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DIFFERENTIAL PRIVACY

Elye New York Eimes

The 2020 Census Suggests That People
Live Underwater. There’s a Reason.

Technology advances forced the Census Bureau to use sweeping
measures to ensure privacy for respondents. The ensuing debate
goes to the heart of what a census is.
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‘The Census Bureau says that 14 people live in this bend in the Chicago River. It's one of thousands of bits of
incorrect data in the 2020 census meant to protect the privacy of census respondents. Jamie Kelter Davis for The
New York Times.
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DIFFERENTIAL PRIVACY

Apple will not

see your data

https://www.theverge.com/2015/3/10/8177683/apple-research-kit-app-ethics-medical-research
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A privacy mechanism is a randomised algorithm taking an input dataset
X =(X1,...,Xn) € X" and producing publishable data Z. Formally, it is a
collection of conditional distributions @ = {Q(|x) : x € X"} such that

Z|{X = x} ~ Q(-|x).

Privacy mechanism Q is called e-(central) differentially private (Dwork et al., 2006) if

Q(Alx) P(ZEAX=x) _ .
sup = sup <e,
a4 Q(A|x") A P(Z € AlX=x)

for all x = (x:)/2q, x" = (x{)izy € X" such that Y7, 1{x; # x{} < 1. We focus on
the regime € € (0, 1].
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A privacy mechanism is a randomised algorithm taking an input dataset
X =(X1,...,Xn) € X" and producing publishable data Z. Formally, it is a
collection of conditional distributions @ = {Q(+|x) : x € X"} such that

Z|{X = x} ~ Q(-|x).

Privacy mechanism Q is called e-(central) differentially private (Dwork et al., 2006) if

Q(Alx) P(ZEAX=x) _ .
sup = sup <e,
a4 Q(A|x") A P(Z € AlX=x)

for all x = (x:)/2q, x" = (x{)izy € X" such that Y7, 1{x; # x{} < 1. We focus on
the regime € € (0, 1].

At a high level, this quantifies how similar the private outcomes are in terms of total
variation distance, by changing one out of n samples.



DIFFERENTIAL PRIVACY

For the central differential privacy (CDP), where there is a trusted central data
curator having access to all the raw data. For example, when estimating a univariate
mean, we can have

~ n 1
0=7=-5S"X+ —W, with W~ Lap(1).
SD Xt W, i ap(1)

i=1

The variance of total added noise is of order (n’s*) ™",
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For the central differential privacy (CDP), where there is a trusted central data
curator having access to all the raw data. For example, when estimating a univariate
mean, we can have

~ n 1
0=7=-5S"X+ —W, with W~ Lap(1).
SD Xt W, i ap(1)

i=1

The variance of total added noise is of order (n’c?)~".

A stronger notion of differential privacy is the local differential privacy (LDP), where
data are randomised before collection, that is
P(Z € AlX; = x
sup sup

y
—— = L <, ie{l,...,nh
WP SUP B(Z € AX = x) = oo

For example, when estimating a univariate mean, we can have

n n

> 1 1 1 . n o iid
0= 7= 2 (e Tw) it (W L)

i=1 i=1

The variance of total added noise is of order (nz")"".



DIFFERENTIAL PRIVACY

Remarks

» Non-interactive, sequentially interactive and fully-interactive LDP mechanisms.

» Pure and approximate DP.

Pure DP: Q(A|x) < e*Q(A|x) and Approximate DP: Q(A|x) < €° Q(A|x) + 4.
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FEDERATED LEARNING
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https://blogs.nvidia.com/blog/what-is-federated-learning/
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FEDERATED LEARNING

N
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Challenges
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P Heterogeneity: distributions, privacy requirement types, privacy budgets.

P Communications: efficiency in aggregating and communicating siloed information.
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FEDERATED DIFFERENTIAL PRIVACY

User/server 1 2 .. S

Raw data (X Yict, o {(X? }ict, (X2 Yt

Some privacy constraints...
Privatised data Z, z . z

\»\6 /

Final estimator

YiYu



FEDERATED DIFFERENTIAL PRIVACY

User/server 1 2 S

Raw data (XD AXP}y 0 (X )i,

Some privacy constraints...

Privatised data

\»\6 /

Final estimator

» User-level DP: Rate optimality and phase transition for user-level local differential
> p y p
privacy (arXiv: 2405.11923, Alexander Kent, Thomas B. Berrett and Y.)

» CDP: Federated transfer learning with differential privacy (arXiv: 2403.11343, Mengchu Li,
Ye Tian, Yang Feng and Y.)

» A mixture of both: Private distributed learning in functional data (arXiv:2412.06582,
Gengyu Xue, Zhenhua Lin and Y.)
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FEDERATED DIFFERENTIAL PRIVACY

A simple example: univariate mean estimation measured in squared loss, with S
users/sites and n units of data per user.

Setting Minimax rates References

No privacy 1/(Sn) Very easy to show
Local item-level 1/(Sne?) Duchi et al. (2018)
Local user-level (small n) 1/(Sne?) Our result

Local user-level (large n) e Our result
Central item-level 1/(Sn) vV 1/(S$*n*e®)  Levy et al. (2021)

Central user-level (small n)  1/(Sn) vV 1/(S’ne®)  Levy et al. (2021)
Federated 1/(Sn) v 1/(Sr’€*)  Our result
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FEDERATED FUNCTIONAL ESTIMATION

Server 1 Server 2

m observations per function functions per site

. 3

User-level DP DP
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Server S

S servers

Local DP




FEDERATED FUNCTIONAL ESTIMATION

User-lovel DP op Local DP

» Optimal estimation in private distributed functional data analysis (arXiv: 2412.06582)

Gengyu Xue Zhenhua Lin
(Univ. of Warwick) (National Univ. of Singapore)
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FEDERATED FUNCTIONAL ESTIMATION

User-lovel DP op Local DP

» Optimal estimation in private distributed functional data analysis (arXiv: 2412.06582)

Gengyu Xue Zhenhua Lin
(Univ. of Warwick) (National Univ. of Singapore)

Cai, T., Chakraborty, A., & Vuursteen, L. (2024). Optimal Federated Learning for
Functional Mean Estimation under Heterogeneous Privacy Constraints. arXiv
preprint arXiv:2412.18992.
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MODEL

» Data: we have 6 e s
S0 S0 n,m,
{67 ™)}

ij,s=17

i.e. m observations per function, n functions per server and S servers.

» Model:

Yj(s,i) _ M* ()(j(s,i)) + U(s,i)()(j(s,i)) + gs,ij,
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MODEL

» Data: we have 6 oo s
S0 S0 n,m,
{67 ™)}

ij,s=17

i.e. m observations per function, n functions per server and S servers.

» Model:

Yj(s,i) _ M* ()(j(s,i)) + U(s,i)()(j(s,i)) + gs,ijy

where
> {Xj(s’i)} are observation grids on [0, 1],
> u*(-) is a deterministic function and is the goal of estimation,
> {U()(.)} are random mean-zero functions, and

> {&,ij} are measurement error random variables.
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ASSUMPTIONS

» Independent sampling grids

» «-Sobolev functions: mean and noise functions

» Sub-Gaussianity: noise functions norms and measurement error
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MINIMAX RATES

(For notational simplicity, we only present an easy case.)

Assume that
ng=n, mi=m, & =¢ and d =3J.

We have that,

inf mf sup EPX,Py,QHM K HLz

Q€EQc 5 B py,Py
1 1 \=0 1 1\ =5
2 V——=V | ——— .
Sn Snm Sn%e? Sn?me?
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MINIMAX RATES

inf inf sup E L
el ;' h perval [ — 1l

2«

: 1) 1 1 Tat2
=50V som V—s V|
Sn Snm Sn2e2 S me?

» Privacy vs. no privacy

2cx .

1 1 2a+2 1 1 e
22Vl o vs. — V[ —
Sne? Sn*me? Sn Snm

> Sparse vs. dense

2o 200

1 Za+2 1 520 1 :
Snme? Vi~ Vs, —— V —
Sn?me? Snm Sn2e? = Sn
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PHASE TRANSITION

To understand the phase transition, let’s focus on a simple case that
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UPPER AND LOWER BOUNDS

{ (Xj(s,i)’ Y-(SJ)) }n,m,S

J ij,5=1

VD =t (D) 1 U (D) g,
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UPPER BOUND

In a nutshell, the algorithm we adopt is Gaussian perturbed stochastic gradient
descent based on basis expansion, with r basis functions.
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A non-private estimator is
-~ T
a() =@, (a,

with

n m

S
a=argmin | o373 S () —aT e ()
i=1 j=1 s=1

and ®,(:) = (¢1(-), ..., ()" being the leading r basis functions.
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In a nutshell, the algorithm we adopt is Gaussian perturbed stochastic gradient
descent based on basis expansion, with r basis functions.

A non-private estimator is
-~ T
a() =@, (a,

with

n m

S
i | s 2 2 207 oY

and ®,(:) = (¢1(-), ..., ()" being the leading r basis functions.

A private SGD estimator is obtained by updating gradients with added Gaussian
noise.



UPPER BOUND

The ¢,-sensitivity of a function f : D — R" is defined as
Aa(f) = sup [If(D) = f(D)|2-
The standard Gaussian mechanism states that
M(D) = f(D) + Z, with Z ~ N(0,2(A1(f)/e)* log(1.25/6)),

satisfies (£, §)-DP.
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The ¢,-sensitivity of a function f : D — R" is defined as
Aa(f) = sup [If(D) = f(D)|2-
The standard Gaussian mechanism states that
M(D) = f(D) + Z, with Z ~ N(0,2(A1(f)/e)* log(1.25/6)),

satisfies (£, §)-DP.

Let A(f) = (Afi, ..., Af) T with Afp = supy_p [fe(D) — (D)), £ € {1,...

We propose the anisotropic Gaussian mechanism that
M(D) = f(D)+ Z, with Z ~ N(0,%),

where ¥ = diag{c7{,...,0’} and o] = 4log(2/8)Afe||A(f)|[1/2”. We have
that M(-) is (g, 6)-DP.



UPPER BOUND

The de facto upper bound is

2
r —2a

g
oo (r*ng A r2nZe? A rnsm A n?me?)

7= w7l <

Assuming homogeneity across servers, one can choose
1 1 1 1
L = 2 2yl PR N
r < (Sn)2e A (Snm)2a1 A (Sne”)2@ A (Sn"me®)2at?

and lead to

2

pie
2 1 1 2ae+1 1 1 20+2
<=V (— V—-oV|—— .
L~ Sn ( Snm) Sn?e? <5n2 me? )

| —
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LOWER BOUND

An intermediate result

inf inf sup E o=t
QO 5.1 fi PXJI’)V PX,PV,QHN 1 HLz

1 rg

> %
~ ST(bA b2€2) ~ ST(b*me? A robm)’

where ry is the solution to

12 = ST(B*me® A rbm).
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LOWER BOUND

An intermediate result
inf inf sup E ~ k2
el s 'm b peorvsalli— w1
2
> 1 Vi ry 7
= ST(bA b252) ST(meEZ A robm)

where ry is the solution to

ot = ST(bzma2 A rbm).

Proof ingredients
> Solve optimal b - the batch size.
» Case 1, constant functions for the mean function and the noise functions.
» Case 2, r-dimensional vector estimation.

> The van-Trees inequality.
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TAKE HOME MESSAGES

User/server 1 2 s
Raw data (X )ir,n (X Vet n (X e n
LDP, CDP or a mixture of both
! v
Privatised data 2 z z

Server 1

Server2

Final estimator

Setting Minimax rates References

No privacy 1/(Sn) Very easy to show
Local item-level 1/(Sne?) Duchi et al. (2018)
Local user-level (small n) 1/(Sne?) Our result

Local user-level (large n) P Our result
Central item-level 1/(Sn) vV 1/(8*n*€?)  Levy et al. (2021)
Central user-level (small n) ~ 1/(Sn) vV 1/(S*ne?)  Levy et al. (2021)
Federated 1/(Sn) v 1/(Sn’€?)  Our result
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