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Clustering High-dimensional Data

▶ Data: Yn×p = (y1, · · · , yn)⊤

yi = θ∗
z∗i

+ Ei ∈ Rp, i ∈ [n]

cluster labels z∗i ∈ [K ], centers θ∗
1 , . . . ,θ

∗
K , mean-zero noise

Ei
ind.∼ Ez∗i

▶ Task: Recover the cluster labels z∗ = (z∗1 , · · · , z∗n )

▶ High-dimensional: p ≫ n may happen
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Anisotropic/Nonspherical Mixtures

▶ Anisotropic/Nonspherical Mixtures: Noise is non-spherical in some
clusters (Cov(Ek) ̸= σ2Ip)

▶ Widely observed in various real-world data

How to cluster adaptively and efficiently in high dimensions with
p ≫ n?
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Examples of Nonspherical Mixtures

Visualizing 2-dim. (singular subspace) embeddings of high-dim. real data:

▶ Left: Single-cell sequencing data, with n = 1604 cells and
p = 19, 298 genes. Cell types are color-coded

▶ Right: HapMap data of human genetic variations, with n = 1115
and p = 274, 128 SNPs. Ancestry groups are color-coded

(Interpreted as degree-heterogeneous mixtures in [Lyu et al., 2025]. Also see e.g.,

[Jin, 2015, Ke and Jin, 2023], for degree corrected network models)
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Exploit the Covariance Matrix

Meta Question
How to exploit covariance information to facilitate clustering?

Key Challenges in High Dimensions:

– Estimating full-size p × p covariance matrices is not feasible

– Given partial information of the covariance, how to design clustering
criterion?

– Fundamental limit and efficient algorithm for clustering in
high-dim. nonspherical mixtures?
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Brief Overview of Clustering Methods
For Gaussian mixtures:

▶ Spectral clustering ([Löffler et al., 2021], [Zhang and Zhou, 2024]): apply
K-Means to YV ∈ Rn×K , where V ∈ Rp×K are the top K right
singular vectors of Y

=⇒ tailored to spherical noises, suboptimal for anisotropic noise

▶ EM-type algorithms ([Chen and Zhang, 2024], [Cai et al., 2019]):
iteratively update the cluster labels and cluster centers & covariances

=⇒ not apply to high-dim. p ≳ n or requires specific parameters

▶ Semi-definite Programming (SDP): convex relaxations for clustering
([Davis et al., 2025])

=⇒ None adapt to p ≳ n with general covariances

For mixtures of other distributions/data types:

▶ Typically likelihood-based for specific models, also can struggle in
high-dimensions
(except [Tian et al., 2024], spectral clustering for high-dim. categorical data)
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Brief Overview of Minimax Rates for Clustering
Assess the clustering by h(ẑ, z) = min

ϕ∈perm(K)

1
n

∑
i∈[n] I{ẑi ̸= ϕ(zi )}.

▶ Isotropic Noise: Let Ei
ind.∼ N (0, σ2Ip).

inf
ẑ

sup
z∗∈Θ∗

z

E
[
h(ẑ, z∗)

]
≳ exp

(
−△2

8σ2

)
, by [Lu and Zhou, 2016],

where △ := mink1,k2∈[K ]

∥∥θ∗
k1 − θ∗

k2

∥∥
2
.

▶ Anisotropic Noise with p = O(1): Let Ei
ind.∼ N (0,Σz∗i

).

inf
ẑ

sup
z∗∈Θ∗

z

E
[
h(ẑ, z∗)

]
≳ exp

(
−SNRfull2

2

)
, by [Chen and Zhang, 2024],

where

SNRfull := min
k1 ̸=k2∈[K ]

min
x∈Rp

{
∥Σk1

− 1
2 x∥2 : ϕθ∗

k1
,Σk1

(x)︸ ︷︷ ︸
Gaussian pdf

= ϕθ∗
k2
,Σk2

(x)
}
.
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h(ẑ, z∗)

]
≳ exp

(
−△2

8σ2

)
, by [Lu and Zhou, 2016],

where △ := mink1,k2∈[K ]

∥∥θ∗
k1 − θ∗

k2

∥∥
2
.

▶ Anisotropic Noise with p = O(1): Let Ei
ind.∼ N (0,Σz∗i

).

inf
ẑ
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A Reduction from Clustering to Classification

From Clustering to Classification: Suppose that we are given the true
centers and covariance matrices.

Q: The best way to classify?
A: Likelihood Ratio Estimator (by Neyman–Pearson Lemma).

Consider a two-component general Gaussian mixture model:

z∗i ∼ 1

2
δ1 +

1

2
δ2, yi = θ∗

z∗i
+ Ei , Ei ∼ N (0,Σz∗i

).

Likelihood Ratio Testing (LRT)-based estimator:

z̃i = argmax
k∈{1,2}

ϕθ∗
k ,Σk

(yi ).
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Decision Boundary for Likelihood Ratio Testing (LRT)

▶ Case (a): Isotropic Noise (Σ1 = Σ2 = σ2Ip)

▶ Case (b): Anisotropic Noise (Σ1 ̸= Σ2)

(a) Isotropic Noise (b) Anisotropic Noise

Figure: Decision Boundary for LRT
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An Approach to Minimax Lower Bounds
A reduction from clustering to classification:

inf
ẑ

sup
z∗∈Θ∗

z

E
[
h(ẑ, z∗)

]
≳Φθ∗

1 ,Σ1(z̃1 = 2) + Φθ∗
2 ,Σ2(z̃1 = 1)

=:RBayes({θ∗
k}k∈[2], {Σk}k∈[2])

(a) Isotropic Noise (b) Anisotropic Noise (p = O(1))

Remark: Throughout the discussion, let △ or SNRfull go to infinity
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Rationale behind the Reduction

▶ Question: In which case is this reduction tight?
Answer: In these cases where the information of centers {θ∗

k} and
covariance matrices {Σ∗

k} can be consistently estimated from data.

▶ Puzzling: Is this reduction still tight for anisotropic Gaussian
mixtures when p is large?

▶ Observation: Unstructured covariance matrices are not recoverable
when p ≫ n, even when z∗ is known.

This work reveals:
RBayes isn’t always achieavable. Instead, there exists a gap between
the minimax rate and RBayes, surprisingly related to an intriguing
low-dimensional quantity SNRpartial (≪ SNRfull).
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A Subspace Viewpoint

A Subspace Viewpoint: Rank-K decomposition:

E[ Y︸︷︷︸
n×p

] = Y∗
n×p = Z∗︸︷︷︸

n×K

Θ∗⊤︸︷︷︸
K×p

V∗ ∈ Rp×K : top-K right singular vectors of Y∗

V ∈ Rp×K : top-K right singular vectors of Y = Y∗ + E
13



New Minimax Lower Bound

Theorem (Informal Lower Bound)

If SNRpartial → ∞ and p/n → ∞, then

inf
ẑ
sup
Θ0

E[h(ẑ, z∗)] ≳ exp

(
−(1 + o(1))

SNRpartial2

2

)
,

where Θ0 := Θ̃0︸︷︷︸
centers and covariances

⊗ Θz︸︷︷︸
assignments

and

SNRpartial := min
k1,k2∈[K ]

min
x∈RK

{
∥(S∗

k)
− 1

2 x∥2 : ϕw∗
k1
,S∗

k1
(x)︸ ︷︷ ︸

K-dim. pdf

= ϕw∗
k2
,S∗

k2
(x)
}
,

w∗
k = V∗⊤θ∗

k∈ RK , S∗
k = V∗⊤ΣkV

∗∈ RK×K .

Recall SNRfull := min
k1 ̸=k2∈[K ]

min
x∈Rp

{
∥Σk1

− 1
2 x∥2 : ϕθ∗

k1
,Σk1

(x)︸ ︷︷ ︸
p-dim. pdf

= ϕθ∗
k2
,Σk2

(x)
}
.
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Implications

RBayes = exp

(
−(1 + o(1))

SNRfull2

2

)
≪ exp

(
−(1 + o(1))

SNRpartial2

2

)
=⇒ RBayes is not achievable.
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New Clustering Algorithm: COPO

SNRpartial := min
k1 ̸=k2∈[K ]

min
x∈RK

{
∥(S∗

k)
− 1

2 x∥2 : ϕw∗
k1
,S∗

k1
(x) = ϕw∗

k2
,S∗

k2
(x)
}

only involves low-dimensional quantities

w∗
k = V∗⊤θ∗

k∈ RK , S∗
k = V∗⊤ΣkV

∗∈ RK×K .

=⇒ This motivates us to propose a novel clustering method

Idea of Covariance Projected Spectral Clustering (COPO):

▶ Replace V∗
p×K with Vp×K (empirical top-K right singular

subspace of data Y);

▶ Iteratively update the estimates for w∗
k (projected centers)

and S∗
k (projected covariances)
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Algorithm 1: Covariance Projected Spectral Clustering (COPO)

Input: Data matrix Y ∈ Rn×p , number of clusters K , an initial cluster estimate ẑ(0)

Output: Cluster assignment vector ẑ ∈ [K ]n

1 for t = 1, · · · ,T do
2 For each k ∈ [K ], update the cluster centers by

θ̂
(t)
k =

∑
i∈[n] 1

{
ẑ
(t−1)
i = k

}
yi∑

i∈[n] 1
{
ẑ
(t−1)
i = k

} ,

and update the projected covariance matrices by

Ŝ
(t)
k :=

∑
i∈ck

V⊤(yi − θ̂
(t)
k )⊤(yi − θ̂

(t)
k )V∑

i∈[n] 1
{
ẑ
(t−1)
i = k

} (size K × K)

3 Update the cluster labelsa for i ∈ [n] by comparing the Mahalanobis distance in RK :

ẑ
(t)
i = arg min

k∈[K ]

[
(yi − θ̂

(t)

k )⊤V
]

︸ ︷︷ ︸
1×K

Ŝ
(t)
k

−1︸ ︷︷ ︸
K×K

[
V⊤(yi − θ̂

(t)

k )
]

︸ ︷︷ ︸
K×1

.

4 end

aWe drop the log term from log-likelihood of normal distribution
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Numerical Examples

(a) A Case with Elliptical Decision Boundaries

(b) A Case with Hyperbolic Decision Boundaries

Figure: Spectral clustering [Löffler et al., 2021] and our method in the subspace
spanned by the top-2 empirical singular vectors. Data from a 2-component
Gaussian mixture with n = 500 and p = 1000.

failure of the other methods
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Non-Gaussian Mixture Models?

For mixtures of non-Gaussian distributions, Gaussian EM algorithm
should not be directly applied.

But how about after projection?

Inferential Results in Singular Subspace Perturbation Theorya

Ui,:O−U∗
i,: ⇒ N

(
0,D∗−1V∗⊤Σz∗i

V∗︸ ︷︷ ︸
=:Sz∗

i
(K×K)

D∗−1)

even when Yi itself is not Gaussian!
Here U∗ ∈ Rp×K are the left singular vectors of Y∗, and D∗ is a
diagonal matrix with K singular values of Y∗

a[Yan et al., 2024, Agterberg et al., 2022, Xia, 2021]

Justifies the use of LRT-based estimation for projected data!
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Example of Non-Gaussian Noise

(a) Gamma Distribution (b) Negative Binomial Distribution

Figure: Histogram of scaled (URU −U∗)1,1.
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Main Noise Assumptions

Assumptions on Gaussian Noise with Arbitrary Dependence

▶ Ei
ind.∼ N (θ∗

z∗i
,Σz∗i

);

▶ maxi∈[n],j∈[p] Var(Ei,j) ≤ σ2.

Assumptions on General Noise with Block Dependence
▶ There exists a partition S1,S2, . . . ,Sl of [p] with |Sl | ≤ m for l ∈ [l ]

s.t. {Ei,Sl
}ll=1 are mutually independent for i ∈ [n] and l ∈ [l ].

▶ ∃ a random matrix E′ = (E ′
i,j) ∈ Rn×p obeying the same dependence

structure s.t. for any i ∈ [n], j ∈ [p], it holds that
∥∥E ′

i,j

∥∥
∞ ≤ B,

E[E ′
i,j ] = 0,

∥∥Cov(E′
i,:)
∥∥ ≲ ∥Cov(Ei,:)∥, and Ei,j = E ′

i,j w.h.p..

Common Assumption: The smallest singular values of V∗⊤ΣkV∗ for
k ∈ [K ] are lower bounded
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k ∈ [K ] are lower bounded
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Motivation for Local Dependence
Local Dependence: American National Election Survey (ANES)

Figure: Approximate noise covariance matrix for a subset of survey items in
ANES.
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Upper Bound

Theorem (Informal Upper Bound)

Assume SNR ≫
√

log log(n ∨ p) and a reasonable initialization. Then for
all t ≥ c log n:

1. If SNR ≤ 2
√
log n, then

E[h(ẑ(t), z∗)] ≲ exp

(
−(1 + o(1))

SNRpartial2

2

)
.

2. If SNR ≥ (
√
2 + ϵ)

√
log n with an arbitrary positive number ϵ, then

h(ẑ(t), z∗) = 0 with probability 1− o(1).

Techniques:

▶ Universality on matrix concentration
[Bandeira et al., 2023][Brailovskaya and van Handel, 2022]

▶ Leave-one-out perturbation analysis [Zhang and Zhou, 2024]

▶ Delicate analysis under local dependence
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Remarks on the Upper Bound

▶ Optimality. COPO is minimax optimal under general anisotropic
Gaussian mixtures when p ≫ n

▶ Covering Weak Signal Strength. Allow SNRpartial growing slightly
exceeding

√
log log(n ∨ p)

▶ Computational Efficiency of COPO. The time costs consist of

– performing the top-K SVD on Y, which is O(npK)

– iterative averaging over the projected centers space RK and the
projected covariance matrix space RK×K in O(log n) iterations

▶ Block Size. The block size m can scale as the order O(pa) with
a ∈ (0, 1), corresponding to severely dependent noise matrix entries

▶ Covering Sub-Gaussian/Sub-exponential mixtures with arbitrary
local dependence: high-dim. count data, discrete data, skewed data
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Simulation: Gaussian Mixtures

n p Spec. err. COPO err. COPO time EM err. (%Suc.) EM time

500 40 0.436 0.441 0.056 0.005 (97.0%) 2.2
500 80 0.412 0.418 0.057 0.057 (94.5%) 12.5
500 120 0.374 0.376 0.062 0.190 (88.0%) 32.7
500 160 0.342 0.335 0.059 0.322 (65.0%) 22.0
500 200 0.302 0.275 0.063 0.299 (40.5%) 24.4

500 500 0.127 0.085 0.075 – –
500 1000 0.041 0.032 0.096 – –
500 1500 0.015 0.012 0.112 – –
500 2000 0.005 0.005 0.124 – –
500 5000 0.000 0.000 0.206 – –

Table: Clustering error rates and computation times for Gaussian mixtures. The
unit of time is seconds. The (%Suc.) means the proportion of simulation trials
in which the EM algorithm runs without failures.
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Simulation: Other Mixtures

▶ Mixtures of Ising Models: multivariate binary data, local dependence
induced by graphical Ising models

▶ Multivariate Probit Mixtures: multivariate binary data, local
dependence induced by dichotomizing underlying Gaussian variables

▶ Multivariate Gamma Mixtures: multivariate positive skewed
continuous data

▶ Negative Binomial Mixtures: multivariate nonegative count data
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Simulation: Other Mixtures

(a) Mixtures of Ising Models (b) Multivariate Probit Mixtures

(c) Multivariate Gamma Mixtures (d) Negative Binomial Mixtures
27



HapMap3 Data

▶ p > 2.7× 105, n = 1301.

▶ On two subpopulations CEU (Utah residents with Northern and
Western European ancestry) and MEX (Mexican ancestry):

COPO achieves exact recovery, h(ẑkmeans, z∗) = 3.4% and
h(ẑspectral, z∗) = 2.6%.
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HapMap3 Data
For full-size dataset, our method achieves an accuracy of 75.7%,
outperforming the K-means (60.9%) and the spectral clustering (74.4%).
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Summary

▶ A novel clustering algorithm for high-dimensional data: Covariance
Projected Spectral Clustering (COPO)

▶ COPO projects p-dimensional data onto empirical top-K right
singular subspace of Y, and iteratively refines cluster assignments
based on projected centers and projected covariance matrices

▶ A new minimax lower bound for clustering unveiling an intriguing
informational dimension-reduction phenomenon

▶ COPO is optimal for general high-dim. Gaussian mixtures and
strongly adaptive to a broad family of other mixture models

Huang and Gu (2025+). Minimax-Optimal Dimension-Reduced Clustering for

High-Dimensional Nonspherical Mixtures. arXiv preprint arXiv:2502.02580.
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(Hard) EM Algorithm for Gaussian Mixtures

Classical Viewpoint: consider covariance matrices as part of the
parameters.

EM Algorithm Given {w (t)
i,k }i∈[n],k∈[K ], {θ

(t)
k }k∈[K ], {Σ

(t)
k }k∈[K ],

▶ E-step: Update the posterior: w
(t+1)
i,k =

ϕ
θ
(t)
k

,Σ
(t)
k

(yi )∑
l∈[K ] w

(t)
i,l ϕθ

(t)
l

,Σ
(t)
l

(yi )
.

▶ M-step: Re-estimate the parameters:

θ
(t+1)
k =

∑
i∈[n] w

(t+1)
i,k yi∑

i∈[n] w
(t+1)
i,k

, Σ
(t+1)
k =

∑
i∈[n] w

(t+1)
i,k (yi − θ

(t+1)
k )(yi − θ

(t+1)
k )⊤∑

i∈[n] w
(t+1)
i,k

.

Recursively update until convergence. Then the estimation is given

by ẑi := argmaxk∈[K ] w
(t)
i,k .
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Hard EM

Hard EM: Update assignment recursively: w
(t+1)
i,k =

1{k=arg maxl∈[K ] ϕθ
(t)
k

,Σ
(t)
k

(yi )}.

Inhomoegeneous cov. matrices with p = O(1): the hard EM is proved to
be minimax-optimal [Chen and Zhang, 2024].
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Existing Methods

▶ Iterative methods directly on p-dimensional data (EM algorithm,
Lloyd algorithm) is computationally expensive for large p.

▶ Spectral Methods: Efficient, Statistically Optimal under simple
Isotropic (spherical) Gaussian Mixtures.

Related Existing Methods

▶ Get the top-K SVD (U,D,V) of R and perform K -means for
UD (Weighted Spectral Clustering) [Zhang and Zhou, 2024].

▶ For fixed-p Gaussian mixtures, [Chen and Zhang, 2024] uses
p × p covariance matrix to adjust Lloyd algorithm
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Motivation for Our Method

Drawbacks of existing methods:

1. Cov. matrices Σz∗i
:= Cov(Ei ) (p × p) are not full-rank

2. No consistent estimator for Σk when n ≍ p.

Singular Subspace Perturbation Theory

Ui,:O−U∗
i,: ⇒ N

(
0,D∗−1V∗⊤Σz∗i

V∗︸ ︷︷ ︸
=:Sz∗

i
(K×K)

D∗−1)

even when R itself is not Gaussian!

Key: Directly motivate our new method of projection + covariance
adjustment
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Our Proposal

Algorithm 2: Covariance Projected Spectral Clustering

Input: Data matrix R ∈ Rn×p , number of clusters K , an initial cluster estimate ẑ(0)

Output: Cluster assignment vector ẑ ∈ [K ]n

1 for t = 1, · · · ,T do

2 For each k ∈ [K ], estimate the centers θ∗
k by θ̂

(t)
k =

∑
i∈[n] 1

{
ẑ
(t−1)
i

=k

}
Ri∑

i∈[n] 1

{
ẑ
(t−1)
i

=k

} and estimate

the projected covariance matrix by

Ŝ
(t)
k :=

∑
i∈ck

V⊤(Ri − θ̂
(t)
k )⊤(Ri − θ̂

(t)
k )V∑

i∈[n] 1
{
ẑ
(t−1)
i = k

} (size K × K)

3 Estimate the cluster memberships:

ẑ
(t)
i = min

k∈[K ]
(Ri − θ̂

(t)
k )⊤VŜ

(t)
k

−1
V⊤(Ri − θ̂

(t)
k )︸ ︷︷ ︸

≈(UO−U∗)i,:Cov(UO−U∗)−1(UO−U∗)⊤
i,:

+ log |Ŝ(t)
k |.

4 end

Project the high-dim. Ri to the space spanned by the cluster
centers – We don’t deal with p × p cov. mat. anymore!
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Upper Bound

Theorem (Informal Upper Bound)

We assume that SNR → ∞ and the initialization ẑ(0) satisfies
h(ẑ(0), z∗) ≤ c 1

K log(n) with probability at least 1− η. Then for all

t ≥ log n, it holds with probability at least 1− η − Cn−1 that

h(ẑ(t), z∗) ≤ exp

(
−(1 + o(1))

SNR2

2

)
.

where h(ẑ, z) = min
ϕ∈perm(K)

1
n

∑
i∈[n] I{ẑi ̸= ϕ(zi )}.

▶ Required Technique: Universality on Matrix Concentration
[Bandeira et al., 2023][Brailovskaya and van Handel, 2022].
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Decision Boundary
▶ Let Sk = V∗⊤ΣkV∗. SNR (Signal-Noise-Ratio) is defined as

SNR := min
k1 ̸=k2∈[K ]

min
x∈Bk1,k2

∥∥∥S− 1
2

k1
(x− V∗⊤θ∗k1)

∥∥∥
2

▶ Bk1,k2 is the decision boundary between two Gaussians with

N (V∗⊤θ∗
k1 ,Sk1) and N (V∗⊤θ∗

k2 ,Sk2).
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Simulation Example

(a) Spec. Method (b) Cov. Proj. Spec. Method

Figure: Comparison Example
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Why Performing Projection?

Σk = V∗SkV
∗⊤ + V∗

⊥V
∗
⊥
⊤ΣkV

∗
⊥V

∗
⊥
⊤

+V∗V∗⊤ΣkV
∗
⊥V

∗
⊥
⊤ + V∗

⊥V
∗
⊥
⊤ΣkV

∗V∗⊤

Question: Why are we only interested in Sk?

Reasons:

1. For some discrete cases, Sk is enough. (Lower Bound 1)

2. For Gaussian mixtures with p ≍ n, the info. in the perpendicular
space (in red) can not be consistently estimated. (Lower Bound 2)
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Insights into Barrier of Covariance Estimation

Clustering error is represented by whether the first example is correctly
clustered. Imagine we have the access to Y, {z∗i }ni=2.

We can find M ϵ-packing-like parameter tuples with the same centers

and different covariances: {({θ∗
k}k∈[2], {Σ

(j)
k }k∈[2])}j∈[M].

=⇒ M different likelihood ratio estimators {z̃ (j)}, each corresponding to
a decision boundary.

large p
⇒ large M
Fano⇒ pe >

1
2 (in multiple testing)

⇒ Unable to distinguish j ∈ [M]
⇒ Error must occurs in confusion region

⇒ misclust. prob. ≥ exp(−(1 + o(1))SNRpartial2

2 )
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An Illustrative Example in R3

Two-Component Mixtures in R3 (p = 3, K = 2) with two sets of para.

{θ∗
k ,Σ

(1)
k }k∈[2] and {θ∗

k ,Σ
(2)
k }k∈[2]:

θ∗
1 = (x , 0, 0)⊤, θ∗

2 = (0, x , 0)⊤,

Σ
(1)
1 = Σ

(1)
2 =

1 0 c
0 1 −c
c −c 1

 , Σ
(2)
1 = Σ

(2)
2 =

 1 0 −c
0 1 c
−c c 1


Submatrix in R(p−K)×K represents the complexity of covariance matrix

(a) Case 1 (b) Case 2

45



Price to Pay for Misspecifying the Covariance Matrix

What if we misspecify Case 1 as Case 2? i.e., what is the outcome
of using the wrong decision boundary?

Consider classification task

▶ Decision Boundaries ϕ∗
1 , ϕ

∗
2

▶ Case 1: optimal risk attained by ϕ∗
1

▶ When wrongly using ϕ∗
2 :

Pcase1[ϕ
∗
2 ̸= z∗] = optimal risk + constant× density of crit. reg.︸ ︷︷ ︸

≍exp(−(1+o(1)) SNRpartial2

2 )≫optimal risk
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What happens in High Dimensions
To apply minimax framework, we need exponentially many
hard-to-distinguish cases (to translate it into a multiple testing problem).

▶ The previous example in R3 only represents two-case testing problem

▶ Note that the corr. submat. can be represented by a vec. in Sp−K−1.

▶ By the existence of an almost orthogonal vector set on Sp−K−1, we
can construct exponentially many hard-to-distinguish cases with
similar critical region among every pair :)

▶ The density within each critical region is approximately

exp(−(1 + o(1))SNRpartial2

2 )!

It hints that

impossibility of distinguishing hard cases

⇒a raise of risk by exp(−(1 + o(1))
SNRpartial2

2
)
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Proof Overview: Reduction Framework

Step 1: Reduction from Minimax Risk to Local Risk.

inf
ẑ

sup
(z∗,(θ∗

1 ,θ
∗
2 ,Σ1,Σ2))

E[h(ẑ, z∗)] ≳ inf
ẑ1

Classify. Err. of the first sample

Step 2: Reduction from Local Risk to Discrepency between two
LRTs.
Given an ϵ-packing-like parameter tuple collection

{(θ∗
1 ,θ

∗
2 ,Σ

(j)
1 ,Σ

(j)
2 )}j∈[M], we have

inf
ẑ1

Classify. Err. ≳ min
j1 ̸=j2∈[M]

diff. between ϕ∗
j1 and ϕ∗

j2 ,

where ϕ∗
j is the LRT for the j-th parameter {θ∗

1 ,θ
∗
2 ,Σ

(j)
1 ,Σ

(j)
2 }.
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A Glimpse at Proof Techniques

Consider a weighted misclustering error instead

l(z, z∗) :=
∑
i∈n

〈
V∗⊤(θ∗

zi − θ∗
z∗i

)
, S∗

zi
−1V∗⊤(θ∗

zi − θ∗
z∗i

)〉
1{zi ̸=z∗i }.

One-Step Analysis [Gao and Zhang, 2022, Chen and Zhang, 2024]

l(ẑ(t), z∗) ≤ ξoracle︸ ︷︷ ︸
oracle error

+
1

4
l(ẑ(t−1), z∗)︸ ︷︷ ︸

remnant effect from the last step

,

where ξoracle represents the weighted misclustering error given the
true centers and projected covariance matrices

Consequence: after O(log n) steps, l(ẑ(t), z∗) is on the same order as

ξoracle, which is exp(−(1 + o(1))SNRpartial2/2).
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