3/

is the Bayes rule. There are two fundamental difficulties in applying the Fisher discriminant
whose missclassification rate is

1−Φ{.μT
dΣ−1μd/1=2}: .4/

The first difficulty arises from the noise accumulation effect in estimating the population cen-
troids (Fan and Fan, 2008) when p is large. The second challenge is more severe: estimating the
inverse of covariance matrix Σ when p>n (Bickel and Levina, 2004). As a result, much previous
research focused on the independence rules, which act as if Σ is diagonal. However, correlation
matters!

To illustrate this point, consider a case when p=2. These two features can be selected from
the original thousands of features, and we can estimate the correlation between two variables
with reasonable accuracy. Let
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Σ=
(

1 ρ
ρ 1

)
,

where ρ∈ [0, 1/ and μd = .μ1, μ2/T. Without loss of generality, assume that |μ1|� |μ2|> 0. The
misclassification rate of the Fisher discriminant depends on

Δp.ρ/=μT
dΣ−1μd = 1

1−ρ2 .μ2
1 +μ2

2 −2ρμ1μ2/: .5/

Note that

Δ′
p.ρ/> 0⇔μ1μ2ρ

2 − .μ2
1 +μ2

2/ρ+μ1μ2 < 0:

Therefore, when μ1μ2 < 0, Δ′
p.ρ/ > 0 for all ρ ∈ [0, 1/. In contrast, when μ1μ2 > 0, Δp.ρ/

decreases on ρ∈ .0, μ2=μ1/, and increases on .μ2=μ1, 1/. When ρ→ 1, Δp →∞ regardless of
signs for μ1μ2, which in turn leads to vanishing classification error. However, if we use the
independence rule (which is also called the naive Bayes rule), the optimal misclassification rate

1−Φ

{
‖μd‖2

2

.μT
dΣμd/1=2

}
.6/

depends on Γ.ρ/=‖μd‖4
2=.μT

dΣμd/, which is monotonically decreasing for ρ∈ [0, 1/, with the
limit .μ2

1 +μ2
2/2=.μ1 +μ2/4 that is smaller than 1 when μ1 and μ2 have the same sign. Hence,

the optimal classification error by using the independence rule actually increases as correlation
between features increases.

The above simple example shows that, by incorporating correlation information, the gain
in terms of classification error can be substantial. Elaboration on this point in more realistic
scenarios is provided in Section 2. Now it seems wise to use at least a part of the covariance
structure to improve the performance of a classifier. So there is a need to estimate the covariance
matrix Σ. Without structural assumptions on Σ, the pooled sample covariance Σ̂ is one natural
estimate. But, for p>n, it is not considered as a good estimate of Σ in general. We are lucky here
because our mission is not to construct a good estimate of the covariance matrix, but finding a
good direction w that leads to a good classifier. To mimic the optimal data projection direction
Σ−1μd, we do not adopt a direct plug-in approach, simply because it is unlikely that a product is
a good estimate when at least one of its components is not. Instead, we find the data projection
direction w by directly minimizing the classification error subject to a capacity constraint on w.
From a broad spectrum of simulated and real data analysis, we are convinced that this approach
leads to a robust and efficient sparse linear classifier.

Admittedly, our work is far from the first to use covariance for classification; support vector
machines (Vapnik, 1995), for example, implicitly utilize covariance between covariates. Another
notable work is ‘shrunken centroids regularized discriminant analysis’ (SCRDA) (Guo et al.,
2005), which calls for a version of regularized sample covariance matrix Σ̂reg, and soft thresholds
on Σ̂

−1
regx̂i. Shao et al. (2011) consider a sparse linear discriminant analysis, assuming the sparsity

on both the covariance matrix and the mean difference vector so that they can be regularized.
They show that such a regularized estimator is asymptotically optimal under some conditions.
However, to the best of our knowledge, this work is the first to select features by directly optimiz-
ing the misclassification rates, to use unregularized sample covariance information explicitly,
and to establish the oracle inequality and risk approximation theory.

There is a huge literature on high dimensional classification. Examples include principal com-
ponent analysis in Bair et al. (2006) and Zou et al. (2006), partial least squares in Nguyen and
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Rocke (2002), Huang (2003) and Boulesteix (2004) and sliced inverse regression in Li (1991)
and Antoniadis et al. (2003).

The rest of our paper is organized as follows. Section 2 provides some insights on the perfor-
mances of naive Bayes (NB), Fisher discriminant and restricted Fisher discriminants. In Section
3, we propose the regularized optimal affine discriminant (ROAD) and variants of it. An effi-
cient algorithm called constrained co-ordinate descent is constructed in Section 4. The main
risk approximation results and continuous piecewise linear property of the solution path are
established in Section 5. We conduct simulation and empirical studies in Section 6. A discussion
is given in Section 7, and all proofs are relegated to Appendix A.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://www.blackwellpublishing.com/rss

2. Naive Bayes and Fisher discriminant

To compare the NB and Fisher discriminant at the population level, we assume without loss of
generality that variables have been marginally standardized so that Σ is a correlation matrix.
Recall that the NB discriminant has error rate (6) and the Fisher discriminant has error rate (4).
Let Γp =‖μd‖4

2=.μT
dΣμd/ and Δp =μT

dΣ−1μd. Denote by {λi}p
i=1 the eigenvalues and {ξi}p

i=1
eigenvectors of the matrix Σ. Decompose

μd =a1ξ1 + . . .+apξp, .7/

where {ai}p
i=1 are the coefficients of μd in this new orthonormal basis {ξi}p

i=1. Using decom-
position (7), we have

Δp =
p∑

j=1
a2

j=λj,

Γp =
(

p∑
j=1

a2
j

)2/
p∑

j=1
λja2

j :

.8/

The relative efficiency of the Fisher discriminant over the NB discriminant is characterized by
Δp=Γp. By the Cauchy–Schwartz inequality,

Δp=Γp �1:

The NB method performs as well as the Fisher discriminant only when μd is an eigenvector of
Σ.

In general, Δp=Γp can be much larger than 1. Since Σ is the correlation matrix, Σp
j=1λj =

tr.Σ/=p. If μd is equally loaded on ξj, then the ratio

Δp=Γp =p−2
p∑

j=1
λj

p∑
j=1

λ−1
j =p−1

p∑
j=1

λ−1
j : .9/

More generally, if {aj}p
j=1 are realizations from a distribution with the second moment σ2, then,

by the law of large numbers,
p∑

j=1
a2

jλ
−1
j ≈σ2

p∑
j=1

1=λj, p−1
p∑

j=1
a2

j ≈σ2,
p∑

j=1
λja2

j ≈σ2
p∑

j=1
λj:

Hence, equation (9) holds approximately in this case. In other words, the right-hand side of
equation (9) is approximately the relative efficiency of the Fisher discriminant over the NB
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Fig. 1. Misclassification rates of the Fisher discriminant ( ), NB (� – � – �) and restricted Fisher (10
features) (�) and restricted Fisher (20 features) discriminants (�) against ρ

discriminant. Now suppose further that half of the eigenvalues of Σ are c and the other half are
2 − c. Then, the right-hand side of equation (9) is {c−1 + .2 − c/−1}=2. For example when the
condition number is 10, this ratio is about 3. A high ratio translates into a large difference in
error rates: 1−Φ.Γ1=2

p / for the independence rule is much larger than 1−Φ.3Γ1=2
p / for the Fisher

discriminant. For example, when Γ1=2
p = 0:5, we have 30.9% and 6.7% error rates respectively

for the NB and Fisher discriminant.
To put the above arguments under a visual inspection, consider a case in which p = 1000,

μd = .μT
s , 0T/T with μs = .0:1, 0:1, 0:1, 0:1, 0:1, 0:2, 0:2, 0:2, 0:2, 0:2/T and Σ equals the equicor-

relation matrix with pairwise correlation ρ. The vector μd simulates the case in which 10 genes
out of 1000 express mean differences. Fig. 1 depicts the theoretical error rates of the Fisher
discriminant and the NB rule as functions of ρ.

It is not surprising that the Fisher discriminant rule performs significantly better than the
NB discriminant as ρ deviates away from 0. The error rate of the NB rule actually increases
with ρ, whereas the error rate of the Fisher discriminant tends to 0 as ρ approaches 1. This
phenomenon is the same as what was shown analytically through the toy example in Section
1. To mimic the Fisher discriminant by a plug-in estimator, we need to estimate Σ−1μd with
reasonable accuracy. This mission is difficult if not impossible. However, imitating a weaker
oracle is more manageable. For example, when the samples are of reasonable size, we can select
the 10 variables with differences in means by applying a two-sample t-test. Restricting to the
best linear classifiers based on these s=10 variables, we have the optimal error rate

1−Φ{.μT
s Σ−1

s μs/
1=2},

where the classification rule is δwR and wR = ..Σ−1
s μs/

T, 0T/T. The performance of this oracle
classifier is depicted by the sub-Fisher (10 features) discriminant in Fig. 1. It performs much
better than the NB method. One can also employ the NB rule to the restricted feature space,
but this method has exactly the same performance as the NB method in the whole space. Thus,
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the restricted Fisher discriminant outperforms both the NB method with restricted features and
the NB method using all features.

Mimicking the performance of the restricted Fisher discriminant is feasible. Instead of esti-
mating a 1000×1000 covariance matrix, we only need to gauge a 10×10 submatrix. However,
this restricted Fisher rule is not sufficiently powerful, as shown in Fig. 1. We can improve its
performance by including the 10 most correlated variables in each of those selected features to
account further for the correlation effect, giving rise to a 20-dimensional feature space. Since
the variables are equally correlated in this example, we are free to choose any 10 variables
among the other 990. The performance of such an enlarged restricted Fisher discriminant is
represented by the sub-Fisher (20 features) discriminant in Fig. 1. It performs closely to the
Fisher discriminant which uses the whole feature space, and it is feasible to implement with
finite samples.

3. Regularized optimal affine discriminant

The misclassification rate of the Fisher discriminant is 1 − Φ.Δ1=2
p /, where Δp = μT

dΣ−1μd.
However, for high dimensional data, it is impossible to achieve such a performance empirically.
Among other reasons, the estimated covariance matrix Σ̂ is ill conditioned or not invertible.
One solution is to focus only on the s .
 p/ most important features for classification. Ide-
ally, the best s features should be those with the largest Δs among all . p

s / possibilities, where
Δs is the counterpart of Δp when only s variables are considered. Naive search for the best
subset of size s is NP hard. Thus, we develop a regularized method to circumvent these two
problems.

3.1. Definition of regularized optimal affine discriminant
Recall that, by equation (2), minimizing the classification error W.δw/ is the same as maximizing
wTμd=.wTΣw/1=2, which is equivalent to minimizing wTΣw subject to wTμd =1. We would like
to add a penalty function for capacity control. There are many ways to do regularization; for
the literature on penalized methods, refer to the lasso (Tibshirani, 1996), smoothy clipped abso-
lute deviation (Fan and Li, 2001), the elastic net (Zou and Hastie, 2005), the minimax concave
penalty (Zhang, 2010) and related methods (Zou, 2006; Zou and Li, 2008). As our primary
interest is classification error (the risk of the procedure), an L1-constraint ‖w‖1 �c is added for
regularization, so the problem can be recast as

wc = arg min
‖w‖1�c,wTμd=1

wTΣw: .10/

We name the classifier δwc .·/ the regularized optimal affine discriminant (ROAD). The existence
of a feasible solution in equation (10) dictates that

c�1= max
1�i�p

|μd,i|: .11/

When c is small, we obtain a sparse solution and achieve feature selection by using covari-
ance information. When c � ‖Σ−1μd‖1=.μT

dΣ−1μd/, the L1-constraint is no longer binding
and δwc reduces to the Fisher discriminant, which can be denoted by δw∞ (= δF). Therefore we
have provided a family of linear discriminants, indexed by c, using from only one feature to
all features. In some applications such as portfolio selection, the choice of c reflects the inves-
tor’s tolerance upper bound on gross exposure. In other applications, when the user does not
have a such a preference, the choice of c can be data driven. To accommodate both application
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scenarios, we propose a co-ordinate descent algorithm (Section 4) to implement our ROAD
proposal.

3.2. Variants of regularized optimal affine discriminant
At the sample level, NSCs (Tibshirani et al., 2002) and the FAIR (Fan and Fan, 2008) both use
shrunken versions of standardized mean differences to find the s features. In the same spirit, we
consider the following diagonal regularized optimal affine discriminant (DROAD) δwI

c
, where

wI
c = arg min

‖w‖1�c,wTμd=1
wT diag.Σ/w: .12/

The DROAD will be compared with NSCs (Tibshirani et al., 2002) and the FAIR (Fan and
Fan, 2008) in the simulation studies, and all these independence-based rules will be compared
with the ROAD and its two variants defined below.

A screening-based variant (to be proposed) of the ROAD aims at mimicking the perfor-
mance of the sub-Fisher (10 features) discriminant in Fig. 1. A fast way to select features
is independence screening, which uses the marginal information such as the two-sample
t-test. We can also enlarge the selected feature subspace by incorporating the features which are
most correlated with what have been chosen. This additional variant of the ROAD tracks the
performance of sub-Fisher (20 features) discriminant in Fig. 1. We shall refer to the two vari-
ants of the ROAD as S-ROAD1 and S-ROAD2. More description of these procedures, along
with their theoretical properties and numerical investigations, will be detailed in Sections 5
and 6.

A hint of the rationale behind including correlated features that do not show a difference
in means between the two classes is revealed through the two-feature example in Section 1.
Suppose that μ2 = 0. Then, by equation (5), the power of the discriminant using two fea-
tures is 1−Φ.Δ1=2

2 / where Δ2 =μ2
1=.1−ρ2/, whereas with the first feature alone the misclassi-

fication rate is 1 −Φ.Δ1=2
1 / where Δ1 =μ2

1. Therefore when the correlation |ρ| is large, using
two correlated features is far more powerful than employing only one feature, even though
the second feature has no marginal discrimination power. More intuition is granted by this
observation: at the population level, the best s features are not necessarily those with largest
standardized mean differences. In other words, with the two-class Gaussian model in mind,
when Σ is the correlation matrix, the most powerful s features for classification are not neces-
sarily the co-ordinates of μd with largest absolute values. This is illustrated by the next stylized
example.

Let X|Y =0∼N .μ1,Σ/ and X|Y =1∼N .μ2,Σ/, where μ1 = .0, 0, 0/T, μ2 = .4, 0:5, 1/T and

Σ=
( 1 −0:25 0

−0:25 1 0
0 0 1

)
:

Suppose that the objective is to choose two out of three variables for classification. If we rank
features by marginal information, e.g. by the absolute value of standardized mean differences,
then we would choose the first and third features. However, denote μd,ij the mean difference
vector for features i and j, and Σij the covariance matrix of features i and j; then the classifi-
cation power using features i and j depends on Γij =μT

d,ijΣ
−1
ij μd,ij. Simple calculation leads

to

Γ12 =18:4>17=Γ13:

Hence the most powerful two features for classification are not the first and third.
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4. Constrained co-ordinate descent

With a Lagrangian argument, we reformulate problem (10) as

w̄λ =arg min
wTμd=1

1
2 wTΣw +λ‖w‖1: .13/

In this section, we propose a constrained co-ordinate descent algorithm that is tailored to solving
our minimization problem with linear constraints. Optimization (13) is a constrained quadratic
programming problem and can be solved by existing software such as MOSEK. Although such
software are well regarded in practice, they are slow for our application. The structure of prob-
lem (13) could be exploited to obtain a more efficient algorithm. In line with the algorithm
LARS, we shall exploit the fact that the solution path has a piecewise linear property.

In the compressed sensing literature, it is common to replace an affine constraint by a quad-
ratic penalty. We borrow this idea and consider the following approximation to equation (13):

w̃λ,γ =arg min 1
2 wTΣw +λ‖w‖1 + 1

2γ.wTμd −1/2: .14/

In practice, we replace Σ by the pooled sample covariance Σ̂ and μ by the sample mean differ-
ence vector μ̂d. By theorem 6.7 in Ruszczynski (2006), we have

w̃λ,γ → w̄λ when γ →∞:

Note that we do not have to enforce the affine constraint strictly, because it serves only to nor-
malize our problem. In the optimization problem (14), when λ=0, the solution w̃0,γ is always
in the direction of Σ−1μd, the Fisher discriminant, regardless of the value of γ. In addition, this
observation is confirmed in the data analysis (Section 6.2) by the insensitivity of choice for γ.
Therefore we hold γ as a constant in practice.

We solve problem (14) by co-ordinate descent. Non-gradient algorithms seem to be less pop-
ular for convex optimization. For instance, the popular textbook Convex Optimization by Boyd
and Vandenberghe (2004) does not even have a section on these methods. The co-ordinate
descent method is an algorithm in which the p search directions are just unit vectors e1, . . . , ep,
where ei denotes the ith element in the standard basis of Rp. These unit vectors are used as
search directions in each search cycle until some convergence criterion has been met.

What makes the co-ordinate descent algorithm particularly attractive for problem (14) is that
there is an explicit formula for each co-ordinate update. For a given γ, fix τ and K ; then do
the optimization on a grid (of log-scale) of λ-values: τλmax =λK <λK−1 < . . .<λ1 =λmax. The
λmax is the minimum λ-value such that no variables enter the model; this is analogous to the
minimum requirement on c in inequality (11). In our implementation, we take τ = 0:001 and
K =100. The problem is solved backwards from λmax. When λ=λi+1, we use the solution from
λ=λi as the initial value. This kind of ‘warm start’ is very effective in improving computational
efficiency.

Consider a co-ordinate descent step to solve problem (14). Without loss of generality, suppose
that w̃j for all j �2 are given, and we need to optimize with respect to w1. The objective function
now becomes

g.w1/= 1
2. wT

1 w̃T
2 /

(
Σ11 Σ12
Σ21 Σ22

)(
w1
w̃2

)
+λ|w1|+λ|w̃2|1 + 1

2γ.wTμd −1/2:

When w1 �=0, we have

g′.w1/=Σ11w1 +Σ12w̃2 +λ sgn.w1/+γ.wTμd −1/μd1

= .Σ11 +γμ2
d1/w1 + .Σ12 +γμd1μ

T
d2/w̃2 +λ sgn.w1/−γμd1:
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By simple calculation (Donoho and Johnstone, 1994), the co-ordinatewise update has the form

w̃1 = S{γμd1 − .Σ12 +γμd1μ
T
d2/w̃2, λ}

Σ11 +γμ2
d1

,

where S.z, λ/= sgn.z/.|z|−λ/+ is the soft thresholding operator.
Now, we consider the convergence property of the co-ordinate descent algorithm. Here,

although the objective function is not strictly convex, it is strictly convex in each of the co-ordi-
nates.

To show that g.w1/ is strictly convex in w1, we decompose it as

g.w1/=g1.w1/+g2.w1/,

where g2.w1/=λ|w1| and

g1.w1/= 1
2. wT

1 w̃T
2 /

(
Σ11 Σ12
Σ21 Σ22

)(
w1
w̃2

)
+λ|w̃2|1 + 1

2γ.wTμd −1/2:

g1.w1/ is a quadratic function of w1 and g′′
1 .w1/=Σ11 +γμ2

d1 > 0 for all w1 ∈R. Therefore, the
function g1.·/ is strictly convex on R. Also, it is clear that g2 is convex on R. Therefore g=g1 +g2
is a strictly convex function on R.

Combining the co-ordinatewise strict convexity with the fact that the non-differentiable part
of the objective function is separable, theorem 5.1 of Tseng (2001) guarantees that co-ordinate
descent algorithms converge to co-ordinatewise minima. Moreover, since all directional deriv-
atives exist, every co-ordinatewise minimum is also a local minimum. A similar study on the
convergence of the co-ordinate descent algorithm can be found in Breheny and Huang (2011).

In each co-ordinate update, the computational complexity is O.p/. A complete cycle through
all p variables costs O.p2/ operations. From our experience, constrained co-ordinate descent
converges quickly after a few cycles if a warm start is used for the initial solution. Let C denote
the average number of cycles until convergence for each λ. Then our constrained co-ordinate
descent algorithm enjoys computational complexity O.CKp2/. The DROAD can be similarly
implemented by replacing the covariance matrix with its diagonal.

5. Asymptotic property

5.1. Risk approximation
Let ŵc be a sample version of wc in problem (10):

ŵc ∈ arg min
‖w‖1�c,wTμ̂d=1

wTΣ̂w: .15/

The fact that Σ̂ is only positive semidefinite leads to potential non-uniqueness of ŵc. Now, we
have three different classifiers: δw∞ = I{wT∞.X −μa/ > 0}, δwc = I{wT

c .X −μa/ > 0} and δ̂wc =
I{ŵT

c .X− μ̂a/>0}. The first two are oracle classifiers, requiring knowledge of unknown param-
eters μ1, μ2 and Σ, whereas the third is the feasible ROAD classifier based on the sample.
Their classification errors are given by equation (2). Explicitly, the error rates are respectively
W.δw∞/ (see expression (4)), W.δwc / and W.δ̂wc /. By equation (2), an obvious estimator of the
misclassification rate of δ̂wc is

Wn.δ̂wc /=1−Φ

{
ŵT

c μ̂d

.ŵT
c Σ̂ŵc/1=2

}
: .16/
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Two questions arise naturally.

(a) How close is W.δ̂wc /, the misclassification error of δ̂wc , to that of its oracle W.δwc /?
(b) Does Wn.δ̂wc / estimate W.δ̂wc / well?

Theorem 1 addresses these two questions. We introduce an intermediate optimization problem
for convenience:

w.1/
c = arg min

‖w‖1�c,wTμ̂d=1
wTΣw:

Theorem 1. Let sc = ‖wc‖0, s.1/
c = ‖w.1/

c ‖0 and ŝc = ‖ŵc‖0. Assume that λmin.Σ/ � σ2
0 > 0,

‖Σ̂−Σ‖∞ =Op.an/ and ‖μ̂d −μd‖∞ =Op.an/ for a given sequence an →0. Then, we have

W.δ̂wc /−W.δwc /=Op.dn/

and

Wn.δ̂wc /−W.δ̂wc /=Op.bn/,

where bn = .c2 ∨ sc ∨ s.1/
c /an and dn =bn ∨ .ŝcan/.

Remark 1. In theorem 1, ‖·‖∞ is the elementwise super norm. When Σ̂ is the sample covari-
ance, under some mild moment conditions, ‖Σ̂−Σ‖∞ =Op.

√{log.p/=n}; hence we can take
an =√{log.p/=n}. The first result in theorem 1 shows the difference between the misclassifica-
tion rate of δ̂wc and its oracle version δwc ; the second result indicates the error in estimating the
true misclassification rate of the ROAD.

Remark 2. In view of equation (2), one intends to choose a w that makes wTΣw small and
wTμd large. A compromise between these dual objectives leads to the utility function

U.w/=−wTΣw + ξμT
d w

as a proxy of the objective function (2) for a fixed ξ. For any ξ > 0, the optimal choice wÅ ∈
arg minU.w/ leads to the Fisher discriminant rule. Consider also the regularized versions

wÅ
c =arg min‖w‖1�cU.w/,

ŵÅ
c =arg min‖w‖1�cÛ.w/,

where Û.w/ is the utility function with Σ and μd estimated by Σ̂ and μ̂d. Then, it is easy to see
the following utility approximation: for any ‖w‖1 � c

|U.w/− Û.w/|�‖Σ̂−Σ‖∞c2 + ξc‖μ̂d −μd‖∞
and

|U.ŵÅ
c /−U.wÅ

c /|�2.‖Σ̂−Σ‖∞c2 + ξc‖μ̂d −μd‖∞/:

Remark 3. The most prominent technical challenge of our original problem (10) is due to
different dualities of penalization problems. For the population version (10), it can be reduced,
by the Lagrange multiplier method, to the utility U.w/ optimization problem in remark 2 with a
given ξ >0, whereas, for the sample version (15), it can be reduced to the utility Û.w/ optimiza-
tion problem with a different ξ̂. Therefore, the problem is not the same as the utility optimization
problem in remark 2: ξ̂ is difficult to bound. In fact, it is much more difficult and yields more
complicated results.

We now show how different the data projection direction in the regularized oracle can be
from that in the Fisher discriminant. To gain better insight, we reformulate the L1-constraint
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problem as the following penalized version:

wλ =arg min
w:μT

d w=1
wTΣw +λ‖w‖1: .17/

The following characterizes its convergence to the Fisher discriminant weight w∞ as λ→0.

Theorem 2. Let s be the size of the set {k : .Σ−1μd/k �=0}. Then, we have

‖wλ −w∞‖2 � λ
√

s

λmin.Σ/
,

where w∞ =Σ−1μd=.μT
dΣ−1μd/ is the normalized Fisher discriminant, optimizing problem

(17) with λ=0.

5.2. Screening-based regularized optimal affine discriminant
Following the idea of sure independence screening in Fan and Lv (2008), we prescreen all the
features before applying the ROAD method. The advantage of this two-step procedure is that
we have control on the total number of features that are used in the final classification rule.
A popular method for independent feature selection is the two-sample t-test (Tibshirani et al.,
2002; Fan and Fan, 2008), which is a specific case of marginal screening in Fan and Lv (2008).
The sure screening property of such a method was demonstrated in Fan and Fan (2008), which
selects consistently the features with different means in the same settings as ours.

Once the features have been selected, we apply the ROAD method, producing the original
screening-based ROAD S-ROAD1.

(a) Employ a screening method to obtain k features.
(b) Apply the ROAD to the k selected features.

In the first step, we use the t-statistics as the screening criterion and determine a data-driven
threshold. This idea is motivated by a false discovery rate criterion for choosing the marginal
screening threshold in Zhao and Li (2010). A random permutation π of {1, . . . , n} is used to
decouple Xi and Yi so that the resulting data .Xπ.i/, Yi/ follow a null model, by which we mean
that features have no prediction power for the class label. More specifically, the screening step
is carried out as follows.

Step 1: calculate the t-statistic tj for each feature j, where j =1, . . . , p.
Step 2: for the permuted data pairs .Xπ.i/, Yi/, recalculate the t-statistic tÅj , for j = 1, . . . , p.
(Intuitively, if j is the index of an important feature, |tj| should be larger than most of |tÅj |,
because the random permutation is meant to eliminate the prediction power of features.)
Step 3: for q∈ [0, 1], let ω.q/ be the qth quantile of {|tÅj |, j =1, 2, . . . , p}. Then, the selected set
A is defined as

A={j‖tj|�ω.q/}:

The choice of threshold is made to retain the features whose t-statistics are significant in the
two-sample t-test. Alternatively, if the user knows his k (owing to budget constraints, etc.), then
he can just rank |tj|s and choose the threshold accordingly.

S-ROAD1 tracks the performance of oracle procedures like the sub-Fisher (10 features) dis-
criminant in Fig. 1. The feature space that is obtained in the first step can be expanded by
including those features which are most correlated with what have already been selected. This
additional variant, S-ROAD2, aims at achieving the performance of the sub-Fisher (20 features)
type of procedure in Fig. 1.
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To elaborate on the theoretical properties of S-ROAD1, assume with no loss of generality
that the first k variables are selected in the screening step. Denote by Σk the upper left k × k

block of Σ and μk the first k co-ordinates of μd. Let

βc = arg min
‖β‖1�c,βTμk=1

βTΣkβ:

The quantities β̂c and β.1/
c are defined similarly to ŵc and w.1/

c (which were defined immediately
before theorem 1). Then denote by yc = .βT

c , 0T/T, ŷc = .β̂T
c , 0T/T and y.1/

c = .w.1/
c , 0T/T. The

next two theorems can be verified along lines similar to those for theorems 1 and 2. Hence, the
proofs have been omitted.

Theorem 3. If‖Σ̂k −Σk‖∞ =Op[
√{log.k/=n}],‖μ̂k −μk‖∞ =Op[

√{log.k/=n}], andλmin.Σk/

� δ0 > 0, then we have

W.δ̂yc /−W.δyc /=Op.en/

and

Wn.δ̂yc /−W.δyc /=Op.en/,

where en = .c2 ∨k/
√{log.k/=n}.

This result is cleaner than theorem 1, as the rate does not involve sc and ŝc: they are sim-
ply replaced by the upper bound k. Accurate bounds for sc and ŝc are of interest for future
exploration, but they are beyond the scope of this paper.

Theorem 4. Let yλ
k = arg miny:μT

d y=1,y∈Mk
R.y/+λ‖y‖1 where Mk is the subspace in Rp with

the last p−k components being 0, and y0 = ..Σ−1
k μk/T=.μT

k Σ−1
k μk/, 0T/T. Then we have

‖yλ
k −y0‖2 � λ

√
k

λmin.Σk/
:

5.3. Continuous piecewise linear solution path
We use the word ‘linear’ when referring to ‘affine’, in line with the status quo in the statistical
community. Continuous piecewise linear paths are of much interest to statisticians, as the prop-
erty reduces the computational complexity of solutions and justifies the linear interpolations
of solutions at discrete points. Previous well-known investigations include Efron et al. (2004)
and Rosset and Zhu (2007). Our set-up differs from others mainly in that, in addition to a
complexity penalty, there is also an affine constraint. Our proof calls in point set topology, and
is purely geometrical, in a spirit that is very different from the existing ones. In particular, we
stress that the continuity property is intuitively correct, but it is far from a trivial consequence
of the assumptions. We also believe that the claim holds true even if the .p − 1/-dimensional
affine subspace constraint is replaced by more generic constraints, though the technicality of
the proof must be more involved.

Theorem 5. Let μd ∈Rp be a constant, and Σ be a positive definite matrix of dimension p×p.
Let

wc = arg min
‖w‖1�c,wTμd=1

wTΣw;

then wc is a continuous piecewise linear function in c.
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Proposition 1. W.δwc / is a Lipschitz function in c.

Proof. Recall that

W.δwc /=1−Φ{1=R.wc/
1=2}:

By theorem 5 and the fact that composition of Lipschitz functions is again Lipschitz, the con-
clusion holds.

6. Numerical investigation

In this section, several simulation and real data studies are conducted. We compare the ROAD
and its variants S-ROAD1 (screening-based ROAD version 1), S-ROAD2 (screening-based
ROAD version 2) and DROAD with the NSC method, SCRDA, the FAIR, the NB method
and the naive Fisher rule (which uses the generalized inverse of the sample covariance matrix),
as well as the oracle.

In all simulation studies, the number of variables is p = 1000, and the sample size of the
training and testing data is n=300 for each class. Each simulation is repeated 100 times to test
the stability of the method. Without loss of generality, the mean vector of the first class μ1 is
set to be 0. We use fivefold cross-validation to choose the penalty parameter λ.

6.1. Equal correlation setting, sparse fixed signal
In this subsection, we consider the setting where Σi,i = 1 for all i= 1, . . . , p and Σi,j =ρ for all
i, j =1, . . . , p and i �= j, and take μ2 to be a sparse vector: μ2 = .1T

10, 0T
990/T, where 1d is a length

d vector with all entries 1, and 0d is a length d vector with all entries 0, where the sparsity size
is s0 =10. Also, we fix γ =10 in problem (14) for this simulation. Sensitivity of the performance
due to the choice of γ will be investigated in the next subsection.

The solution paths for the ROAD and DROAD of one realization are rendered in Fig. 2. It is
clear from Fig. 2 that, as the penalty parameter decreases (the index increases), both the ROAD
and DROAD use more features. Also, the cut-off point for the DROAD, where the number of
features starts to increase dramatically, tends to come later than that for the ROAD.

The simulation results for the pairwise correlations ranging from 0 to 0.9 are shown in Tables 1
and 2. The results for the naive Fisher rule are not included in these (and the subsequent) tables
because the test classification error is always around 50%, i.e. it is about the same as a random
guess. Also in the tables are the screening-based versions of the the ROAD. S-ROAD1 refers
to the version where we first apply the two-sample t-test to select any features with the corres-
ponding t-test statistic with absolute value larger than the maximum absolute t-test statistic
value calculated on the permuted data. S-ROAD2 does the same except, for each variable in
S-ROAD1’s prescreened set, it adds an additional variable which is most correlated with that
variable. Fig. 3, which is a graphical summary of Table 1, presents the median test errors for
various methods. We can see from Table 1 and Fig. 3 that the oracle classification error decreases
as ρ increases. This is due to a similar reason to the two-dimensional showcase in Section 1.
When ρ→1, all the variables contribute in the same way to boost the classification power. The
ROAD performs reasonably close to the oracle, whereas working independence-based methods
such as the DROAD, NSC, FAIR and NB methods fail when ρ is large. The huge discrepancy
shows the advantage of employing the correlation structure. Since SCRDA also employs the
correlation structure, it does not fail when ρ is large. However, the ROAD still outperforms
SCRDA in all the correlation settings. S-ROAD1 and S-ROAD2 both have misclassification
rates which are similar to that of the ROAD. It is worth emphasizing that the merits of the
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Fig. 2. Solution path for (a) the ROAD and (b) the DROAD: equal correlation setting .ρD 0:5/ and sparse
signal (s0) as in Section 6.1
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Table 1. Equal correlation setting and fixed signal: median of the percentage for testing classification error
and standard deviations (in parentheses)†

ρ Results for the following methods:

ROAD S-ROAD1 S-ROAD2 DROAD SCRDA NSC FAIR NB Oracle

0 6.0 (1.2) 6.0 (1.1) 6.0 (1.2) 5.7 (1.1) 6.3 (1.0) 5.9 (1.0) 5.7 (1.0) 11.2 (1.4) 5.5 (1.1)
0.1 6.3 (2.5) 12.2 (5.0) 8.8 (2.4) 11.6 (5.1) 10.3 (1.4) 11.1 (3.0) 12.4 (1.4) 26.8 (10.1) 5.0 (0.9)
0.2 5.3 (1.0) 16.0 (6.3) 8.7 (2.5) 16.1 (7.5) 8.5 (1.2) 14.5 (4.3) 17.3 (1.7) 34.8 (11.6) 4.0 (0.8)
0.3 4.2 (0.9) 19.1 (7.9) 7.8 (2.6) 19.1 (9.4) 6.6 (1.1) 17.1 (5.5) 20.8 (1.7) 39.3 (12.3) 3.2 (0.7)
0.4 3.2 (0.8) 22.8 (9.4) 6.5 (2.6) 22.2 (9.9) 4.8 (1.0) 20.5 (6.1) 23.2 (1.8) 41.6 (11.3) 2.0 (0.6)
0.5 2.0 (0.6) 25.8 (11.0) 4.8 (1.4) 25.2 (10.2) 2.9 (0.7) 23.2 (6.0) 25.3 (1.6) 43.5 (11.1) 1.3 (0.5)
0.6 1.0 (0.4) 18.3 (12.4) 3.3 (1.3) 28.1 (10.3) 1.5 (0.5) 25.8 (5.7) 26.8 (1.8) 44.4 (12.1) 0.7 (0.3)
0.7 0.3 (0.2) 15.5 (13.6) 1.7 (1.0) 29.1 (10.1) 0.5 (0.3) 27.0 (8.2) 28.2 (2.0) 45.2 (12.3) 0.2 (0.2)
0.8 0.0 (0.1) 5.0 (14.0) 0.3 (0.4) 29.5 (9.9) 0.0 (0.1) 28.3 (8.7) 29.2 (2.0) 46.2 (10.3) 0.0 (0.1)
0.9 0.0 (0.0) 0.6 (14.8) 0.0 (0.1) 30.3 (7.6) 0.0 (0.2) 29.9 (8.0) 30.2 (1.9) 46.8 (8.8) 0.0 (0.0)

†Signals all equal to 1. s0 =10.

Table 2. Equal correlation setting and fixed signal: median of number of non-zero coefficients and standard
deviations (in parentheses)†

ρ Results for the following methods:

ROAD S-ROAD1 S-ROAD2 DROAD SCRDA NSC FAIR

0 16.00 (24.16) 10.00 (1.31) 17.00 (4.31) 29.50 (58.54) 10.00 (13.25) 10.00 (44.86) 11.00 (1.62)
0.1 117.50 (30.50) 11.00 (3.32) 21.00 (4.15) 14.00 (122.02) 1000.00 (345.48) 35.50 (117.32) 10.00 (0.27)
0.2 130.50 (33.33) 11.00 (6.99) 22.00 (8.98) 15.50 (111.42) 1000.00 (0.00) 95.00 (120.17) 10.00 (0.69)
0.3 136.50 (36.16) 11.00 (11.56) 22.00 (10.38) 17.50 (106.16) 1000.00 (0.00) 103.50 (117.52) 9.00 (1.19)
0.4 135.00 (34.43) 10.00 (14.21) 22.00 (17.07) 10.00 (98.10) 1000.00 (0.00) 70.00 (131.65) 8.00 (1.33)
0.5 138.50 (38.17) 9.00 (21.71) 22.00 (21.56) 10.00 (105.33) 1000.00 (0.00) 65.00 (137.97) 7.00 (1.30)
0.6 148.00 (49.74) 10.50 (27.92) 22.00 (31.88) 10.00 (110.23) 1000.00 (0.00) 38.00 (141.91) 6.00 (1.30)
0.7 170.50 (52.29) 11.00 (37.37) 22.00 (41.76) 1.00 (118.43) 1000.00 (0.00) 27.50 (140.10) 5.00 (1.20)
0.8 203.00 (27.72) 12.00 (50.36) 24.00 (59.23) 1.00 (143.83) 1000.00 (10.92) 15.00 (157.98) 5.00 (1.29)
0.9 151.50 (8.02) 14.00 (55.32) 28.00 (50.45) 1.00 (153.27) 1000.00 (56.30) 14.00 (225.38) 3.00 (1.08)

†Signals all equal to 1. s0 =10.

screening-based ROADs mainly lie in the computation cost, which is reduced significantly by
the prescreening step.

The ROAD is a very robust estimator. It performs well even when all the variables are inde-
pendent, in which case there could be a large amount of noise for fitting the covariance matrix.
Table 1 indicates that the ROAD has almost the same performance as the DROAD, NSC and
FAIR methods under the independence assumption, i.e. ρ= 0. As ρ increases, the edge of the
ROAD becomes more substantial. In general, the ROAD is recommended on the grounds that,
even with a pairwise correlation of about 0.1 (which is quite common in microarray data as well
as financial data), the gain is substantial.

Another interesting observation is that the DROAD performs similarly to the NSC and
FAIR methods in terms of classification error. An intuitive explanation is that they are all
‘sparse’ independence rules. NSCs use soft thresholding on the standardized sample mean
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Fig. 3. Median classification error as a function of ρ in the equicorrelation matrix (sparse μd as in Section
6.1): , ROAD; �, DROAD; , SCRDA; �, NSC; , FAIR; – – – , NB; . . . . . . ., oracle

difference, and its equivalent lasso derivation can be found in Wang and Zhu (2007). The
FAIR method selects features with large marginal t-statistics in absolute values, whereas the
DROAD is another L1 penalized independence rule, whose implementation is different from
NSCs.

Table 2 summarizes the number of features that are selected by different classifiers. Note that
the ROAD mimics Fisher discriminant co-ordinate Σ−1μd, which has p=1000 non-zero entries
under our simulated model. Therefore, the large number of features selected by the ROAD is
not out of expectation.

6.2. Effect of γ
Under the settings of the previous subsection, we look into the variation of the ROAD’s
performance as γ changes. In Table 3, the number of active variables varies; however, the
median classification error remains about the same for a broad range of γ-values. The rea-
son is that the cross-validation step chooses the ‘best’ λ according to a specific γ. Therefore,
the final performance remains almost unchanged. Since our primary concern is the classifi-
cation error, we fix γ = 10 for simplicity in the subsequent simulations and in the real data
analysis.
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Table 3. Equal correlation setting, signals all equal to 1
and s0 D10: results for the ROAD and various γ

γ Result for the following values of ρ:

ρ=0 ρ=0.5 ρ=0.9

Median classification error (%)
0.01 5.8 (1.2) 2.7 (0.6) 0.2 (0.2)
0.1 6.0 (1.2) 2.0 (0.6) 0.2 (0.1)
1 6.0 (1.3) 2.0 (0.6) 0.0 (0.1)

10 6.0 (1.2) 2.0 (0.6) 0.0 (0.0)
100 6.2 (1.2) 2.3 (0.6) 0.0 (0.1)

Median number of non-zeros
0.01 14.0 (19.2) 129.5 (42.5) 657.0 (179.6)
0.1 14.0 (19.6) 137.0 (37.6) 773.5 (103.2)
1 16.5 (22.9) 139.0 (37.9) 514.0 (39.7)

10 16.0 (24.2) 138.5 (38.2) 151.5 (8.0)
100 22.0 (16.1) 114.5 (9.4) 94.0 (9.6)

6.3. Block diagonal correlation setting, sparse fixed signal
In this subsection, we follow the same set-up as in Section 6.1 except that the covariance matrix
Σ is taken to be block diagonal. The first block is a 20×20 equicorrelated matrix and the sec-
ond block is a .p − 20/ × .p − 20/ equicorrelated matrix, both with pairwise correlation ρ. In
other words, Σi,i = 1 for all i= 1, . . . , p, Σi,j =ρ for all i, j = 1, . . . , 20 and i �= j, Σi,j =ρ for all
i, j =21, . . . , p and i �= j, and the rest of the elements are 0s. As before, we examine the perfor-
mances of various estimators when ρ varies. The percentages for testing error and the number
of selected features in the estimators are shown in Tables 4 and 5 respectively.

In this block diagonal setting, we have observed similar results to those in Section 6.1: the
ROAD and S-ROAD2 perform significantly better than the other methods. One interesting
phenomenon is that S-ROAD1 does not perform well when ρ is large. The reason is that the

Table 4. Block diagonal correlation setting and sparse fixed signal: median of the percentage for testing
classification error and standard deviations (in parentheses)†

ρ Results for the following methods:

ROAD S-ROAD1 S-ROAD2 DROAD SCRDA NSC FAIR NB Oracle

0 6.0 (1.2) 6.0 (1.1) 6.0 (1.2) 5.7 (1.1) 6.0 (0.1) 5.5 (0.3) 5.7 (1.0) 11.2 (1.4) 5.5 (1.1)
0.1 10.8 (3.6) 13.0 (4.8) 10.3 (3.0) 12.8 (4.4) 13.0 (0.3) 12.5 (0.8) 12.7 (1.5) 25.7 (7.6) 8.8 (1.2)
0.2 10.7 (4.1) 18.0 (5.7) 9.7 (3.6) 17.7 (5.9) 14.2 (1.1) 17.2 (0.4) 17.7 (1.6) 34.4 (7.9) 8.8 (1.2)
0.3 9.5 (3.8) 23.2 (5.5) 8.8 (4.0) 23.2 (5.6) 12.7 (0.9) 20.0 (0.8) 20.4 (1.6) 38.3 (7.5) 7.7 (1.0)
0.4 8.0 (3.3) 29.7 (4.2) 7.5 (4.2) 29.3 (4.1) 11.0 (1.2) 23.8 (1.3) 23.2 (1.8) 41.0 (6.9) 6.6 (1.1)
0.5 6.2 (2.6) 30.1 (3.9) 5.7 (0.9) 30.0 (3.1) 8.7 (0.4) 26.2 (1.7) 25.1 (1.7) 42.2 (6.6) 5.0 (1.0)
0.6 4.2 (0.9) 30.3 (4.2) 4.0 (0.8) 30.3 (2.2) 6.4 (0.1) 26.5 (1.2) 26.8 (1.8) 43.6 (7.0) 3.5 (0.7)
0.7 2.3 (0.7) 30.0 (6.4) 2.2 (0.7) 30.6 (2.1) 2.5 (0.7) 28.1 (3.2) 28.2 (2.0) 44.2 (6.5) 1.8 (0.6)
0.8 0.8 (0.4) 29.8 (9.8) 0.7 (0.4) 30.6 (2.1) 0.6 (0.4) 29.2 (1.6) 29.2 (2.0) 44.8 (5.7) 0.7 (0.3)
0.9 0.0 (0.1) 29.8 (12.8) 0.0 (0.1) 30.6 (1.9) 0.2 (0.2) 29.2 (1.2) 30.2 (1.9) 45.2 (4.9) 0.0 (0.1)

†Signals all equal to 1. s0 =10.
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Table 5. Block diagonal correlation setting and fixed signal: median of the number of non-zero coefficients
and standard deviations (in parentheses)†

ρ Results for the following methods:

ROAD S-ROAD1 S-ROAD2 DROAD SCRDA NSC FAIR

0 16.00 (24.16) 10.00 (1.31) 17.00 (4.31) 29.50 (58.54) 10.00 (1.15) 10.00 (1.73) 11.00 (1.62)
0.1 48.50 (35.99) 10.00 (2.73) 20.00 (3.77) 14.00 (26.73) 33.00 (17.79) 65.00 (38.84) 18.00 (2.67)
0.2 48.00 (31.48) 10.00 (4.59) 20.00 (5.84) 10.00 (18.23) 38.00 (117.54) 10.00 (16.17) 18.00 (2.77)
0.3 47.50 (42.75) 9.00 (5.28) 20.00 (6.03) 10.00 (11.80) 208.00 (103.94) 10.00 (13.58) 18.00 (3.91)
0.4 40.50 (32.42) 1.00 (4.82) 20.00 (10.08) 1.00 (9.25) 27.00 (90.95) 33.00 (14.22) 17.00 (5.43)
0.5 40.50 (33.23) 1.00 (4.88) 20.00 (10.10) 1.00 (8.51) 24.00 (76.79) 10.00 (1.15) 7.00 (5.98)
0.6 39.50 (30.03) 1.00 (3.74) 20.00 (14.53) 1.00 (5.92) 127.50 (6.36) 6.50 (2.12) 6.00 (5.98)
0.7 40.00 (41.35) 1.00 (4.71) 20.00 (8.07) 1.00 (2.49) 94.50 (2.12) 9.50 (0.71) 5.00 (5.52)
0.8 55.00 (58.67) 1.00 (6.20) 20.00 (18.32) 1.00 (0.93) 58.00 (2.83) 6.00 (5.66) 5.00 (4.84)
0.9 120.00 (30.66) 1.00 (21.29) 20.00 (30.46) 1.00 (0.35) 20.00 (0.00) 8.00 (2.83) 3.00 (3.81)

†Signals all equal to 1. s0 =10.

current true model has 20 important features and, by looking only at the marginal contribution,
S-ROAD1 misses some important variables, as shown in Table 4. Indeed, because those fea-
tures have no expressed mean differences, it does not fully take advantage of highly correlated
features. In contrast, S-ROAD2 can pick up all the important variables, takes advantage of
correlation structure and leads to a sparser model than the ROAD. In view of the results from
this simulation setting and the previous setting, we recommend S-ROAD2 over S-ROAD1.

6.4. Block diagonal negative correlation setting, sparse fixed signal
In this subsection, we again follow a similar set-up to that in Section 6.1. Here, the covariance
matrix Σ is taken to be block diagonal with each block size equal to 10. Each block is an equicor-
related matrix with pairwise correlation ρ=−0:1. In other words, Σ=diag.Σ0, . . . ,Σ0/, where
Σ0 is a 10 × 10 equicorrelated matrix with correlation −0:1. Here, μ2 = 0:5.1T

5 , 0T
5 , 1T

5 , 0T
985/T

and the sparsity size is s0 = 10. As before, we examine the performances of various estimators
when ρ varies. The percentages for testing error and the number of selected features in the
estimators are shown in Table 6.

Table 6. Block diagonal negative correlation
setting, sparse fixed signal: median error and
number of non-zero coefficients with standard
deviations in parentheses

Method Error (%) Non-zero
coefficients

ROAD 7.3 (3.4) 168.00 (47.59)
S-ROAD1 16.0 (5.2) 10.00 (2.40)
S-ROAD2 12.7 (3.4) 20.00 (3.58)
DROAD 17.8 (8.0) 15.50 (15.32)
SCRDA 18.5 (1.1) 24.00 (0.58)
NSC 20.8 (0.6) 41.00 (17.90)
FAIR 24.8 (2.1) 59.00 (4.27)
NB 33.5 (2.1) —
Oracle 3.2 (0.7) —
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Table 7. Random-correlation setting, double-exponential
signal: median error and number of non-zero coefficients
with standard deviations in parentheses

Method Error (%) Non-zero
coefficients

ROAD 2.0 (0.6) 83.00 (39.54)
S-ROAD1 11.0 (5.2) 4.00 (8.13)
S-ROAD2 5.8 (3.9) 9.00 (10.69)
DROAD 17.0 (2.2) 1.00 (3.89)
SCRDA 5.2 (1.1) 1000.00 (0.00)
NSC 16.2 (1.3) 4.00 (0.58)
FAIR 17.0 (1.6) 1.00 (0.17)
NB 46.2 (2.4) —
Oracle 1.3 (0.5) —

6.5. Random-correlation setting, double-exponential signal
To evaluate the stability of the ROAD, we take a random matrix Σ as the correlation structure
and use a signal μ whose non-zero entries come from a double-exponential distribution. A
random-covariance matrix Σ is generated as follows.

(a) For a given integer m (here we take m = 10), generate a p × m matrix Ω where Ωi,j ∼
Unif.−1, 1/. Then the matrix ΩΩT is positive semidefinite.

(b) Denote cΩ = mini{.ΩΩT/ii}. Let Ξ=ΩΩT + cΩI, where I is the identity matrix. It is
clear that Ξ is positive definite.

(c) Normalize the matrix Ξ to obtain Σ whose diagonal elements are 1.

For the signal, we take μ to be a sparse vector with sparsity size s=10, and the non-zero elements
are generated from the double-exponential distribution with density function

f.x/= exp.−2|x|/:
Table 7 summarizes the results. It shows that, even under the random-correlation setting and

random signals, our ROAD procedure still outperforms other competing classification rules
such as SCRDA, NSCs and the FAIR in terms of the classification error.

6.6. Real data
Though the ROAD seems to perform best in a broad spectrum of idealized experiments, it
must be tested against reality. We now evaluate the performance of our newly proposed estima-
tor on three popular gene expression data sets: ‘leukaemia’ (Golub et al., 1999), ‘lung cancer’
(Gordon et al., 2002) and the ‘neuroblastoma data set’ (Oberthuer et al., 2006). The first two
data sets come with predetermined, separate training and test sets of data vectors. The leukae-
mia data set contains p = 7129 genes for n1 = 27 acute lymphoblastic leukaemia and n2 = 11
acute myeloid leukaemia vectors in the training set. The test set includes 20 acute lympho-
blastic leukaemia and 14 acute myeloid leukaemia vectors. The lung cancer data set contains
p=12533 genes for n1 =16 adenocarcinoma and n2 =16 mesothelioma training vectors, along
with 134 adenocarcinoma and 15 mesothelioma test vectors. The neuroblastoma data set, which
was obtained via the ‘MicroArray quality control phase-II’ project, consists of gene expres-
sion profiles for p = 10707 genes from 251 patients of the German neuroblastoma trials
NB90–NB2004, diagnosed between 1989 and 2004. We analysed the gene expression data with
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Table 8. Classification error and number of
selected genes by various methods for the leu-
kaemia data†

Method Training Testing Number
error error of genes

selected

ROAD 0 1 40
S-ROAD1 0 3 49
S-ROAD2 0 1 66
SCRDA 1 2 264
FAIR 1 1 11
NSC 1 3 24
NB 0 5 7129

†The training and testing samples are of sizes 38
and 34 respectively.

Table 9. Classification error and number of
selected genes by various methods for the lung
cancer data†

Method Training Testing Number
error error of genes

selected

ROAD 1 1 52
S-ROAD1 1 4 56
S-ROAD2 1 1 54
SCRDA 0 3 2410
FAIR 0 7 31
NSC 0 10 38
NB 6 36 12533

†The training and testing samples are of sizes 32
and 149 respectively.

Table 10. Classification error and number of
selected genes by various methods for the
neuroblastoma data†

Method Training Testing Number
error error of genes

selected

ROAD 3 33 33
S-ROAD1 22 47 1
S-ROAD2 14 37 9
SCRDA 16 37 1
FAIR 15 44 18
NSC 16 35 41
NB 14 32 10707

†The training and testing samples are of sizes 83
and 163 respectively.
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3-year event-free survival, which indicates whether a patient survived 3 years after the diagnosis
of neuroblastoma. There are 239 subjects with 3-year event-free survival information available
(49 positive and 190 negative). We randomly select 83 subjects (19 positive and 64 negative,
which are about a third of the total subjects) as the training set and the rest as the test set. The
readers can find more details about the data sets in Golub et al. (1999), Gordon et al. (2002)
and Oberthuer et al. (2006).

Following Dudoit et al. (2002) and Fan and Fan (2008), we standardized each sample to
zero mean and unit variance. The classification results for the ROAD, S-ROAD1, S-ROAD2,
SCRDA, FAIR, NSC and NB methods are shown in Tables 8–10. For the leukaemia and lung
cancer data, the ROAD performs the best in terms of classification error. For the neuroblastoma
data, the NB method performs best; however, it makes use of all 10707 genes, which is not very
desirable. In contrast, the ROAD has a competitive performance in terms of classification error
and it selects only 33 genes. Although SCRDA has a close performance, the number of selected
variables varies considerably for the three data set (264, 2410 and 1). Overall, the ROAD is a
robust classification tool for high dimensional data.

7. Discussion

With a simple two-class Gaussian model, we explored the bright side of using correlation struc-
ture for high dimensional classification. Targeting directly on the classification error, the ROAD
employs an unregularized pooled sample covariance matrix and sample mean difference vector
without suffering from the curse of dimensionality and accumulation of noise. The sparsity of
chosen features is evident in simulations and real data analysis; however, we have not discovered
intuitively good conditions on Σ and μd, such that a certain desirable sparsity pattern of ŵc

follows. We resolve a part of the problem by introducing screening-based variants of the ROAD,
but the precise control of the sparsity size is worth further investigation. Furthermore, we can
explore the conditions for model selection consistency.

The MATLAB language software for implementing the ROAD can be downloaded from
the MATLAB central file exchange, http://www.mathworks.com/matlabcentral/
fileexchange/33160.

In this paper, we have restricted ourselves to linear rules. They can be easily extended to
non-linear discriminants via transformations such as low order polynomials or spline basis
functions. One may also use the popular ‘kernel tricks’ in the machine learning community. See,
for example, Hastie et al. (2009) for more details. After the features have been transformed, we
can apply the ROAD method. One essential technical challenge of the current paper is rooted
in a stochastic linear constraint. The precise role of this constraint has not been completely
pinned down. In what follows, a preliminary proposal is provided for extending the ROAD to
multiclass settings.

7.1. Extension to multiclass settings
In this section, we outline an extension of the ROAD to multiclass classification problems.
Suppose that there are K classes and, for j =1, . . . , K, the jth class has mean μj and common
covariance Σ. Denote the overall mean of features by μa =K−1ΣK

j=1μj. Fisher’s reduced rank
approach to multiclass classification is a minimum distance classifier in some lower dimensional
projection space. The first step is to find s �K − 1 discriminant co-ordinates (wÅ

1 , . . . , wÅ
s ) that

separate the population centroids {μj}K
j=1 the most in the projected space S = span.wÅ

1 , . . . , wÅ
s /.

Then the population centroids μj and new observation X are both projected onto S. The obser-
vation X will be assigned to the class whose projected centroid is closest to the projection of
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X onto S. Note that it is usually not necessary to compute all K −1 discriminant co-ordinates
whose span is that of all K population centroids; the process can stop as long as the projected
population centroids are well spread out in S.

We adopt the above procedure for multiclass classification. However, the large p–small n
scenario demands regularization in selecting discriminant co-ordinates. Indeed, in Fisher’s pro-
posal the first discriminant co-ordinate wÅ

1 is the solution of

max
w

wTBw
wTΣw

, .18/

where B =ΨTΨ, and the jth column of ΨT is μj −μa. A multiple of B is the between-class
variance matrix. The second discriminant co-ordinate wÅ

2 is the maximizer of wTBw=.wTΣw/

with constraint wÅT
1 Σw=0, and the subsequent discriminant co-ordinates are determined anal-

ogously.
Since solving problem (18) is the same as looking for the eigenvector of Σ−1=2BΣ−1=2 corres-

ponding to the largest eigenvalue, diverging spectrum and noise accumulation must be con-
sidered when we work on the sample. To address these issues, we regularize w as in the binary
case,

min
‖w‖1�c,wTBw=1

wTΣw, .19/

whose solution is the first regularized discriminant co-ordinate w̄Å
1 . Here, equation (19) is related

to the null space method in Krzanowski et al. (1995). The second regularized discriminant co-
ordinate is obtained by solving problem (19) with additional constraint w̄ÅT

1 Σw = 0. Other
regularized discriminant co-ordinates can be found similarly. With these s (�K −1) regularized
discriminant co-ordinates, the classifier is now based on the minimum distance to the projected
centroids in the s-dimensional space that is spanned by {w̄Å

j }s
j=1.

The implementation and theoretical properties for a multiclass ROAD are interesting topics
for future research.
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Appendix A: Proofs

A.1. Proof of theorem 1
We now show the first part of theorem 1. Let f0.w/ = wTμd=.wTΣw/1=2, f1.w/ = wTμ̂d=.wTΣw/1=2 and
f2.w/=wTμ̂d=.wTΣ̂w/1=2. Then, it follows easily that

|f0.wc/−f2.ŵc/|�Λ1 +Λ2,

where Λ1 = |f0.wc/ − f1.w.1/
c /| and Λ2 = |f1.w.1/

c / − f2.ŵc/|. We now bound both terms separately in the
following two steps.

A.1.1. Step 1 (bound Λ1)
For any w, we have
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|f0.w/−f1.w/|�
∣∣∣∣

wTμd

.wTΣw/1=2
− wTμ̂d

.wTΣw/1=2

∣∣∣∣

� ‖w‖1‖μ̂d −μd‖∞
‖w‖2 λ

1=2
min.Σ/

�√‖w‖0
‖μ̂d −μd‖∞

σ0

=√‖w‖0 Op.an/: .20/

Since w.1/
c maximizes f1.·/, it follows that

f0.wc/−f1.w.1/
c /=f0.wc/−f1.wc/+{f1.wc/−f1.w.1/

c /}
�f0.wc/−f1.wc/, .21/

and similarly noticing that wc maximizes f0.·/, we have

f1.w.1/
c /−f0.wc/=f1.w.1/

c /−f0.w.1/
c /+{f0.w.1/

c /−f0.wc/}
�f1.w.1/

c /−f0.w.1/
c /: .22/

Combining the results of inequalities (21) and (22) and using equation (20), we conclude that

Λ1 =|f0.wc/−f1.w.1/
c /|=Op{.sc ∨ s.1/

c /an}:

By the Lipschitz property of Φ,

|Φ{f1.w.1/
c /}−Φ{f0.wc/}|=Op{.sc ∨ s.1/

c /an}:

A.1.2. Step 2 (bound Λ2)
Note that w.1/

c and ŵc both are in the set {w : wTμd =1, ‖w‖1 �1}. Therefore, by definition of minimizers,
we have

w.1/
c

T
Σw.1/

c −ŵT
c Σŵc �0,

ŵc
TΣ̂ŵc −w.1/

c

T
Σ̂w.1/

c �0:

Consequently,

w.1/
c

T
Σw.1/

c − ŵT
c Σ̂ŵc = .w.1/

c

T
Σw.1/

c − ŵT
c Σŵc/+ ŵT

c Σŵc − ŵT
c Σ̂ŵc

� ŵT
c .Σ− Σ̂/ŵc

�‖Σ− Σ̂‖∞‖ŵc‖2
1

� c2‖Σ− Σ̂‖∞
=Op.anc2/: .23/

By the same argument, we also have

ŵT
c Σ̂ŵc −w.1/

c

T
Σw.1/

c = .ŵT
c Σ̂ŵc −w.1/

c

T
Σ̂w.1/

c /+w.1/
c

T
Σ̂w.1/

c −w.1/
c

T
Σw.1/

c

�w.1/
c

T
.Σ̂−Σ/w.1/

c

� c2‖Σ− Σ̂‖∞
=Op.anc2/: .24/

Combination of expressions (23) and (24) leads to

|ŵT
c Σ̂ŵc −w.1/

c

T
Σw.1/

c |=Op.anc2/:

Let g.x/ = Φ.x−1=2/. The function g is Lipschitz on .0, ∞/, as g′.x/ is bounded on .0, ∞/. Hence,
|Φ{f2.ŵc/}−Φ{f0.w.1/

c /}|=Op.anc2/. Thus,
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|Wn.δ̂wc , θ/−W.δwc , θ/|� |Φ{f2.ŵc/}−Φ{f0.w.1/
c /}|+ |Φ{f1.ŵ

.1/
c /}−Φ{f0.wc/}|

=Op{.sc ∨ s.1/
c /an}+Op.anc2/

=Op.bn/:

We now prove the second result of the theorem 1. Since |ŵT
c Σŵc − ŵT

c Σ̂ŵc|=Op.anc2/, we have

|Φ{f1.ŵc/}−Φ{f2.ŵc/}|=Op.anc2/: .25/

By equations (20) and (25), and the first part of theorem 1, we have

|W.δ̂wc , θ/−W.δwc , θ/|= |Φ{f0.ŵc/}−Φ{f0.wc/}|
� |Φ{f0.ŵc/}−Φ{f1.ŵc/}|+ |Φ{f1.ŵc/}−Φ{f2.ŵc/}|+ |Φ{f2.ŵc/}−Φ{f0.wc}|
=Op.ŝcan/+Op.anc2/+Op.bn/

=Op.dn/:

This completes the proof of theorem 1.

A.2. Proof of theorem 2
Let wλ =w∞ +γλ. Then, from the definition of wλ, we have

γλ = argmin
μT

d w∞+μT
d γ=1

R.w∞ +γ/+λ‖w∞ +γ‖1

=argmin
μT

d γ=0

f.γ/, .26/

where f.γ/=R.γ/+λΣk∈Kc |γk|+λΣk∈K.|wk
∞ +γk|− |wk

∞|/. In the last statement, we used the fact that

wT
∞Σγ =μT

d γ=.μT
dΣ

−1μd/=0:

We write γ for γλ for short in what follows.
By equation (26), we have f.γ/�f.0/=0. This implies that

R.γ/�λΣk∈K.|wk
∞|− |wk

∞ +γk|/�λΣk∈K|γk|�λ
√

s‖γ‖2:

However, R.γ/�λmin.Σ/‖γ‖2
2. Bringing the upper and lower bound of R.γ/ together, we conclude that

‖γ‖2 � λ
√

s

λmin.Σ/
:

The proof is now complete.

A.3. Proof of theorem 5
By the positive definiteness of Σ, Σ−1 and Σ−1=2 are also positive definite. Let v =Σ1=2w; then the trans-
formation v �→w is linear. Define

vc = argmin
‖Σ−1=2v‖1�c, vTμ̄d=1

vTv,

where μ̄d =Σ−1=2μd. It is enough to show that vc is piecewise linear in c.
Let Ωc ={v :‖Σ−1=2v‖1 �c} and S ={v : vTμ̄d =1}. When c is small, the solution set is ∅; when c is large,

the constraint Ωc is inactive. Denote by ‘a’ the smallest ‘c’ such that Ωc∩S �=∅, and by ‘b’ the smallest such
that vc are the same for all c�b. Hence we are interested in c∈ [a, b], when changes in c actually affect the
solution.

Let P be the projection of the origin O onto the hyperplane S in the p-dimensional space. Let

Fc ={S0
1,c, . . . , S0

j0,c; S1
1,c, . . . , S1

j1,c; . . . ; S
p−1
1,c , . . . S

p−1
jp−1,c},

where Si
j,c denotes an i-dimensional face of Ωc, i.e. S0

j,c represents a vertex, S1
j,c an edge and S

p−1
j,c a facet.

It is clear that Fc is a finite set.
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Define a mapping ϕ : [a, b]→Z×Z, where ϕ.c/= .i, j/ such that

(a) vc ∈Si
j,c and

(b) i is minimal.

By definition, this mapping is single valued.
For any c0 ∈ .a, b], denote Dc0 ={.i, j/|∀">0, ∃c∈ [c0 −", c0/ subject to ϕ.c/= .i, j/}. The set Dc0 is non-

empty because the collection {.i, j/∈Z×Z|Si
j,c ∈Fc} is finite. Then the theorem follows from compactness

of [a, b] and lemma 2, remark 4 and lemma 3.

Lemma 1. ∀c0 ∈ .a, b], ∃" > 0 such that ∀.i, j/∈Dc0 and ∀c ∈ .c0 − ", c0/, Pi
j,c ∈Si◦

j,c ∩S, where Pi
j,c is the

projection of P onto S ∩ S̃i
j,c, and S̃i

j,c denotes the i-dimensional affine space in which Si
j,c embeds, and

Si◦
j,c is the interior of Si

j,c, where the topology is the natural subspace topology restricted to S̃i
j,c.

Proof. Fix c0 ∈ .a, b]. For any .i, j/∈Dc0 and "̄ > 0, by the definition of Dc0 , there exists c′ ∈ [c0 − "̄, c0/
such that ϕ.c′/= .i, j/. The minimality of i in the definition for ϕ implies that vc′ =Pi

j,c′∈Si◦
j,c′ , which is in the

interior of Si
j,c′ . Therefore, Pi

j,c′ ∈Si◦
j,c′ ∩S. By arbitrariness of "̄, ∃.cn/↗ c0 such that Pi

j,cn
∈Si◦

j,cn
∩S for all n.

It can also be shown that {c|Pi
j,c ∈Si◦

j,c ∩S} is connected: let Pi
j,c′

1
∈Si◦

j,c′
1
∩S and Pi

j,c′
2
∈Si◦

j,c′
2
∩S, c′

1 <c′
2.

For any c′
3 ∈ .c′

1, c′
2/, Pi

j,c′
3

is on the line segment with end points Pi
j,c′

1
and Pi

j,c′
2

because S̃i
j,c

are parallel affine subspaces in Rp. Let Si
j,cone := ∪c�0 Si◦

j,c; then it is a cone. Since Pi
j,c′

1
∈ Si

j,cone and
Pi

j,c′
2
∈ Si

j,cone, we have Pi
j,c′

3
∈ Si

j,cone. Then, Pi
j,c′

3
∈ Si

j,cone ∩ S ∩ S̃i
j,c′

3 = Si◦
j,c′

3
∩ S. Hence, ∃"ij > 0 such that,

for all c∈ [c0 − "ij , c0/, Pi
j,c ∈Si◦

j,c. Take "=min.i,j/∈Dc0
"ij ; the claim follows.

Lemma 2. ∀c0 ∈ .a, b], Dc0 is a singleton, and ∃"′ > 0 such that vc is linear in c on .c0 − "′, c0/.

Proof. Fix c0 ∈ .a, b]. We claim that, for some .i, j/∈Dc0 , there are positive "′.�" that validates lemma 1)
such that, for any c∈ .c0 − "′, c0/, vc =Pi

j,c. Assume that the claim is not correct; then pick any .i, j/∈Dc0 ;
there is a sequence {ck} .ck �= ck′ if k �= k′/ converging to c0 from the left subject to vck

�= Pi
j,ck

. Without
loss of generality, take {ck}⊂ .c0 − ", c0/. Lemma 1 implies that Pi

j,ck
∈ Si◦

j,ck
∩ S. If vck

∈ Si
j,ck

, we would
have vck

=Pi
j,ck

. Hence vck
�∈Si

j,ck
. By finiteness of the index pairs in Fc, there exists .i′, j′/ �= .i, j/ such that

ϕ.c/= .i′, j′/ for c ∈{ckl
}, where {ckl

} is some subsequence of {ck}. This implies that .i′, j′/∈Dc0 , which
together with lemma 1 imply that vc =Pi′

j′ ,c for c∈{ckl
}. Therefore

‖Pi′
j′ ,c −P‖2 <‖Pi

j,c −P‖2

for c∈{ckl
}.

However, because .i, j/∈Dc0 , there are infinitely many c′ ∈ .c0 − ", c0/ such that ‖Pi′
j′ ,c′ −P‖2 �‖Pi

j,c′ −
P‖2. Therefore,

g.c/=‖P −Pi
j,c‖2

2 −‖P −Pi′
j′ ,c‖2

2

changes signs infinitely many times on .c0 − ", c0/. This leads to a contradiction because Pi
j,c and Pi′

j′ ,c are
both linear functions of c. Hence, the conclusion holds.

To show that Dc0 is a singleton, suppose that it has two distinct elements .i, j/ and .i′, j′/. We have
shown that vc =Pi

j,c and vc =Pi′
j′ ,c for all c in a left neighbourhood of c0 (not including c0). Also we have

Pi
j,c ∈Si◦

j,c and Pi′
j′ ,c ∈Si′◦

j′ ,c by lemma 1. This can be true only when Si◦
j,c ⊂Si′◦

j′ ,c (or vice versa), but then i< i′,
contradicting minimality in the definition of Dc0 .

Remark 4. Similarly, ∀c0 ∈ [a, b/, ∃"′ > 0 such that vc is linear in c on .c0, c0 + "′/.

Lemma 3. vc is a continuous function of c on [a, b].

Proof. The continuity follows from two parts.

(a) ∀c0 ∈ [a, b/, ∃"> 0 such that vc is continuous on [c0, c0 + "/. Indeed, let

h.c/= min
‖Σ−1=2v‖1�c, vT t μ̄d=1

vTv:

We know that the mapping c �→ vc .= Pi
j,c/ is linear and hence continuous on .c0, c0 + "/ for some small

" > 0. It only remains to show that the mapping is right continuous at c0. Note here that h.c/ =‖Pi
j,c‖2

2
for c ∈ .c0, c0 + "/. Let L = limc↓c0 Pi

j,c. It is clear that L ∈ Si
j,c0

. Because L ∈ Ωc0 ∩ S, h.c0/ � ‖L‖2
2. This

inequality must take the equals sign because h.·/ is monotone decreasing, and h.c/=‖Pi
j,c‖2

2 →‖L‖2
2 as c

approaches c0 from the right. Because vc0 is unique, vc0 =L= limc↓c0 Pi
j,c = limc↓c0 vc.
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(b) ∀c0 ∈ .a, b], ∃" > 0 such that vc is continuous on .c0 − ", c0]. Again, it remains to show that there
is no jump at c0. Let .ic0 , jc0 /=ϕ.c0/. Clearly P

ic0
jc0 ,c0

∈S
ic0 ◦
jc0 ,c0

. Introduce a notion of parallelism of
affine subspaces in Rp. We denote S̃ic0jc0 ,c ‖S, if, only by translation, S̃ic0jc0 ,c becomes a subset of S (or
vice versa in other situations); use the notation S̃ic0jc0 ,c ∦S otherwise.

If S̃ic0jc0 ,cS, for c in some left neighbourhood of c0, P
ic0
jc0 ,c exists and P

ic0
jc0 ,c ∈S

ic0 ◦
jc0 ,c. Note that P

ic0
jc0 ,c ∈Ωc ∩S,

and ‖P
ic0
jc0 ,c‖2 →‖P

ic0
jc0 ,c0

‖2 as c approaches c0 from the left. Since h.·/ is monotone decreasing, obviously
h.c/ → ‖P

ic0
jc0 ,c0

‖2
2 = h.c0/. This shows the left continuity of h at c0. Suppose that Dc0 = {.i, j/}; then we

know, on a left neighbourhood of c0 (not including c0), vc = Pi
j,c. Let E = limc↑c0 Pi

j,c; then E ∈Ωc0 ∩ S.
Note that ‖P

ic0
jc0 ,c‖2 �‖Pi

j,c‖2 for all c in c0’s left neighbourhood, so we have ‖P
ic0
jc0 ,c0

‖2 �‖E‖2. In contrast,
‖P

ic0
jc0 ,c0

‖2 � ‖E‖2 by the definition of P
ic0
jc0 ,c0

. Also, consider the uniqueness of distance minimizing point
in Ωc0 ∩S to origin O, E=P

ic0
jc0 ,c0

, and hence vc has left continuity at c0.
If S̃ic0jc0 ,c ‖ S, ∃Q ∈ Ωc0−"=2 ∩ S such that Q �= P

ic0
jc0 ,c0

. When c goes from c0 − "=2 to c0, there is a point
Qc ∈Ωc ∩S moving on the line segment from Q to P

ic0
jc0 ,c0

. Therefore, h.·/ is left continuous at c0. Replace
P

ic0
jc0 ,c by Qc in the previous paragraph; the left continuity of vc at c0 follows from the same argument.
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