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Assessing goodness-of-fit, or selecting a relevant model for
networkdata analysis

Li, Levina and Zhu (2020). Network cross-validation by edge sampling.
Biometrika, pp.257-

Jin, Ke, Tang and Wang (2025). Network goodness-of-fit for block-model
family.

Kaji, Manresa and Pouliot (2023). An adversarial approach to structural
estimation. Econometrica, pp. 2041-
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Motivating example: Transitivity Model (Chang et al. 2024)

Let Xt = (Xt
i,j) denote the adjacency matrix at time t:

P (Xt
i,j = 1|Xt−1

i,j = 0,Xt−1,Xt−2, · · · ) = ξiξj
eaU

t−1
i,j

1 + eaU
t−1
i,j + ebV

t−1
i,j

,

P (Xt
i,j = 0|Xt−1

i,j = 1,Xt−1,Xt−2, · · · ) = ηiηj
ebV

t−1
i,j

1 + eaU
t−1
i,j + ebV

t−1
i,j

,

where U t−1
i,j =

∑
kX

t−1
i,k X

t−1
j,k is no. of common friends of nodes i and j

at time t− 1 — used by Facebook and LinkedIn,

V t−1
i,j =

∑
k{X

t−1
i,k (1−Xt−1

j,k ) + (1−Xt−1
i,k )Xt−1

j,k }/2 is a distance measure
bwt nodes i and j,

ξi, ηi, a and b are non-negative parameters.
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Real data example: Email interactions

The email interactions in a medium-sized Polish manufacturing company
in January – September 2010 (Michalski et al., 2014)

Consider p = 106 of the most active participants out of an original 167
employees

n = 39 represents 39 weeks, and Xt
i,j = 1 if participants i and j

exchanged at least one email during Week t.

To gain some insight, we first present some preliminary summaries of the
data.
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Edge density
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2

p(p−1)

∑
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t
i,j against t.

A change-point at t = 14: Period 1 – first 13 points, Period 2 – last 26
points
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Densities of newly formed edges, and newly dissolved edges
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Plot of percentage of grown D1,t = 2
p(p−1)

∑
1≤i<j≤p(1 − Xt−1

i,j )Xt
i,j and dissolved

D0,t = 2
p(p−1)

∑
1≤i<j≤p Xt−1

i,j (1 − Xt
i,j) against t.

As D̄1,· ≈ D̄2,· ≈ 0.04, the relative frequency to grow new edge is about 5%,
and that to dissolve existing edge is about 45%.
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Empirical evidence for transitivity effects

Recall the transitivity model

αt
i,j = ξiξj

eaU
t−1
i,j

1 + eaU
t−1
i,j + ebV

t−1
i,j

, βt
i,j = ηiηj

ebV
t−1
i,j

1 + eaU
t−1
i,j + ebV

t−1
i,j

,

where U t
i,j =

∑
k ̸=i,j X

t
i,kX

t
j,k, V

t
i,j =

∑
k ̸=i,j{X

t
i,k(1−Xt

j,k) + (1−Xt
i,k)X

t
j,k}.

Let

Uℓ =
{
(i, j, t) : 1 ≤ i < j ≤ p , t ∈ [n] \ {1} , Xt−1

i,j = 0 , U t−1
i,j = ℓ

}
,

Vℓ =
{
(i, j, t) : 1 ≤ i < j ≤ p , t ∈ [n] \ {1} , Xt−1

i,j = 1 , V t−1
i,j = ℓ

}
,

U1
ℓ =

{
(i, j, t) ∈ Uℓ, X

t
i,j = 1

}
, V0

ℓ =
{
(i, j, t) ∈ Vℓ, X

t
i,j = 0

}
.

Transitivity: both |U1
ℓ |/|Uℓ| and |V0

ℓ |/|Vℓ| ↗, as ℓ ↗.
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Fitting for Period 1

â = 0.1273 and b̂ = 0.0916
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Period 1

ξ̂i

η̂ i

ξ̂i and η̂i are negatively correlated: employees who tend to grow new edges
also tend to maintain existing edges.
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Fitting for Period 2

â = 0.2099 – stronger transitivity effect (more email activities among
mangers), and b̂ = 0.0957
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Circles are sized and coloured according to hierarchical levels in the company: the
smallest black circles have no direct reports, while the largest purple circle is CEO.

The means of ξ̂i for managers and non-managers are, respectively, 0.68 and 0.42:
managers are more likely to grow edges. However, this increasing pattern does not
continue at higher levels.

Stronger transitivity and lower edge density: concentration of email activities among a

smaller group of employees, many of them managers.
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Comparison with other models by AIC & BIC

Global AR model:

P (Xt
i,j = 1|Xt−1

i,j = 0) = α, P (Xt
i,j = 0|Xt−1

i,j = 1) = β

Edgewise AR model:

P (Xt
i,j = 1|Xt−1

i,j = 0) = αi,j , P (Xt
i,j = 0|Xt−1

i,j = 1) = βi,j

Edgewise mean model: Xt
i,j

iid∼ Bernoulli(Pi,j)

Degree parameter mean model: Xt
i,j

iid∼ Bernoulli(νiνj)

No edge dependence in the above 4 models

No dynamic dependence in the last 2 models

No. of parameters is, respectively, 2, p(p− 1), 1
2p(p− 1) and p.

AR transitivity model has 2p+ 2 parameters.
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Period 1 Period 2
Model AIC BIC AIC BIC
Transitivity AR model 33227 35176 52548 54654
Global AR model 36309 36327 58267 58287

Edgewise AR model 42717 144102 55840 165394

Edgewise mean model 33248 83941 47133 101910

Degree parameter mean model 41730 42695 68969 70013

For Period 1, AR transitivity model achieves the lowest AIC and BIC.

For Period 2, it achieves the lowest BIC, and the 2nd lowest AIC (behind
the edgewise mean model).
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Post-sample edge forecasting

For 26 networks in Period 2, train models based on the first ntrain data for
ntrain = 10, . . . , 23.

Based on the fitted model, we make nstep-step forward prediction for
Xntrain+nstep for nstep = 1, 2, 3.

The combined results are presented in ROC curves.
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ROC curves: Sensitivity= TP
TP+FN , Specificity= TN

TN+FP

ROC, nstep = 1
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ROC, nstep = 3
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The two edgewise models (with O(p2) parameters) perform about the
same, are clearly better than all the other models.

The transitivity model (with O(p) parameters) outperform the other three
models.
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Setting

Let X1, · · · ,Xn be available observations from a Markov chain with order
r(≥ 1), where Xt can be a vector or a matrix.

Let Pθ, θ ∈ Θ, be a parametric family of Markov models with order r.

Let P
θ̂
denote a fitted model based on the data X1, · · · ,Xn. We assume

that the estimated parameter can be expressed as

θ̂ ≡ θ̂(Yr, · · · ,Yn),

where Yt = (Xt,Xt−1, · · · ,Xt−r).

We denote by P 0 the true underlying distribution of Markov chain {Xt}.

The diagnostic checking for the goodness-of-fit of the model is often via a
statistical test for the hypothesis

H0 : P
0 ∈ {Pθ, θ ∈ Θ} against H1 : P

0 ̸∈ {Pθ, θ ∈ Θ}.
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Adversarial Approach

1 Generate a Markov chain X∗
1, · · · ,X∗

m from the fitted model P
θ̂
. Let

Y∗
t = (X∗

t ,X
∗
t−1, · · · ,X∗

t−r).

2 Construct an optimum classification rule ψ ∈ [0, 1] which assigns the
true data {Yt} and the simulated data {Y∗

t } into two different
classes.

Then
Hardness(Classification) = Goodness-of-Fit(Pθ)

If P 0 and P
θ̂
differ substantially from each other, we may find a ψ such

that ψ(Yt) = 1 and ψ(Y∗
t ) = 0.

If the model is a correct one (i.e. H0 holds) and P
θ̂

D−→ P 0, it will be
extremely hard to separate two sets of samples.
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Let Ψ denote the set of candidate classification rules ψ ∈ [0, 1]. Define the
’hardness’:

Gn = min
ψ∈Ψ

(
− 1

n− r

n∑
t=r+1

log{ψ(Yt)} −
1

m− r

m∑
t=r+1

log{1− ψ(Y∗
t )}

)
.

Then Gn is always non-negative, and it attains the minimum value 0 when
ψ(Yt) ≡ 1 and ψ(Y∗

t ) ≡ 0.

The larger Gn is, the more likely Pθ is an adequate model for data
X1, · · · ,Xn.
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Assume in general P
θ̂

D−→ P 1 and

1

n− r

n∑
t=r+1

log{ψ(Yt)}
P−→ EP 0 [log{ψ(Yt)}],

1

m− r

m∑
t=r+1

log{1− ψ(Y∗
t )}

P−→ EP 1 [log{1− ψ(Y∗
t )}],

as n,m→ ∞. Then the population counterpart of Gn is of the form

G0 = min
ψ∈Ψ

(
− EP 0 [log{ψ(Yt)}]− EP 1 [log{1− ψ(Y∗

t )}]
)
.

Let Ψ contains all possible classifiers taking values on the interval [0, 1].
The minimizer in G0 is the Bayesian rule:

ψ(y) = p0(y)/{p0(y) + p1(y)},

where p0(·) and p1(·) are the PDFs of P 0 and P 1.

When p0 ≡ p1 (i.e. Pθ is the correct model), the minimizer is ψ(y) ≡ 1/2,
and G0 = 2 log 2.
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Testing via sample splitting for H0 : P
0 ∈ {Pθ, θ ∈ Θ}

We split the sample {Yr+1, · · · ,Yn} into three parts:
Y1 = {Yr+1, . . . ,Yr+n1}, Y2 = {Yr+n1+1, . . . ,Yr+n1+n2} and
Y3 = {Yr+n1+n2+1, . . . ,Yn}.

For convenience, we write Yi = {Yt,i : t = 1, . . . , ni}, i = 1, 2, 3.

The test is defined as follows:

Based on Y1: estimate θ̂ = θ̂(Y1). Generate two independent
synthetic samples {Y∗

1,1, · · · ,Y∗
m1,1

} and {Y∗
1,2, · · · ,Y∗

m2,2
} from P

θ̂

with m1 = n2 and m−1
2 = o(n−1

3 ).

Based on Y2: let

ψ̂n = argmin
ψ∈Ψ

[
− 1

n2

n2∑
t=1

log{ψ(Yt,2)} −
1

m1

m1∑
t=1

log{1− ψ(Y∗
t,1)}

]
.
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Based on Y3: define

Ĝn = − 1

n3

n3∑
t=1

log{ψ̂n(Yt,3)} −
1

m2

m2∑
t=1

log{1− ψ̂n(Y
∗
t,2)} .

The test statistic is defined as

T̂n =

√
n3(Ĝn − 2 log 2)

σ̂ ∨ δn
,

where δn = log(n)1.5 ∗ n−1/8 (to control Type I error), and σ̂2 is an

estimator for σ2 = Var[n
−1/2
3

∑n3
t=1 log{ψ̂n(Yt,3)} | Y1 ∪ Y2].

We reject H0 when T̂n < −zα, where zα is the top α-percentile of
N(0, 1).

We let Ψn consist of the multilayer perceptron (MLP) classifiers of the
form:

Λ(wT
Lσ(w

T
L−1σ(· · ·wT

1 σ(w
T
0X)))) ,

where Λ ∈ [0, 1] is 1-Lipschitz continous, σ is ReLu, and |w|∞ ≤ C0. We
typically set L = 2.
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Estimation of σ2.

Let Ẑt = log ψ̂n(Yt,3) and Z̃ = n−1
3

∑n3
t=1 Ẑt. Define a kernel-type

estimator fo σ2:

σ̂2n =

n3−1∑
l=−n3+1

K
(
l

bn

)
Ĥl ,

where Ĥl = n−1
3

∑n3
t=l+1(Ẑt − Z̃)(Ẑt−l − Z̃) for l ≥ 0 and

Ĥl = n−1
3

∑n3
t=−l+1(Ẑt+l − Z̃)(Ẑt − Z̃) otherwise. Here K(·) is a

symmetric kernel function, and bn is the bandwidth diverging with n.
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Theoretical results

Condition 1. Assume {Xt} and {X∗
t } are strictly stationary β-mixing

sequences with mixing-coefficients {β(k)}k≥1 and {β∗(k)}k≥1,
respectively. There exists some universal constants K1,K2 > 0 and γ > 0
such that max{β(k), β∗(k)} ≤ K1 exp(−K2k

γ) for any k ≥ 1.

Condition 2. The kernel function K(·) : R → [−1, 1] is continuously
differentiable on R and satisfies (i) K(0) = 1, (ii) K(x) = K(−x) for any
x ∈ R, and (iii)

∫∞
−∞ |K(x)|dx <∞. Let bn ≍ n

1/4
3 , ni = n/3 for

i = 1, 2, 3, and m1 = n2, m
−1
2 = o(n−1

3 ).

Then it can be proved that

√
n3(Ĝn − 2 log 2)/σ

∣∣H0
D−→ N(0, 1),

lim
n→∞

P (Tn < −zα|H0) ≤ α, and

lim
n→∞

P (Tn < −zα|H1) = 1.
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Permutation test

1. Compute θ̂ = θ̂(Yr+1, · · · ,Yn), and generate Y∗
r+1, · · · ,Y∗

n from Pθ̂

2. Split each sample into two subsamples:

{Y1,i, · · · ,Yni,i} and {Y∗
1,i, · · · ,Y∗

ni,i},

for i = 1, 2, and n1 = n2 = (n− r)/2.

3. Fit the logistic regression ψ̂(·) for classifying two classes {Y1,1, · · · ,Yn1,1}
and {Y∗

1,1, · · · ,Y∗
n1,1}, and compute

Ĝn = − 1

n2

n2∑
t=1

log{ψ̂(Yt,2)} −
1

n2

n2∑
t=1

log{1− ψ̂(Y∗
t,2)}.

4. Permute {Y1,2, · · · ,Yn2,2,Y
∗
1,2, · · · ,Y∗

n2,2}, and re-calculate Ĝn above
using the first n2 entries in the permuted sequence as new {Yt,2}, and the

last n2 entries as {Y∗
t,n2

}. Denoted by G⋆
n the resulting value of Ĝn.

5. Repeat 4. above B times, obtaining G⋆
n,1, · · · , G⋆

n,B , where B ≥ 1 is a large

integer. We reject H0 if Ĝn is smaller than the α-th sample quantile of
{G⋆

n,1, · · · , G⋆
n,B}.
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To validate the permutation test, it can be proved that

(i) L(Ĝn|H0) = L(G⋆n|H0) asymptotically, and

(ii) P (Ĝn < G⋆n|H0) → 1.
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Best approximation among a selection of candidate models

In absence of an appropriate model, we may choose one among a selection
of candidate models based on the proposed adversarial measures:

For the i-th candidate model,

1. Fit the model θ̂i = θ̂i(Yri+1, · · · ,Yn).

2. Generate Y∗
ri+1, · · · ,Y∗

n from Pθ̂i
. Split each of the two samples into two:

{Y1,j , · · · ,Yni,j} and {Y∗
1,j , · · · ,Y∗

ni,j}, j = 1, 2,

where ni = (n− ri)/2.

3. Fit a logistic regression ψ̂i to classify two data sets {Yt,1} and {Y∗
t,1}, and

compute

Ĝn,i = − 1

ni

ni∑
t=1

log{ψ̂i(Yt,2)} −
1

ni

ni∑
t=1

log{1− ψ̂i(Y
∗
t,2)}.

The best approximation model is the one which attains maxi Ĝn,i.
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Simulation models

We evaluate the performance of several network models through
simulations, including: Erdős-Rényi (ER) Model, Stochastic Block Model
(SBM), β-Model (Chatterjee et al., 2011), Two-way Heterogeneity Model
(TWHM) by Jiang et al. (2023) and Transitivity Model (TRM) by Chang
et al. (2024).

Features selection

When the networks generated from the ER, SBM or β-Model, we use
the q quantiles of the degree sequences dti =

∑p
j=1X

t
i,j as features

for Xt with q = min(p/2, n/2, 20).

When the networks generated from the TWHM, we use the q
quantiles of

∑p
j=1X

t
i,j ,

∑p
j=1X

t
i,jX

t−1
i,j , and

∑p
j=1X

t
i,j(1−Xt−1

i,j ) as

features for Xt with q = min(p/2, n/4, 20).

For the TRM, features are selected according to the methodology
outlined in Chang et al. (2024).
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Simulation setting

Set significance level α = 0.05, permutation times B= 1000, number of
synthetic samples m2 = 1000, ni = 100, 200 (i = 1, 2, 3) and p = 50, 100,
or 200. Data are generated based on the following four model settings:

1. SBM: two communities with the probability matrix:

[
0.6 0.2
0.2 0.4

]
.

2. β-Model: The parameters βi
i.i.d.∼ U(−1, 1).

3. TWHM: The parameters βi,0
i.i.d.∼ U(−1, 1) and βi,1

i.i.d.∼ U(−1, 1).

4. TRM: The parameters ξi
i.i.d.∼ U(0.5, 0.7) and ηi

i.i.d.∼ U(0.5, 0.7) and
a = b = 5.

Tests

Test 1: T̂n with MLP as the classifier.

Test 2: Permutation test with the Logistic Regression as the classifier.
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Simulation result

Table: The Type I error under Test 1 and Test 2, where H0, the data generated
model corresponds to ER, SBM, β-Model, TWHM, or TRM.

ER SBM β-Model
n=100 n=200 n=100 n=200 n=100 n=200

Test 1
p=50 0 0 0 0 0 0
p=100 0 0 0 0 0 0
p=200 0 0 0 0 0 0

Test 2
p=50 0.07 0.05 0.1 0.08 0.06 0.04
p=100 0 0.06 0.08 0.07 0.07 0.06
p=200 0.03 0.02 0.06 0.07 0.12 0.08

TWHM TRM

Test 1
p=50 0 0 0 0
p=100 0 0 0.04 0.03
p=200 0 0 0.14 0.15

Test 2
p=50 0.08 0.1 0.1 0.1
p=100 0.1 0 0.04 0.07
p=200 0.08 0.04 0.09 0.05
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Real Data: Email interactions

The email interactions in a medium-sized Polish manufacturing company
in January -September 2010 (Michalski et al., 2014).

Consider p = 106 of the most active participants out of an original 167
employees.

n = 39 represents 39 weeks, and Xt
i,j = 1 if participants i and j exchanged

at least one email during Week t.

A change-point at t = 14: Period 1 first 13 points, Period 2 last 26 points
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Comparison with other models

Global AR model:

P (Xt
i,j = 1|Xt−1

i,j = 0) = α, P (Xt
i,j = 0|Xt−1

i,j = 1) = β

Edgewise AR model:

P (Xt
i,j = 1|Xt−1

i,j = 0) = αi,j , P (Xt
i,j = 0|Xt−1

i,j = 1) = βi,j

Edgewise mean model: Xt
i,j

i.i.d.∼ Bernoulli(Pi,j)

Degree parameter mean model: Xt
i,j

i.i.d.∼ Bernoulli(vivj)

No edge dependence in the above 4 models
No dynamic dependence in the last 2 models
No. of parameters is, respectively, 2, p(p− 1), p(p− 1)/2 and p.
AR transitivity model has 2p+ 2 parameters.
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Significance level: α = 0.05, permutation times: B = 1000.

The selected features include:

D1,t =
2

p(p− 1)

∑
i<j

(1−Xt−1
i,j )Xt

i,j , D0,t =
2

p(p− 1)

∑
i<j

Xt−1
i,j (1−Xt

i,j) ,

W1,t =
2

p(p− 1)

∑
i<j

Xt−1
i,j Xt

i,j , W0,t =
2

p(p− 1)

∑
i<j

(1−Xt−1
i,j )(1−Xt

i,j),

Ut =
2

p(p− 1)(p− 2)

∑
i<j

Xt
i,j

∑
k ̸=i,j

Xt−1
i,k Xt−1

j,k ,

Vt =
2

p(p− 1)(p− 2)

∑
i<j

(1−Xt
i,j)

∑
k ̸=i,j

{Xt−1
i,k (1−Xt−1

j,k ) + (1−Xt−1
i,k )Xt−1

j,k },

dt =
2

p(p− 1)

∑
i<j

Xt
i,j , C3,t =

2

p(p− 1)(p− 2)

∑
i,j,k different

Xt
i,jX

t
j,k ,

R3,t =
6

p(p− 1)(p− 2)

∑
i,j,k different

Xt
i,jX

t
j,kX

t
k,i .
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Given the small sample sizes (e.g. Period 1: n1 = 7, n2 = 6), we performed
feature selection using random forest variable importance (200 trees).

We retain the top d′ features, where

d′ = arg max
1≤i≤d−1

vi + ϵ

vi−1 + ϵ
,

vi is the variable importance, and ϵ = 10−4 is a small constant.

Test 2 repeated 100 times for stable results.
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Test and model selection

Table: The testing results of Test 2 and the model selection results where ✓
means not rejected H0.

Period 1 Period 2
Models Test G-value Test G-value

Transitivity model ✓ 1.11 ✓ 1.89
Global AR model 0.02 0.44

Edgewise AR model ✓ 1.16 0.28

Edgewise mean model ✓ 1.31 ✓ 1.45

Degree parameter mean model 0.29 1.01

The edgewise mean model and transitivity model pass both tests and
achieves the largest G-value for period 1 and 2, respectively. The edgewise
AR model pass the
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