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A privacy mechanism is a randomised algorithm taking an input dataset
X = (X1, . . . , Xn) ∈ X n and producing publishable data Z . Formally, it is a
collection of conditional distributionsQ = {Q(·|x) : x ∈ X n} such that

Z |{X = x} ∼ Q(·|x).

Privacy mechanism Q is called ε-(central) di󰎎erentially private (Dwork et al., 2006) if

sup
A

Q(A|x)
Q(A|x ′) = sup

A

P(Z ∈ A|X = x)
P(Z ∈ A|X = x ′)

≤ eε,

for all x = (xi)ni=1, x
′ = (x ′i )

n
i=1 ∈ X n such that

󰁓n
i=1 1{xi ∕= x ′i } ≤ 1. We focus on

the regime ε ∈ (0, 1].

At a high level, this quantifies how similar the private outcomes are in terms of total
variation distance, by changing one out of n samples.
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For the central di󰎎erential privacy (CDP), where there is a trusted central data
curator having access to all the raw data. For example, when estimating a univariate
mean, we can have

󰁥θ = Z =
1
n

n󰁛

i=1

Xi +
1
nε

W , withW ∼ Lap(1).

The variance of total added noise is of order (n2ε2)−1.

A stronger notion of di󰎎erential privacy is the local di󰎎erential privacy (LDP), where
data are randomised before collection, that is

sup
A

sup
x,x′∈X

P(Zi ∈ A|Xi = x)
P(Zi ∈ A|Xi = x ′)

≤ eε, i ∈ {1, . . . , n}.

For example, when estimating a univariate mean, we can have

󰁥θ =
1
n

n󰁛

i=1

Zi =
1
n

n󰁛

i=1

󰀕
Xi +

1
ε
Wi

󰀖
, with {Wi}ni=1

i.i.d.∼ Lap(1).

The variance of total added noise is of order (nε2)−1.
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Remarks

◮ Non-interactive, sequentially interactive and fully-interactive LDP mechanisms.

◮ Pure and approximate DP.

Pure DP: Q(A|x) ≤ eεQ(A|x) and Approximate DP: Q(A|x) ≤ eεQ(A|x) + δ.
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h󰿣ps://blogs.nvidia.com/blog/what-is-federated-learning/

Challenges

◮ Heterogeneity: distributions, privacy requirement types, privacy budgets.

◮ Communications: e󰎎iciency in aggregating and communicating siloed information.
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◮ User-level DP: Rate optimality and phase transition for user-level local di󰎎erential
privacy (arXiv: 2405.11923, Alexander Kent, Thomas B. Berre󰿣 and Y.)

◮ CDP: Federated transfer learning with di󰎎erential privacy (arXiv: 2403.11343, Mengchu Li,

Ye Tian, Yang Feng and Y.)

◮ A mixture of both: Private distributed learning in functional data (arXiv:2412.06582,

Gengyu Xue, Zhenhua Lin and Y.)
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A simple example: univariate mean estimation measured in squared loss, with S
users/sites and n units of data per user.

Se󰿣ing Minimax rates References

No privacy 1/(Sn) Very easy to show

Local item-level 1/(Snε2) Duchi et al. (2018)

Local user-level (small n) 1/(Snε2) Our result

Local user-level (large n) e−Sε2 Our result

Central item-level 1/(Sn) ∨ 1/(S2n2ε2) Levy et al. (2021)

Central user-level (small n) 1/(Sn) ∨ 1/(S2nε2) Levy et al. (2021)

Federated 1/(Sn) ∨ 1/(Sn2ε2) Our result
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◮ Optimal estimation in private distributed functional data analysis (arXiv: 2412.06582)

Gengyu Xue Zhenhua Lin
(Univ. of Warwick) (National Univ. of Singapore)

Cai, T., Chakraborty, A., & Vuursteen, L. (2024). Optimal Federated Learning for
Functional Mean Estimation under Heterogeneous Privacy Constraints. arXiv
preprint arXiv:2412.18992.
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M󰝜󰝑󰝒󰝙

◮ Data: we have 󰀋󰀃
X (s,i)
j , Y (s,i)

j

󰀄󰀌n,m,S

i,j,s=1
,

i.e. m observations per function, n functions per server and S servers.

◮ Model:
Y (s,i)
j = µ∗(X (s,i)

j ) + U(s,i)(X (s,i)
j ) + ξs,ij,

where

◮ {X (s,i)
j } are observation grids on [0, 1],

◮ µ∗(·) is a deterministic function and is the goal of estimation,

◮ {U(s,i)(·)} are random mean-zero functions, and

◮ {ξs,ij} are measurement error random variables.
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A󰝠󰝠󰝢󰝚󰝝󰝡󰝖󰝜󰝛󰝠

◮ Independent sampling grids

◮ α-Sobolev functions: mean and noise functions

◮ Sub-Gaussianity: noise functions norms and measurement error
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M󰝖󰝛󰝖󰝚󰝎󰝥 󰝟󰝎󰝡󰝒󰝠

(For notational simplicity, we only present an easy case.)

Assume that
ns = n, ms = m, εs = ε and δs = δ.

We have that,

inf
Q∈Qε,δ

inf
󰁨µ

sup
PX ,PY

EPX ,PY ,Q

󰀐󰀐󰁨µ− µ∗󰀂2L2

≍ 1
Sn

∨
󰀕

1
Snm

󰀖 2α
2α+1

∨ 1
Sn2ε2

∨
󰀕

1
Sn2mε2

󰀖 2α
2α+2

.
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inf
Q∈Qε,δ

inf
󰁨µ

sup
PX ,PY

EPX ,PY ,Q

󰀐󰀐󰁨µ− µ∗󰀂2L2

≍ 1
Sn

∨
󰀕

1
Snm

󰀖 2α
2α+1

∨ 1
Sn2ε2

∨
󰀕

1
Sn2mε2

󰀖 2α
2α+2

◮ Privacy vs. no privacy

1
Sn2ε2

∨
󰀕

1
Sn2mε2

󰀖 2α
2α+2

vs.
1
Sn

∨
󰀕

1
Snm

󰀖 2α
2α+1

◮ Sparse vs. dense

󰀕
1

Sn2mε2

󰀖 2α
2α+2

∨
󰀕

1
Snm

󰀖 2α
2α+1

vs.
1

Sn2ε2
∨ 1

Sn
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P󰝕󰝎󰝠󰝒 󰝡󰝟󰝎󰝛󰝠󰝖󰝡󰝖󰝜󰝛

To understand the phase transition, let’s focus on a simple case that

S = 1.

Yi Yu



P󰝕󰝎󰝠󰝒 󰝡󰝟󰝎󰝛󰝠󰝖󰝡󰝖󰝜󰝛

Yi Yu



P󰝕󰝎󰝠󰝒 󰝡󰝟󰝎󰝛󰝠󰝖󰝡󰝖󰝜󰝛

Yi Yu



U󰝝󰝝󰝒󰝟 󰝎󰝛󰝑 󰝙󰝜󰝤󰝒󰝟 󰝏󰝜󰝢󰝛󰝑󰝠

󰀋󰀃
X (s,i)
j , Y (s,i)

j

󰀄󰀌n,m,S
i,j,s=1

Y (s,i)
j = µ∗(X (s,i)

j ) + U(s,i)(X (s,i)
j ) + ξs,ij
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U󰝝󰝝󰝒󰝟 󰝏󰝜󰝢󰝛󰝑

In a nutshell, the algorithm we adopt is Gaussian perturbed stochastic gradient
descent based on basis expansion, with r basis functions.

A non-private estimator is
󰁥µ(·) = Φ⊤

r (·)a,

with

󰁥a = argmin
a∈Rr

󰀥
1

nmS

n󰁛

i=1

m󰁛

j=1

S󰁛

s=1

{Y (s,i)
j − a⊤Φr(X

(s,i)
j )}2

󰀦

and Φr(·) = (φ1(·), . . . ,φr(·))⊤ being the leading r basis functions.

A private SGD estimator is obtained by updating gradients with added Gaussian
noise.
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U󰝝󰝝󰝒󰝟 󰝏󰝜󰝢󰝛󰝑

The ℓ2-sensitivity of a function f : D → Rr is defined as

∆2(f ) = sup
D∼D′

󰀂f (D)− f (D′)󰀂2.

The standard Gaussian mechanism states that

M(D) = f (D) + Z , with Z ∼ N (0, 2(∆2(f )/ε)
2 log(1.25/δ)),

satisfies (ε, δ)-DP.

Let∆(f ) = (∆f1, . . . ,∆fr)⊤ with∆fℓ = supD∼D′ |fℓ(D)− fℓ(D′)|, ℓ ∈ {1, . . . , r}.
We propose the anisotropic Gaussian mechanism that

M(D) = f (D) + Z , with Z ∼ N (0,Σ),

where Σ = diag{σ2
1 , . . . ,σ

2
r } and σ2

ℓ = 4 log(2/δ)∆fℓ󰀂∆(f )󰀂1/ε2. We have
that M(·) is (ε, δ)-DP.

Yi Yu



U󰝝󰝝󰝒󰝟 󰝏󰝜󰝢󰝛󰝑

The ℓ2-sensitivity of a function f : D → Rr is defined as

∆2(f ) = sup
D∼D′

󰀂f (D)− f (D′)󰀂2.

The standard Gaussian mechanism states that

M(D) = f (D) + Z , with Z ∼ N (0, 2(∆2(f )/ε)
2 log(1.25/δ)),

satisfies (ε, δ)-DP.

Let∆(f ) = (∆f1, . . . ,∆fr)⊤ with∆fℓ = supD∼D′ |fℓ(D)− fℓ(D′)|, ℓ ∈ {1, . . . , r}.
We propose the anisotropic Gaussian mechanism that

M(D) = f (D) + Z , with Z ∼ N (0,Σ),

where Σ = diag{σ2
1 , . . . ,σ

2
r } and σ2

ℓ = 4 log(2/δ)∆fℓ󰀂∆(f )󰀂1/ε2. We have
that M(·) is (ε, δ)-DP.

Yi Yu



U󰝝󰝝󰝒󰝟 󰝏󰝜󰝢󰝛󰝑

The de facto upper bound is

󰀐󰀐󰁨µ− µ∗󰀐󰀐2

L2
≲ r2

󰁓S
s=1(r

2ns ∧ r2n2sε2s ∧ rnsm ∧ n2smε2s )
+ r−2α.

Assuming homogeneity across servers, one can choose

r ≍ (Sn)
1
2α ∧ (Snm)

1
2α+1 ∧ (Sn2ε2)

1
2α ∧ (Sn2mε2)

1
2α+2

and lead to

󰀐󰀐󰁨µ− µ∗󰀐󰀐2

L2
≲ 1

Sn
∨
󰀕

1
Snm

󰀖 2α
2α+1

∨ 1
Sn2ε2

∨
󰀕

1
Sn2mε2

󰀖 2α
2α+2

.
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L󰝜󰝤󰝒󰝟 󰝏󰝜󰝢󰝛󰝑

An intermediate result

inf
Q∈Qε,δ,T

inf
󰁨µ

sup
PX ,PY

EPX ,PY ,Q

󰀐󰀐󰁨µ− µ∗󰀂2L2

≳ 1
ST (b ∧ b2ε2)

∨ r20
ST (b2mε2 ∧ r0bm)

,

where r0 is the solution to

r2α+2 = ST (b2mε2 ∧ rbm).

Proof ingredients

◮ Solve optimal b - the batch size.

◮ Case 1, constant functions for the mean function and the noise functions.

◮ Case 2, r-dimensional vector estimation.

◮ The van-Trees inequality.
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T󰝎󰝘󰝒 󰝕󰝜󰝚󰝒 󰝚󰝒󰝠󰝠󰝎󰝔󰝒󰝠
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