Yang Feng

Yang_Feng.jpg

百老汇街 708 号,415 室

生物统计系

纽约大学

纽约,纽约 10003

电子邮件: yf31@nyu.edu

学术任职

研究兴趣

机器学习
  • 迁移学习
  • 多任务学习
  • 联邦学习
  • Neyman-Pearson 分类
  • 因果推断
  • 深度学习
高维统计
  • 变量选择
  • 变量筛选
  • 高斯图模型
网络模型
  • 社区发现
  • 网络嵌入
应用领域
  • 电子健康记录
  • 基因组学
  • 流行病学
  • 神经科学
  • 社交网络
  • 计算机视觉

📄 Google Scholar 页面 (按年份查看)

📄 简历(PDF)

编委工作

荣誉

  • 美国统计协会 (ASA) 会士
  • 数理统计学会 (IMS) 会士
  • 国际统计学会 (ISI) 当选成员

科研资助

  • NSF 资助项目 DMS-2324489关于高维多任务与迁移学习推断的新理论与方法的合作研究

news

latest posts

selected publications

  1. Semiparametric Modeling and Analysis for Longitudinal Network Data
    Yinqiu He, Jiajin Sun, Yuang Tian, Zhiliang Ying, and Yang Feng
    Annals of Statistics, 2025
  2. Neyman-pearson multi-class classification via cost-sensitive learning
    Ye Tian, and Yang Feng
    Journal of the American Statistical Association, 2024
  3. Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms
    Ye Tian, Haolei Weng, and Yang Feng
    In Forty-first International Conference on Machine Learning, 2024
  4. Transfer learning under high-dimensional generalized linear models
    Ye Tian, and Yang Feng
    Journal of the American Statistical Association, 2023
  5. DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse Additive Models with Feature Division and Decorrelation
    Yifan He, Ruiyang Wu, Yong Zhou, and Yang Feng
    Journal of the American Statistical Association, 2023
  6. PCABM: Pairwise Covariates-Adjusted Block Model for Community Detection
    Sihan Huang, Jiajin Sun, and Yang Feng
    Journal of the American Statistical Association, 2023
  7. Testing community structure for hypergraphs
    Mingao Yuan, Ruiqi Liu, Yang Feng, and Zuofeng Shang
    The Annals of Statistics, 2022
  8. Large-scale model selection in misspecified generalized linear models
    Emre Demirkaya, Yang Feng, Pallavi Basu, and Jinchi Lv
    Biometrika, 2022
  9. RaSE: Random Subspace Ensemble Classification
    Ye Tian, and Yang Feng
    Journal of Machine Learning Research, 2021
  10. RaSE: A Variable Screening Framework via Random Subspace Ensembles
    Ye Tian, and Yang Feng
    Journal of American Statistical Association, 2021
  11. A Projection Based Conditional Dependence Measure with Applications to High-dimensional Undirected Graphical Models
    Jianqing Fan, Yang Feng, and Lucy Xia
    Journal of Econometrics, 2020
  12. Neyman-Pearson classification: parametrics and sample size requirement
    Xin Tong, Lucy Xia, Jiacheng Wang, and Yang Feng
    Journal of Machine Learning Research, 2020
  13. A kronecker product model for repeated pattern detection on 2d urban images
    Juan Liu, Emmanouil Z Psarakis, Yang Feng, and Ioannis Stamos
    IEEE transactions on pattern analysis and machine intelligence, 2019
  14. Neyman-Pearson classification algorithms and NP receiver operating characteristics
    Xin Tong, Yang Feng, and Jingyi Jessica Li
    Science Advances, 2018
  15. Model selection for high-dimensional quadratic regression via regularization
    Ning Hao, Yang Feng, and Hao Helen Zhang
    Journal of the American Statistical Association, 2018
  16. Neyman-Pearson classification under high-dimensional settings
    Anqi Zhao, Yang Feng, Lie Wang, and Xin Tong
    Journal of Machine Learning Research, 2016
  17. Nonparametric independence screening in sparse ultra-high-dimensional additive models
    Jianqing Fan, Yang Feng, and Rui Song
    Journal of the American Statistical Association, 2011