Yang Feng | Professor of Biostatistics @ NYU

Yang_Feng.jpg

百老汇街 708 号,415 室

生物统计系

纽约大学

纽约,纽约 10003

电子邮件: yf31@nyu.edu

概述

我在纽约大学全球公共卫生学院担任生物统计学教授,同时也是数据科学中心的兼职教员。我的研究兴趣包括机器学习的理论与方法、高维统计学、网络模型以及非参数方法,并在阿尔茨海默症预后、癌症亚型分类、基因组学、电子健康记录以及生物医学影像等领域具有广泛应用。

我领导 Feng Lab,致力于通过严谨的研究与有影响力的应用,推动统计学习、数据科学与人工智能的发展。

学术任职

研究兴趣

机器学习
  • 迁移学习
  • 多任务学习
  • 联邦学习
  • Neyman-Pearson 分类
  • 因果推断
  • 深度学习
高维统计
  • 变量选择
  • 变量筛选
  • 高斯图模型
网络模型
  • 社区发现
  • 网络嵌入
应用领域
  • 电子健康记录
  • 基因组学
  • 流行病学
  • 神经科学
  • 社交网络
  • 计算机视觉
📄 谷歌学术页面 (按年份排序)
📄 简历(精简版 PDF)
📄 论文

Yang Feng's Research Cloud

编委工作

荣誉

  • 美国统计协会 (ASA) 会士
  • 数理统计学会 (IMS) 会士
  • 国际统计学会 (ISI) 当选成员

科研资助

  • NSF 资助项目 DMS-2324489关于高维多任务与迁移学习推断的新理论与方法的合作研究

News

Latest Posts

Selected Recent Publications

  1. JMLR
    tian2025learning.png
    Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness
    Ye Tian, Yuqi Gu, and Yang Feng
    Journal of Machine Learning Research, 2025
  2. AoS
    he2025semiparametric.png
    Semiparametric Modeling and Analysis for Longitudinal Network Data
    Yinqiu He, Jiajin Sun, Yuang Tian, Zhiliang Ying, and Yang Feng
    Annals of Statistics, 2025
  3. JASA
    heng2023design.png
    Design-Based Causal Inference with Missing Outcomes: Missingness Mechanisms, Imputation-Assisted Randomization Tests, and Covariate Adjustment
    Siyu Heng, Jiawei Zhang, and Yang Feng
    Journal of the American Statistical Association, 2025
  4. JASA
    tian2024neyman.png
    Neyman-pearson multi-class classification via cost-sensitive learning
    Ye Tian, and Yang Feng
    Journal of the American Statistical Association, 2024
  5. ICML
    tian2024towards.png
    Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms
    Ye Tian, Haolei Weng, and Yang Feng
    In Forty-first International Conference on Machine Learning, 2024
  6. JASA
    tian2023transfer.png
    Transfer learning under high-dimensional generalized linear models
    Ye Tian, and Yang Feng
    Journal of the American Statistical Association, 2023
  7. JASA
    huang2023pcabm.png
    PCABM: Pairwise Covariates-Adjusted Block Model for Community Detection
    Sihan Huang, Jiajin Sun, and Yang Feng
    Journal of the American Statistical Association, 2023
  8. AoS
    yuan2022testing.png
    Testing community structure for hypergraphs
    Mingao Yuan, Ruiqi Liu, Yang Feng, and Zuofeng Shang
    Annals of Statistics, 2022
  9. Biometrika
    demirkaya2022large.png
    Large-scale model selection in misspecified generalized linear models
    Emre Demirkaya, Yang Feng, Pallavi Basu, and Jinchi Lv
    Biometrika, 2022
  10. JMLR
    tian2021raseclassification.png
    RaSE: Random Subspace Ensemble Classification
    Ye Tian, and Yang Feng
    Journal of Machine Learning Research, 2021
  11. JASA
    tang2021interplay.png
    The Interplay of Demographic Variables and Social Distancing Scores in Deep Prediction of US COVID-19 Cases
    Francesca Tang, Yang Feng, Hamza Chiheb, and Jianqing Fan
    Journal of the American Statistical Association, 2021
  12. JASA
    tian2021rasescreening.png
    RaSE: A Variable Screening Framework via Random Subspace Ensembles
    Ye Tian, and Yang Feng
    Journal of American Statistical Association, 2021
  13. JoE
    fan2020projection.png
    A Projection Based Conditional Dependence Measure with Applications to High-dimensional Undirected Graphical Models
    Jianqing Fan, Yang Feng, and Lucy Xia
    Journal of Econometrics, 2020
  14. JMLR
    tong2020neyman.png
    Neyman-Pearson classification: parametrics and sample size requirement
    Xin Tong, Lucy Xia, Jiacheng Wang, and Yang Feng
    Journal of Machine Learning Research, 2020
  15. PAMI
    liu2019kronecker.png
    A kronecker product model for repeated pattern detection on 2d urban images
    Juan Liu, Emmanouil Z Psarakis, Yang Feng, and Ioannis Stamos
    IEEE transactions on pattern analysis and machine intelligence, 2019
  16. Sci. Adv.
    tong2018neyman.png
    Neyman-Pearson classification algorithms and NP receiver operating characteristics
    Xin Tong, Yang Feng, and Jingyi Jessica Li
    Science Advances, 2018
  17. JASA
    hao2018model.png
    Model selection for high-dimensional quadratic regression via regularization
    Ning Hao, Yang Feng, and Hao Helen Zhang
    Journal of the American Statistical Association, 2018
  18. JASA
    fan2016feature.png
    Feature Augmentation via Nonparametrics and Selection (FANS) in high-dimensional classification
    Jianqing Fan, Yang Feng, Jiancheng Jiang, and Xin Tong
    Journal of the American Statistical Association, 2016
  19. JMLR
    zhao2016neyman.png
    Neyman-Pearson classification under high-dimensional settings
    Anqi Zhao, Yang Feng, Lie Wang, and Xin Tong
    Journal of Machine Learning Research, 2016
  20. JRSSB
    fan2012road.png
    A road to classification in high dimensional space: the regularized optimal affine discriminant
    Jianqing Fan, Yang Feng, and Xin Tong
    Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012
  21. JASA
    fan2011nonparametric.png
    Nonparametric independence screening in sparse ultra-high-dimensional additive models
    Jianqing Fan, Yang Feng, and Rui Song
    Journal of the American Statistical Association, 2011
  22. AoS
    fan2010nonparametric.png
    Nonparametric estimation of genewise variance for microarray data
    Jianqing Fan, Yang Feng, and Yue S Niu
    Annals of Statistics, 2010
  23. AoS
    fan2009local.png
    Local quasi-likelihood with a parametric guide
    Jianqing Fan, Yichao Wu, and Yang Feng
    Annals of Statistics, 2009