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Data Integration: Different Formats

One user, with connections and microblogs:
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Low-Dimensional Embedding

Weibo data:

Each user has an intrinsic response Yi ∈ RK : interests and opinions
in topics

Yi ’s decide the connections and micro-blogs

Estimate of Yi is difficult, without precise interpretation

Our goal:

find the influential covariates in microblogs on Yi

Use them for estimation/prediction

Collaborate with Mr. Tao Shen, DSDS, NUS.
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Network and Covariates

On a social platform with N users, we collect:

Network data A ∈ RN×N

Aij =

{
1, users i , j are connected
0, otherwise.

Hidden information:

Intrinsic response Yi ∈ RK for user i ,
K = O(1).

Popular models

Stochastic Blockmodel and its
variants: clustering

Latent position model
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High-Dimensional Covariates X

Covariates xi ∈ Rp captures the user’s information

Basic information: age, gender, location, etc

Behavior: posts, tags, favourite movies, etc

High-dimensional covariates (large p)

Sparse influential covariates related to the intrinsic response
Yi ∈ RK
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Goal

Data from two sources:

A ∈ RN×N , X ∈ RN×p

Assumptions:

large N and p

Intrinsic response Yi ∈ RK for user i , K = O(1)

Sparse influential covariates related to Yi

S = {j ∈ p; Xj depends on Y },

and |S|/p → 0 when p →∞.

Goal:

Part I: Recover S based on A and X

Part II: Estimate and predict Yi based on S
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Goal I: Network-Guided Influential Covariate Selection
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Review: Covariate-wise Screening Statistics
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Review: Covariate-wise Screening Statistics

Example: High-dimensional clustering problem, no network info.

Assumption: Xj ∼ N(0, 1) for j /∈ S
Step 1: test statistic when labels are unknown

tj =
N∑
i=1

X 2
ij ∼ χ2

N , j /∈ S

Step 2: p-value
πj = P(χ2

N ≥ tj), j ∈ [p]

Step 3: select the influential covariates S

Ŝ = {j ;πj ≤ given threshold πthre}

e.g. Jin and Wang, 2016
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Review: Covariate-wise Screening Statistics

Pros:

Computationally efficient

test stat is based on one column, not the whole matrix

Flexible

Adjust the test statistic to adapt to complex dist and data

Cons:

The p-value calculation requires the null dist. of test stat

Deciding a proper tthre is complicated
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Network is in....
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Network is in....
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Step 1. Network-Guided Statistic

Goal: S = {j ∈ p; Xj depends on Y }, where Y is the intrinsic
response

Only X : no info about Y ; unsupervised

X and A: A has partial info about Y

Network-Guided test stat:

Input: Network A, Covariate Xj , tuning parameter K̂

(i) (Extract partial info. by the spectral analysis)
Let ξk be the k-th leading eigenvector of A

(ii) (Construct the stat based on ξk and Xj)

tj = tj(A,Xj ; K̂ ) =
K̂∑

k=1

(ξTk Xj)
2
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Step 2: Null Distribution

Assumption: Xj ∼ N(0, In) for j /∈ S

tj = tj(A,Xj ; K̂ ) =
K̂∑

k=1

(ξTk Xj)
2

Since ξk is an eigenvector with norm 1, ξTk Xj ∼ N(0, 1)

Since ξTk ξl = 0, ξTk Xj and ξTl Xj are indep.

As a conclusion, the null dist.

tj = tj(A,Xj ; K̂ ) ∼ χ2
K̂
,

p-values: πj = P(χ2
K̂
> tj).
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Network Spectral Info Guide the Tests

Yi ∈ {1, 2}, N = 1000, Influential covariate 38
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Network Spectral Info Guide the Tests

Histograms of influential covariates p-values, K = 3:

p-values for non-influential covariates follow uniform
distribution
Significant power gain from network info.
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Step 3: Selection

Ŝ = {j ;πj ≤ given threshold πthre}

Deciding πthre is challenging

For p tests, there will always be ∼ p ∗ πthre covariates selected
even if there are no signals

Data-driven Higher Criticism Threshold:

Original idea goes back to John Tukey, at a given level
Donoho and Jin extends the stat to a function
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Step 3: Higher Criticism Thresholding (HCT)

Input: the p-value of each covariate, say πj , 1 ≤ j ≤ p

1 (Ordering) Order them as π(1) ≤ π(2) ≤ · · · ≤ π(p)

2 (Decide the cut-off) Calculate the Higher Criticism score

HC (j) =
√

p
j/p − π(j)√
π(j)(1− π(j))

3 Let ŝ = max1≤j≤p/2 HC (j)

4 The threshold is πthre = π(ĵ). The selected covariates are

Ŝ = {j : πj ≤ πthre} = {j : πj ≤ π(ĵ)},

with the cardinality ŝ.
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Algorithm: Network-Guided Covariate Selection

Network-Guided Covariate Selection (NGCS) algorithm

Input: Network A, covariates X , tuning parameter K̂

Step 1 Construct the test statistic

1 Find the top K̂ eigenvectors of A (or the Laplacian L), denoted as
ξ1, · · · , ξK̂

2 Define the test stat tj =
∑K̂

k=1(ξTk xj)
2

Step 2 Find p-values that πj = P(χ2
K̂
> tj)

Step 3 Higher Criticism Thresholding to decide Ŝ, using πjs.

Output: The set of selected influential covariates Ŝ
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How many eigenvectors?

Histograms of influential covariates p-values, K = 3:

Less eigenvectors K̂ < K : suffers a power loss, still better than
using X

More eigenvectors K̂ > K : not significant power loss
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Intuition of NGCS
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Model and Theoretical Guarantee
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Sparse and Weak Influential Covariates

X ∈ RN×p, A ∈ RN×N

Assumptions:

Covariates j : Xj ∼ N(YMj , In)

Influential covariates S = {j : ‖Mj‖ 6= 0}
Sparsity: |S| = p1−β, β > 0

Weakness: ‖Mj‖ → 0.

Define the network-guided signal strength

κj =
∑K̂

k=1
(ξTk E [Xj ])

2, κA = min
j∈S

κj .

It doesn’t have network model assumptions.
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Consistency

The network-guided signal strength

κA = min
j∈S

κj .

Theorem (Consistency)

Suppose the assumptions hold and κA ≥ max{16(1− β), 14} log p,

(i) [Sure screening property] with a high prob., the network-guided
p-values satisfy that

max
i∈S

πi < min
i /∈S

πi .

(ii) [Exact recovery] Furthermore, the NGCS algorithm with HCT
satisfies that

S ⊂ Ŝ, |Ŝ\S| ≤ C log2 p � |S|.
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Network Models

Requirement on network:

κA ≥ max{16(1− β), 14} log p

Corollaries under popular models:

Degree-Corrected SBM

expected degree ≥ c log n
‖Mj‖2 ≥ C log p/n, and K̂ ≥ K

Random Dot Product Graph

expected degree ≥ c log n
‖Mj‖2 ≥ C log p/n and K̂ ≥ K

More possibilities...
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Network Models

Requirement on network:

κA ≥ max{16(1− β), 14} log p

Summary:

the NGCS algorithm and theorem doesn’t need network assumptions

Under popular network models, with rich network info, NGCS
achieves the same rate as the supervised learning case!
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Simulation

3 network models with different underlying K

50 repetitions

Network-guided test stat outperforms other methods, and
HCT achieves almost perfect selection
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Goal II. Estimation and Prediction with Selected Influential Covariates
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Data Integration: Clustering on Two Datasets

Clustering of two datasets: partial network info.

Recover the complete label vector Y =

(
Y (1)

Y (2)

)
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NGCS Clustering

NG-Clu Algorithm

Input: A(1) and X (1) for Dataset 1, X (2) for Dataset 2, K̂

Step 1. Apply NGCS to A(1), X (1), with K̂ as tuning parameter. Let Ŝ
be the selected influential covariates

Step 2. Construct X =

(
X (1),Ŝ

X (2),Ŝ

)
, where X (1),Ŝ and X (2),Ŝ are the

submatrix of X (1) and X (2) restricted on Ŝ.

Step 3. Let ΛK̂ be the diagonal matrix of leading K̂ singular values of
X and UK̂ containing the left singular vectors.

Step 4. Apply k-means to UK̂ΛK̂ .

Output: The label vector from k-means.
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Consistency of Clustering

Since the intrinsic responses are labels, we consider the DCSBM
network model

Under DCSBM, κA is simplified as κ = minj∈S ‖Mj‖

Theorem (Consistency of Clustering)

Under DCSBM and regular conditions on the distance between rows of
M, there is

Err =
misclassified

N + n
≤ ŝ + N + n

2(N + n)sκ2

In particular, if κ2 > (ŝ + N + n)/(N + n)s, then there are no
misclassified nodes.

Error is the same with N + n samples and s covariates.
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Data Integration: Regression on Two Datasets

Partial network and partial response vector z

Goal: z(1) for Study 1 and znew for xnew

n� N
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Network-Guided Regression

NG-Reg Algorithm

Input: A(1) and X (1) for Dataset 1, X (2) and z for Dataset 2, K̂

Step 1. Apply NGCS to A(1), X (1), with K̂ as tuning parameter. Let Ŝ
be the selected influential covariates

Step 2. Let X (2),Ŝ be the submatrix of X (2) restricted on Ŝ.

Step 3. Let X (2),Ŝ = UΛV T . Define UK̂ and VK̂ be the matrices of U

and V containing the leading K̂ columns.

Step 4. Estimate coefficient vector γ̂ = VK̂ΛK̂UT
K̂

z ∈ R|Ŝ|.

Output: The estimate is X (1),Ŝ γ̂
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Consistency of Regression

We consider the RDPG network model

Under RDPG, κA is simplified as κ = minj∈S ‖Mj‖

Theorem (Consistency of Regression)

Under RDPG and further condition that rank(M) = K , λK (M) ≥ c‖M‖
and κ > 3

√
n+
√
ŝ√

ns
, there is

|γ̂TX Ŝ
n+1 − αTYn+1| ≤

√
n +
√

ŝ

κ
√

ns
+ Cσε(

1√
n

+
1

κ
√

s
)

Error is at the same order with the ordinary linear regression on n
samples and s covariates in Data 2.
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Clustering and Regression

Simulation settings:

Study 1: N = 800 samples, A(1) and X (1)

Study 2: n = 200 samples, X (2) and possibly z

p = 1000 covariates, among them s = 50 contribute to the
clustering

Clustering: DCSBM, K = 3

Regression: RDPG, K = 10
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Clustering and Regression Errors

Left panel: clustering result vs the number of covariates p

Right panel: regression result vs the signal strength in M
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Sina Weibo Data Analysis
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Sina Weibo Data

Jia et al. (2017) Node attribute-enhanced community detection in complex

networks.
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Sina Weibo Data

Dataset 1: N = 2000 users, p = 3000 covariates

Network A: Aij = 1 if i follows j
Covariates: 10 covariates from topic modelling; 2990
generated “fake” covariates

Goal 1: Recover the 10 influential covariates
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Covariate Selection

Recovery of the 10 influential covariates

Effects of Tuning Parameter K̂ Methods Comparison when K̂ = 10
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Regression

Goal 2: Predict the position on a given topic

Select one given topic, and define the position as

zi = 1−
∑
j∈S

Xij + εi , εi ∼ N(0, 0.52)

Dataset 2 sample sizes n = 100, 150, · · · , 500
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Regression

Recover Ŝ using Dataset 1

the number of total influential covariates |Ŝ|
the number of recovered true influential covariates |Ŝ ∩ S|

Determine the linear coefficients using Dataset 2

Estimate zi for users in Dataset 1

MSE for N = 2000 users in Dataset 1

New Lasso MCP SCAD

n2 RMSE |Ŝ| |Ŝ ∩ S| RMSE |Ŝ| |Ŝ ∩ S| RMSE |Ŝ| |Ŝ ∩ S| RMSE |Ŝ| |Ŝ ∩ S|

100 0.25 11.9 (1.79) 8 (0.00) 0.23 12.7 (23.30) 0.2 (0.42) 0.27 4.5 (7.21) 0.2 (0.42) 0.23 10.5 (16.39) 0.2 (0.42)
150 0.21 12.5 (4.01) 8 (0.00) 0.20 14.0 (21.75) 0.3 (0.67) 0.21 5.9 (6.37) 0.3 (0.67) 0.20 9.3 (16.91) 0.5 (0.85)
200 0.17 12.2 (2.25) 8 (0.00) 0.20 2.4 (5.15) 0.1 (0.32) 0.20 1.4 (2.17) 0.1 (0.32) 0.19 3.7 (4.99) 0.3 (0.48)
250 0.14 10.3 (1.16) 8 (0.00) 0.22 43.2 (51.47) 0.2 (0.42) 0.19 3.2 (5.79) 0.0 (0.00) 0.20 20.7 (28.23) 0.0 (0.00)
300 0.13 11.0 (2.10) 8 (0.00) 0.19 11.5 (22.18) 0.6 (0.70) 0.19 5.4 (8.42) 0.5 (0.53) 0.20 13.9 (21.89) 0.5 (0.53)
350 0.13 11.3 (1.64) 8 (0.00) 0.19 3.0 (7.15) 0.2 (0.42) 0.19 2.6 (4.86) 0.2 (0.42) 0.19 9.5 (16.66) 0.4 (0.52)
400 0.11 12.5 (2.84) 8 (0.00) 0.19 12.9 (19.02) 0.5 (0.97) 0.19 4.6 (7.49) 0.4 (0.70) 0.19 5.1 (8.71) 0.4 (0.70)
450 0.11 11.3 (1.77) 8 (0.00) 0.19 6.6 (7.82) 0.7 (0.95) 0.19 3.1 (4.63) 0.5 (0.71) 0.19 5.6 (6.69) 0.6 (0.84)
500 0.11 12.2 (2.53) 8 (0.00) 0.19 10.5 (10.83) 0.8 (0.79) 0.19 6.7 (6.88) 0.7 (0.82) 0.19 13.5 (13.00) 1.0 (1.05)
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Take-Away Messages

High-dimensional covariates and Network

General NGCS algorithm
Robust to network model mis-specification and K
Achieves the same rate of the supervised learning setting
Consistency analysis for clustering and regression

Generalization to other integration problem

Spectral info is useful. e.g. manifold data

Main paper:

Optimal Network-Guided Covariate Selection for High-Dimensional
Data Integration. arXiv: 2504.04866
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Appendix
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Future Directions

Network + Covariates gains more and more interests:

Many literature from various viewpoints:

Gene network and gene-expression data: Li and Li (2008) on

linear regression; Wu, Zhu and Feng (2018) constructs a Markov

chain on ranking statistics and network; Wang and Chen (2021) on

Kendall’s tau statistic

Network autoregression model: Zhu et al. (2019)

Dimension reduction of covariates: Gu and Han (2011); Zhao et

al. (2022)

Community detection on sparse networks with covariates:
Newman and Clauset (2016), Yang et al. (2013), Yan et al. (2019);

Yan and Sarkar (2021), Zhang, Levina and Zhu (2016); Binkiewicz

et al. (2017), Abbe et al. (2022); Xu et al. (2022)

Community detection with covariates bounds: Deshpande et al.

(2018), Ma and Nandy (2023); Abbe et al. (2022)
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Random Dot Product Graph

Consider the a special case in the latent position model

Ai,j ∼ Bernoulli(ρnY T
i Yj), Yi

i.i.d.∼ F

Yi : the latent position of sample i

ρn: the network density parameter

The domain of F is a subset in the unit ball in RK and Y T
i Yj ≥ 0.

Cov(Yi ) ∈ RK×K has a full rank

For any realization Yi , Y T
i E [Yj ] ≥ c > 0

nρn ≥ cd log n for a constant cd > 0.
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Consistency under RDPG

Corollary (Consistency under RDPG)

Under RDPG with nρn ≥ cd log n. Let K ≤ K̂ = O(1), then there
is a constant c, so that

κA ≥ cn min
j∈S
‖Mj‖2.

Therefore, S can be almost exactly recovered when

min
j∈S
‖Mj‖ ≥ c

√
log p/n.

The minimum signal strength is ‖Mj‖ = O(
√

log p/n)
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Degree-Corrected SBM

Degree-Corrected SBM:

Ai,j ∼ Bernoulli(θiθjY
T
i BYj), Yi ∈ {0, 1}K .

Yi is the community membership vector

B ∈ RK×K is the community by community matrix

θi denotes the heterogeneity among samples

B has a rank of K

nk/n ≥ c > 0 for each community k

there is C > 0, so that Cθi ≥ maxi θi for i ∈ [n]
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Consistency under DCSBM

Corollary (Consistency under DCSBM)

Consider DCSBM where n maxi θ
2
i ≥ C log n for a constant C > 0.

Let K ≤ K̂ = O(1), then there is a constant c, so that

κA ≥ cn min
j∈S
‖Mj‖2.

Therefore, S can be almost exactly recovered when

min
j∈S
‖Mj‖ ≥ c

√
log p/n.
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Optimal Threshold: HCT

Set N = 1000, p = 1200, K = 3, |S| = 50 influential covariates.

Network-guided test stat largely improves the power

Data-driven HCT is almost optimal
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