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Shrinkage estimation: from vector to matrix
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Stein’s paradox

X ∼ Nn(µ, In)

estimate µ based on X under quadratic loss ∥µ̂− µ∥2
Maximum likelihood estimator µ̂MLE(x) = x is minimax.

Theorem (Stein, 1956)
When n ≥ 3, µ̂MLE(x) = x is inadmissible.

Shrinkage estimators dominate µ̂MLE.
e.g. James–Stein estimator (James and Stein, 1961)

µ̂JS(x) =
(
1− n− 2

∥x∥2

)
x

E∥µ̂JS(x)− µ∥2 ≤ E∥µ̂MLE(x)− µ∥2 = n

JS shrinks x toward the origin.
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Risk function (n = 10)
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JS attains large risk reduction when µ is close to the origin
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superharmonic prior ⇒ minimax
Bayes estimator of µ with prior π(µ) (posterior mean)

µ̂π(x) =
∫

µπ(µ | x)dµ =
∫
µp(x | µ)π(µ)dµ∫
p(x | µ)π(µ)dµ

superharmonic prior

∆π(µ) =
n∑

a=1

∂2

∂µ2
a

π(µ) ≤ 0

Theorem (Stein, 1974)
The Bayes estimator with a superharmonic prior is minimax.

e.g. Stein’s prior (n ≥ 3)

πS(µ) = ∥µ∥2−n

Bayes estimator with πS shrinks toward the origin like JS.
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Estimation of normal mean matrix

X ∼ Nn,p(M, In, Ip) ⇔ Xai ∼ N(Mai, 1)

estimate M based on X under Frobenius loss

L(M, M̂) = ∥M̂ −M∥2F =
n∑

a=1

p∑
i=1

(M̂ai −Mai)2

Efron–Morris estimator (= James–Stein estimator when p = 1)
M̂EM(X) = X

(
Ip − (n− p− 1)(X⊤X)−1)

Theorem (Efron and Morris, 1972)
When n ≥ p+ 2, M̂EM is minimax and dominates M̂MLE(X) = X .

Stein (1974): M̂EM shrinks singular values separately.

σi(M̂EM) =
(
1− n− p− 1

σi(X)2

)
σi(X)
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Risk function (rank 2)
n = 10, p = 3, σ1(M) = 20, σ3(M) = 0
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M̂EM works well when σ2(M) is small, even if σ1(M) is large.
▶ M̂JS works well if ∥M∥2F = σ1(M)2+σ2(M)2+σ3(M)2 is small.
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Risk function (rank 1)
n = 10, p = 3, σ2(M) = σ3(M) = 0
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M̂EM has constant risk reduction even if σ1(M) is large.
Therefore, M̂EM works well when M is close to low-rank.
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Bayesian counterpart of Efron–Morris?

vector matrix
James–Stein estimator
µ̂JS =

(
1− n−2

∥x∥2

)
x

Efron–Morris estimator
M̂EM = X

(
Ip − (n− p− 1)(X⊤X)−1)

Stein’s prior
πS(µ) = ∥µ∥−(n−2)

?

note: JS and EM are not (generalized) Bayes estimators.
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Singular value shrinkage prior

πSVS(M) = det(M⊤M)−(n−p−1)/2 =
p∏

i=1

σi(M)−(n−p−1)

puts more weight on matrices with smaller singular values
→ shrinks singular values separately
When p = 1, πSVS coincides with Stein’s prior πS(µ) = ∥µ∥2−n.

Theorem (M. and Komaki, Biometrika 2015)
When n ≥ p+ 2, πSVS is superharmonic:

∆πSVS =
n∑

a=1

p∑
i=1

∂2πSVS

∂M2
ai

≤ 0.

Bayes estimator with πSVS is minimax under Frobenius loss.
▶ similar behavior to EM
▶ works well when M has (approximately) low rank
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Superharmonicity at low rank matrices

Previously proposed superharmonic priors mainly shrink to
simple subsets (e.g. point, linear subspace).

In contrast, πSVS shrinks to the set of low rank matrices, which is
nonlinear and nonconvex.

Theorem (M. and Komaki, 2015)
∆πSVS(M) = 0 if M has full rank.

Therefore, superharmonicity of πSVS is strongly concentrated in
the same way as the Laplacian of Stein’s prior becomes a Dirac
delta function.
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Summary (so far)

vector matrix
James–Stein estimator
µ̂JS =

(
1− n−2

∥x∥2

)
x

Efron–Morris estimator
M̂EM = X

(
Ip − (n− p− 1)(X⊤X)−1)

Stein’s prior
πS(µ) = ∥µ∥−(n−2)

singular value shrinkage prior
πSVS(M) = det(M⊤M)−(n−p−1)/2
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Estimation under matrix quadratic loss

X ∼ Nn,p(M, In, Ip) (Xai ∼ N(Mai, 1))

estimate M based on X under matrix quadratic loss

L(M, M̂) = (M̂ −M)⊤(M̂ −M) ∈ Rp×p

risk function

R(M, M̂) = EM [L(M, M̂(X))] ∈ Rp×p

We compare R(M, M̂) in the Löwner order ⪯
▶ A ⪯ B ⇔ B −A is positive semidefinite
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Unbiased risk estimate & minimaxity of EM
matrix divergence

(d̃iv g(X))ij =
n∑

a=1

∂

∂Xai
gaj(X)

Theorem
The matrix quadratic risk of M̂ = X + g(X) is given by

R(M, M̂) = nIp + EM [d̃iv g(X) + (d̃iv g(X))⊤ + g(X)⊤g(X)]

Theorem
When n− p− 1 > 0, the Efron–Morris estimator is minimax under
the matrix quadratic loss:

R(M, M̂EM) = nIp − (n− p− 1)2EM [(X⊤X)−1] ⪯ nIp
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Matrix superharmonic prior ⇒ minimax
Stein (1974)
When X ∼ Nn(µ, In) (n ≥ 3), Bayes estimator with a
superharmonic prior π(µ) is minimax under quadratic loss:

∆π :=
n∑

a=1

∂2π

∂µ2
a

≤ 0 ⇒ E∥µ̂π(x)− µ∥2 ≤ n

M. and Strawderman (Biometrika 2022)
When X ∼ Nn,p(M, In, Ip) (n ≥ p+ 2), Bayes estimator with a
matrix superharmonic prior is minimax under matrix quadratic loss:

∆̃π :=
(

n∑
a=1

∂2π

∂Mai∂Maj

)
ij

⪯ O

⇒ E(M̂π(X)−M)⊤(M̂π(X)−M) ⪯ nIp
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A class of matrix superharmonic priors
improper matrix t-prior

πα,β(M) = det(M⊤M + βIp)−(α+n+p−1)/2

Theorem
If −n− p+ 1 ≤ α ≤ −2p and β ≥ 0, then πα,β(M) is matrix
superharmonic and the generalized Bayes estimator with respect to
πα,β(M) is minimax under the matrix quadratic loss.

By taking α = −2p and β = 0,

πSVS(M) = det(M⊤M)−(n−p−1)/2

Corollary
When n− p− 1 > 0, πSVS(M) is matrix superharmonic and the
generalized Bayes estimator with respect to πSVS is minimax under
the matrix quadratic loss.
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Simulation

eigenvalues (n = 100, p = 20, σi = (6− i)/5 · σ1 (i = 2, . . . , 5),
σ6 = · · · = σ20 = 0)
left: M̂EM. right: M̂JS
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The advantage of M̂EM to the low-rank setting is more
pronounced in higher dimensions.

▶ λ6 ≈ · · · ≈ λ20 ≈ 20
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Double shrinkage prior (M., Komaki and Strawderman, 2024)

Bayes estimator with πSVS is inadmissible

improved by additional scalar / column-wise shrinkage

πMSVS1(M) = πSVS(M)∥M∥−γ
F

πMSVS2(M) = πSVS(M)
p∏

i=1

∥M·i∥−γi
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Empirical Bayes matrix completion (M. and Komaki, 2019)

extension of Efron–Morris estimator to missing data
▶ estimation of M from partially observed X

M ∼ Nn,p(0, In,Σ)
X | M ∼ Nn,p(M, In, C)

Application: protein data, movie data
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Application to nonparametric estimation (M., 2024)

The blockwise Efron–Morris estimator is adaptive minimax over
the multivariate Sobolev ellipsoids.

▶ extension of Efromovich and Pinsker (1984)
▶ adaptation to smoothness, scale and arbitrary quadratic loss
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Application to nonparametric estimation (M., 2024)

Theorem (M., IEEE IT 2024)
The blockwise Efron–Morris estimator θ̂BEM is adaptive minimax
over the multivariate Sobolev ellipsoids:

sup
θ∈Θ(β,Q)

RQ(θ, θ̂BEM) ∼ inf
θ̂

sup
θ∈Θ(β,Q)

RQ(θ, θ̂) ∼ P (β,Q)ε4β/(2β+1)

for every β and Q.
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Future work
How about tensors ??

X = (Xijk)

For tensors, even the definition of rank or singular values is not
clear..

Hopefully, some empirical Bayes method provides a natural
shrinkage for tensors.
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