Matrix estimation via singular value shrinkage

Takeru Matsuda

University of Tokyo & RIKEN Center for Brain Science

June 2, 2025 @ SNAB

Shrinkage estimation: from vector to matrix

Stein's paradox

$$X \sim N_n(\mu, I_n)$$

- estimate μ based on X under quadratic loss $\|\hat{\mu} \mu\|^2$
- Maximum likelihood estimator $\hat{\mu}_{\text{MLE}}(x) = x$ is minimax.

Theorem (Stein, 1956)

When $n \geq 3$, $\hat{\mu}_{\text{MLE}}(x) = x$ is inadmissible.

- Shrinkage estimators dominate $\hat{\mu}_{\mathrm{MLE}}$.
- e.g. James-Stein estimator (James and Stein, 1961)

$$\hat{\mu}_{\rm JS}(x) = \left(1 - \frac{n-2}{\|x\|^2}\right) x$$

$$E\|\hat{\mu}_{JS}(x) - \mu\|^2 \le E\|\hat{\mu}_{MLE}(x) - \mu\|^2 = n$$

JS shrinks x toward the origin.

Risk function (n = 10)

quadratic risk $\mathbf{E}\|\hat{\mu} - \mu\|^2$ (n = 10)

• JS attains large risk reduction when μ is close to the origin

superharmonic prior ⇒ minimax

• Bayes estimator of μ with prior $\pi(\mu)$ (posterior mean)

$$\hat{\mu}^{\pi}(x) = \int \mu \pi(\mu \mid x) d\mu = \frac{\int \mu p(x \mid \mu) \pi(\mu) d\mu}{\int p(x \mid \mu) \pi(\mu) d\mu}$$

superharmonic prior

$$\Delta \pi(\mu) = \sum_{a=1}^{n} \frac{\partial^{2}}{\partial \mu_{a}^{2}} \pi(\mu) \le 0$$

Theorem (Stein, 1974)

The Bayes estimator with a superharmonic prior is minimax.

• e.g. Stein's prior (n > 3)

$$\pi_{S}(\mu) = \|\mu\|^{2-n}$$

• Bayes estimator with $\pi_{\rm S}$ shrinks toward the origin like JS.

Estimation of normal mean matrix

$$X \sim N_{n,p}(M, I_n, I_p) \quad \Leftrightarrow \quad X_{ai} \sim N(M_{ai}, 1)$$

estimate M based on X under Frobenius loss

$$L(M, \hat{M}) = \|\hat{M} - M\|_{\mathrm{F}}^2 = \sum_{i=1}^{n} \sum_{j=1}^{p} (\hat{M}_{ai} - M_{ai})^2$$

• Efron–Morris estimator (= James–Stein estimator when p=1) $\hat{M}_{\mathrm{EM}}(X) = X\left(I_{p} - (n-p-1)(X^{\top}X)^{-1}\right)$

When $n \geq p+2$, $\hat{M}_{\rm EM}$ is minimax and dominates $\hat{M}_{\rm MLE}(X) = X$.

• Stein (1974): $\hat{M}_{\rm EM}$ shrinks singular values separately.

$$\sigma_i(\hat{M}_{ ext{EM}}) = \left(1 - rac{n-p-1}{\sigma_i(X)^2}
ight)\sigma_i(X)$$

Risk function (rank 2)

• $n = 10, p = 3, \sigma_1(M) = 20, \sigma_3(M) = 0$

- \hat{M}_{EM} works well when $\sigma_2(M)$ is small, even if $\sigma_1(M)$ is large.
 - \hat{M}_{JS} works well if $\|M\|_{\mathrm{F}}^2 = \sigma_1(M)^2 + \sigma_2(M)^2 + \sigma_3(M)^2$ is small.

Risk function (rank 1)

• $n = 10, p = 3, \sigma_2(M) = \sigma_3(M) = 0$

- $\hat{M}_{\rm EM}$ has constant risk reduction even if $\sigma_1(M)$ is large.
- Therefore, $\hat{M}_{\rm EM}$ works well when M is close to low-rank.

Bayesian counterpart of Efron–Morris?

vector	matrix		
James-Stein estimator	Efron–Morris estimator		
$\hat{\mu}_{\mathrm{JS}} = \left(1 - \frac{n-2}{\ x\ ^2}\right) x$	$\hat{M}_{\text{EM}} = X \left(I_p - (n - p - 1)(X^{\top}X)^{-1} \right)$		
Stein's prior	2		
$\pi_{\mathrm{S}}(\mu) = \ \mu\ ^{-(n-2)}$	f		

• note: JS and EM are not (generalized) Bayes estimators.

Singular value shrinkage prior

$$\pi_{\text{SVS}}(M) = \det(M^{\top}M)^{-(n-p-1)/2} = \prod_{i=1}^{p} \sigma_i(M)^{-(n-p-1)}$$

- puts more weight on matrices with smaller singular values
 → shrinks singular values separately
- When p=1, $\pi_{\rm SVS}$ coincides with Stein's prior $\pi_{\rm S}(\mu)=\|\mu\|^{2-n}$.

Theorem (M. and Komaki, Biometrika 2015)

When $n \ge p + 2$, π_{SVS} is superharmonic:

$$\Delta \pi_{\text{SVS}} = \sum_{i=1}^{n} \sum_{i=1}^{p} \frac{\partial^{2} \pi_{\text{SVS}}}{\partial M_{ai}^{2}} \leq 0.$$

- Bayes estimator with $\pi_{\rm SVS}$ is minimax under Frobenius loss.
 - similar behavior to EM
 - works well when M has (approximately) low rank

Superharmonicity at low rank matrices

- Previously proposed superharmonic priors mainly shrink to simple subsets (e.g. point, linear subspace).
- In contrast, π_{SVS} shrinks to the set of low rank matrices, which is nonlinear and nonconvex.

Theorem (M. and Komaki, 2015)

 $\Delta \pi_{\text{SVS}}(M) = 0$ if M has full rank.

 \bullet Therefore, superharmonicity of $\pi_{\rm SVS}$ is strongly concentrated in the same way as the Laplacian of Stein's prior becomes a Dirac delta function.

Summary (so far)

vector	matrix		
James-Stein estimator	Efron–Morris estimator		
$\hat{\mu}_{\mathrm{JS}} = \left(1 - \frac{n-2}{\ x\ ^2}\right) x$	$\hat{M}_{\text{EM}} = X \left(I_p - (n - p - 1)(X^{\top}X)^{-1} \right)$		
Stein's prior	singular value shrinkage prior		
$\pi_{\mathrm{S}}(\mu) = \ \mu\ ^{-(n-2)}$	$\pi_{ ext{SVS}}(M) = \det(M^ op M)^{-(n-p-1)/2}$		

Estimation under matrix quadratic loss

$$X \sim N_{n,p}(M, I_n, I_p) \quad (X_{ai} \sim N(M_{ai}, 1))$$

estimate M based on X under matrix quadratic loss

$$L(M, \hat{M}) = (\hat{M} - M)^{\top} (\hat{M} - M) \in \mathbb{R}^{p \times p}$$

risk function

$$R(M, \hat{M}) = \mathbb{E}_M[L(M, \hat{M}(X))] \in \mathbb{R}^{p \times p}$$

- We compare $R(M, \hat{M})$ in the Löwner order \preceq
 - $A \leq B \Leftrightarrow B A$ is positive semidefinite

Unbiased risk estimate & minimaxity of EM

matrix divergence

$$(\widetilde{\operatorname{div}} g(X))_{ij} = \sum_{a=1}^{n} \frac{\partial}{\partial X_{ai}} g_{aj}(X)$$

Theorem

The matrix quadratic risk of $\hat{M} = X + g(X)$ is given by

$$R(M, \hat{M}) = nI_p + \mathbb{E}_M[\widetilde{\operatorname{div}} g(X) + (\widetilde{\operatorname{div}} g(X))^\top + g(X)^\top g(X)]$$

Theorem

When n-p-1>0, the Efron–Morris estimator is minimax under the matrix quadratic loss:

$$R(M, \hat{M}_{\text{EM}}) = nI_p - (n - p - 1)^2 \mathcal{E}_M[(X^{\top}X)^{-1}] \leq nI_p$$

Matrix superharmonic prior ⇒ minimax

Stein (1974)

When $X \sim N_n(\mu, I_n)$ $(n \ge 3)$, Bayes estimator with a superharmonic prior $\pi(\mu)$ is minimax under quadratic loss:

$$\Delta \pi := \sum_{i=1}^{n} \frac{\partial^{2} \pi}{\partial \mu_{a}^{2}} \le 0 \quad \Rightarrow \quad \mathbb{E} \|\hat{\mu}^{\pi}(x) - \mu\|^{2} \le n$$

M. and Strawderman (Biometrika 2022)

When $X \sim N_{n,p}(M, I_n, I_p)$ $(n \ge p + 2)$, Bayes estimator with a matrix superharmonic prior is minimax under matrix quadratic loss:

$$\widetilde{\Delta}\pi := \left(\sum_{a=1}^{n} \frac{\partial^{2}\pi}{\partial M_{ai}\partial M_{aj}}\right)_{ij} \preceq O$$

$$\Rightarrow \quad \mathrm{E}(\hat{M}^{\pi}(X) - M)^{\top}(\hat{M}^{\pi}(X) - M) \preceq nI_{p}$$

A class of matrix superharmonic priors

improper matrix t-prior

$$\pi_{\alpha,\beta}(M) = \det(M^{\top}M + \beta I_p)^{-(\alpha+n+p-1)/2}$$

Theorem

If $-n-p+1 \leq \alpha \leq -2p$ and $\beta \geq 0$, then $\pi_{\alpha,\beta}(M)$ is matrix superharmonic and the generalized Bayes estimator with respect to $\pi_{\alpha,\beta}(M)$ is minimax under the matrix quadratic loss.

 $\bullet \ \, \text{By taking} \,\, \alpha = -2p \,\, \text{and} \,\, \beta = 0,$

$$\pi_{\mathrm{SVS}}(M) = \det(M^{\top}M)^{-(n-p-1)/2}$$

Corollary

When n-p-1>0, $\pi_{\rm SVS}(M)$ is matrix superharmonic and the generalized Bayes estimator with respect to $\pi_{\rm SVS}$ is minimax under the matrix quadratic loss.

Simulation

- eigenvalues $(n = 100, p = 20, \sigma_i = (6 i)/5 \cdot \sigma_1 \ (i = 2, ..., 5), \sigma_6 = \cdots = \sigma_{20} = 0)$
- ullet left: \hat{M}_{EM} . right: \hat{M}_{JS}

- \bullet The advantage of $\hat{M}_{\rm EM}$ to the low-rank setting is more pronounced in higher dimensions.
 - $\lambda_6 \approx \cdots \approx \lambda_{20} \approx 20$

Double shrinkage prior (M., Komaki and Strawderman, 2024)

- ullet Bayes estimator with π_{SVS} is inadmissible
- improved by additional scalar / column-wise shrinkage

$$\begin{split} \pi_{\mathrm{MSVS1}}(M) &= \pi_{\mathrm{SVS}}(M) \|M\|_{\mathrm{F}}^{-\gamma} \\ \pi_{\mathrm{MSVS2}}(M) &= \pi_{\mathrm{SVS}}(M) \prod_{i=1}^{p} \|M_{\cdot i}\|^{-\gamma_i} \end{split}$$

Empirical Bayes matrix completion (M. and Komaki, 2019)

	movie 1	movie 2	movie 3	movie 4
user 1	4	7	?	2
user 2	6	?	3	8
user 3	?	1	9	?
user 4	4	5	?	3

- extension of Efron–Morris estimator to missing data
 - estimation of M from partially observed X

$$M \sim N_{n,p}(0, I_n, \Sigma)$$
$$X \mid M \sim N_{n,p}(M, I_n, C)$$

Application: protein data, movie data

Application to nonparametric estimation (M., 2024)

- The blockwise Efron-Morris estimator is adaptive minimax over the multivariate Sobolev ellipsoids.
 - extension of Efromovich and Pinsker (1984)
 - adaptation to smoothness, scale and arbitrary quadratic loss

Application to nonparametric estimation (M., 2024)

Theorem (M., IEEE IT 2024)

The blockwise Efron–Morris estimator $\hat{\theta}_{\mathrm{BEM}}$ is adaptive minimax over the multivariate Sobolev ellipsoids:

$$\sup_{\theta \in \Theta(\beta, Q)} R_Q(\theta, \hat{\theta}_{\text{BEM}}) \sim \inf_{\hat{\theta}} \sup_{\theta \in \Theta(\beta, Q)} R_Q(\theta, \hat{\theta}) \sim P(\beta, Q) \varepsilon^{4\beta/(2\beta+1)}$$

for every β and Q.

Future work

• How about tensors ??

$$X = (X_{ijk})$$

- For tensors, even the definition of rank or singular values is not clear.
- Hopefully, some empirical Bayes method provides a natural shrinkage for tensors.

