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Shrinkage estimation: from vector to matrix
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Stein’s paradox

X ~ Nu(p, In)

@ estimate u based on X under quadratic loss || — pu|?
@ Maximum likelihood estimator fiyre(x) = x is minimax.

Theorem (Stein, 1956) J

When n > 3, fimLe(z) = z is inadmissible.

@ Shrinkage estimators dominate k.
@ e.g. James-Stein estimator (James and Stein, 1961)

R n—2
pste) = (1- 57 ) :
Bllas(e) P < Elfnaste) —ulf =~
@ JS shrinks z toward the origin. IS

origin
an o
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Risk function (n = 10)
quadratic risk E||4 — u||? (n = 10)
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@ JS attains large risk reduction when p is close to the origin
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superharmonic prior = minimax
@ Bayes estimator of u with prior 7r(u) (posterior mean)

) = [t 2y < 2@ BT (R)dp
o) = f i =

@ superharmonic prior

M) = 3 ) <0

a=1

Theorem (Stein, 1974)

The Bayes estimator with a superharmonic prior is minimax.

@ e.g. Stein’s prior (n > 3)

|2—n

ms(p) = [|ul

@ Bayes estimator with mg shrinks toward the origin like JS.
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Estimation of normal mean matrix

X ~Npp(M, I,,I,) & Xu~N(Mgy,l)

@ estimate M based on X under Frobenius loss

n p
LM, 51) = |0 = M2 = 33 (Wi — Mai)?
a=1 =1

@ Efron—Morris estimator (= James—Stein estimator when p = 1)
Mem(X) =X (I, — (n—p—1)(X"X)™")

Theorem (Efron and Morris, 1972)
Whenn > p + 2, Mgy is minimax and dominates MMLE(X) = X.

@ Stein (1974): Mg shrinks singular values separately.
n—p—1

o) = (1= "B ) o0
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Risk function (rank 2)
O n= 10,p =3, Ul(M) = 20, 0'3(M) =0
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® Mgy works well when o5 (M) is small, even if o (M) is large.
» M;s works well if | M||2 = o1(M)?+09(M)? +03(M)? is small.
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Risk function (rank 1)
oen=10,p=3,0:(M)=03(M)=0
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@ Mg\ has constant risk reduction even if o1(M) is large.
@ Therefore, MEM works well when M is close to low-rank.
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Bayesian counterpart of Efron—Morris?

vector

matrix

James—Stein estimator
flys = (1 - ﬁ) x

Efron—Morris estimator

Mpm =X (I, — (n—p—1)(XTX)™?)

Stein’s prior
ms(p) = ||l ="

?

@ note: JS and EM are not (generalized) Bayes estimators.
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Singular value shrinkage prior

p
msvs(M) = det(M M)~ P02 = [T ou(a)~CrD

=1

@ puts more weight on matrices with smaller singular values
— shrinks singular values separately
@ When p = 1, mgys coincides with Stein’s prior 7g(u) = ||p]|>".

Theorem (M. and Komaki, Biometrika 2015)
When n > p + 2, wgys is superharmonic:

Amgys = Z Z 88;(;\2/8 <

a=1 =1

@ Bayes estimator with mgyg is minimax under Frobenius loss.
» similar behavior to EM

» works well when M has (approximately) low rank o



Superharmonicity at low rank matrices

@ Previously proposed superharmonic priors mainly shrink to
simple subsets (e.g. point, linear subspace).

@ In contrast, mgyg shrinks to the set of low rank matrices, which is
nonlinear and nonconvex.

Theorem (M. and Komaki, 2015)
Arsys(M) = 0 if M has full rank.

@ Therefore, superharmonicity of msyg is strongly concentrated in
the same way as the Laplacian of Stein’s prior becomes a Dirac
delta function.
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Summary (so far)

vector

maitrix

James—Stein estimator
flys = (1 — ﬁ) z

Efron—Morris estimator
Mepv=X(I,—(n—p-1)(X"X)™")

Stein’s prior
ms(p) = ||l ="

singular value shrinkage prior
Tsvs(M) = det(M T M)~ (n=p=1)/2
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Estimation under matrix quadratic loss

X ~Npp(M, L,,I,) (X ~ N(Mg,1))

@ estimate M based on X under matrix quadratic loss
L(M, M) = (M — M) (M — M) € RP*P
@ risk function
R(M, M) = Ey[L(M, M(X))] € RP*?

@ We compare R(M, M) in the Léwner order <
» A X B & B — Ais positive semidefinite
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Unbiased risk estimate & minimaxity of EM
@ matrix divergence

Theorem
The matrix quadratic risk of M=X+ 9(X) is given by

R(M, M) = nl, + Ey[div g(X) + (div g(X)) " + g(X) g(X)]

V.

Theorem

Whenn — p — 1 > 0, the Efron—Morris estimator is minimax under
the matrix quadratic loss:

R(M, Mgy) = nl, — (n —p— 1)?Ep[(XTX) ™Y < nl,
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Matrix superharmonic prior = minimax
Stein (1974)

When X ~ N,(u, I,) (n > 3), Bayes estimator with a
superharmonic prior 7(u) is minimax under quadratic loss:

~ O%r o
A= o2 <0 = E[p"(z)—ullP<n
a=1 a

M. and Strawderman (Biometrika 2022)

When X ~ N, ,(M, I,,I,) (n > p + 2), Bayes estimator with a
matrix superharmonic prior is minimax under matrix quadratic loss:

Ar = i —827r <0
T\ MM, |
a= ij

= E(M"(X)-M)"(M™(X) - M) =<nl,

15/22



A class of matrix superharmonic priors
@ improper matrix t-prior

Ta,p(M) = det(M ™M + 51p)—(a+n+p—1)/2

Theorem

If —n—p+1<a< —2pand S > 0, then 7, g(M) is matrix
superharmonic and the generalized Bayes estimator with respect to
Ta,5(M) is minimax under the matrix quadratic loss.

@ Bytakinga = —2pand 8 =0,
msvs(M) = det(MTM)—(n—p—l)/2

Corollary

Whenn —p—1 > 0, mgys(M) is matrix superharmonic and the
generalized Bayes estimator with respect to wgyg is minimax under
the matrix quadratic loss.
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Simulation

@ eigenvalues (n = 100, p =20, 0, = (6 —14)/5-01 (i =2,...

o6 ="+ =02 =0)

o left: Mgy right: MJS
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@ The advantage of MEM to the low-rank setting is more
pronounced in higher dimensions.
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Double shrinkage prior (M., Komaki and Strawderman, 2024)
@ Bayes estimator with mgyg is inadmissible

@ improved by additional scalar / column-wise shrinkage
musvst (M) = WSVS(M)||M||_7

Tasvs2 (M) = msvs(M H (| M|~

30 30

Frobenius risk
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Empirical Bayes matrix completion (M. and Komaki, 2019)

movie 1 movie 2 movie 3 movie 4

user 1 4 7 ? 2
user 2 6 ? 3 8
user 3 ? 1 9 ?
user 4 4 5 ? 3

@ extension of Efron—Morris estimator to missing data
» estimation of M from partially observed X

M ~N,,(0,1,,%)
X |M~N,,(M,I,C)

@ Application: protein data, movie data
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Application to nonparametric estimation (M., 2024)

=)

@ The blockwise Efron—Morris estimator is adaptive minimax over
the multivariate Sobolev ellipsoids.
» extension of Efromovich and Pinsker (1984)

» adaptation to smoothness, scale and arbitrary quadratic loss
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Application to nonparametric estimation (M., 2024)

-
] ] ]

EM shrinkage EM shrinkage EM shrinkage
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Theorem (M., IEEE IT 2024)

The blockwise Efron—Morris estimator éBEM is adaptive minimax

over the multivariate Sobolev ellipsoids:

sup RQ(eaéBEM)Niqf sup RQ(G,é)N p(ﬁ,Q)Ew/(zﬁH)

0€0(5,Q) 6 6c0(8,Q)

for every 5 and Q.
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Future work
@ How about tensors ??

X = (Xijn)
@ For tensors, even the definition of rank or singular values is not
clear..

@ Hopefully, some empirical Bayes method provides a natural
shrinkage for tensors.
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