Statistical exploration of the Manifold Hypothesis

Nick Whiteley¹ Annie Gray² Patrick Rubin-Delanchy³

¹Institute for Statistical Science, School of Mathematics, University of Bristol

²The Alan Turing Institute

 ${}^{\mathbf{3}}\mathsf{School}$ of Mathematics, University of Edinburgh

Manifold structure in graph embeddings

Patrick Rubin-Delanchy NeurIPS Spotlight, 2020

Statistical exploration of the Manifold Hypothesis N.W., Annie Gray and Patrick Rubin-Delanchy arXiv:2208.11665, To appear as RSS discussion paper.

The Manifold Hypothesis

"...the idea that the dimensionality of many data sets is only artificially high; though each data point consists of perhaps thousands of features, it may be described as a function of only a few underlying parameters. That is, the data points are actually samples from a low-dimensional manifold that is embedded in a high-dimensional space."

Cayton, "Algorithms for manifold learning", UCSD Tech. Rep., 2005.

low dimensional structure in high dimensional data?

Data from the Amsterdam library of object images

- n = 72 grayscale photographs, taken from angles $0, 5, 10, \ldots, 355$ degrees.
- $p=110592=384\times288$ pixels per photograph, reduced to 3 dimensions using PCA

low dimensional structure in high dimensional data?

Novembre et al. "Genes mirror geography within Europe", Nature, 2008

- n = 3000 European individuals
- $p=5\times 10^5$ genotyped DNA sites per individual, reduced to 2 dimensions using PCA

exploring and exploiting manifold structure

- Nonlinear dimension reduction
 - attempt to "flatten" or "unfold" manifolds in order visualize in 2d or 3d
 - Laplacian Eigenmaps, Locally Linear Embedding, Isomap, t-SNE, U-MAP...
- Regression and classification with covariates on manifolds
 - nearest neighbour methods, locally linear regression, tree-based methods, ...
 - statistical performance driven by dimension of manifold, not ambient dimension
- Al technologies and deep neural networks
 - Nakada and Imaizumi. Adaptive approximation and generalization of deep neural network with intrinsic dimensionality, JMLR, 2020.
 - Huang, Wei and Chen. Denoising diffusion probabilistic models are optimally adaptive to unknown low dimensionality. arXiv:2410.18784, 2024
 - and many others...

ML, Math and Stats perspectives

- Bengio et al. "Representaton Learning...". IEEE PAMI, 2013.
- Fefferman et al. "Testing the manifold hypothesis". J. Amer. Math. Soc, 2016.
- Wasserman. "Topological Data Analysis". Annu. Rev. Stat. Appl., 2018

Definition: Latent Metric Model

data matrix:
$$\mathbf{Y} = [\mathbf{Y}_1|\cdots|\mathbf{Y}_n]^{\top} \in \mathbb{R}^{n \times p}$$

$$\mathbf{Y}_{ij} \coloneqq X_j(Z_i) + \sigma \mathbf{E}_{ij}$$

comprising three independent sources of randomness:

1. **latent variables** $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} \mu$, where μ supported on metric space (\mathcal{Z}, d)

Definition: Latent Metric Model

data matrix: $\mathbf{Y} = [\mathbf{Y}_1| \cdots |\mathbf{Y}_n]^{\top} \in \mathbb{R}^{n \times p}$

$$\mathbf{Y}_{ij} \coloneqq X_j(Z_i) + \sigma \mathbf{E}_{ij}$$

- 1. latent variables $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} \mu$, where μ supported on metric space (\mathcal{Z}, d)
- 2. random functions X_1, \ldots, X_p , each acting $\mathcal{Z} \to \mathbb{R}$, so for each $z \in \mathcal{Z}$, $X_i(z)$ is a r.v.

Definition: Latent Metric Model

data matrix: $\mathbf{Y} = [\mathbf{Y}_1| \cdots |\mathbf{Y}_n]^{\top} \in \mathbb{R}^{n \times p}$

$$\mathbf{Y}_{ij} \coloneqq X_j(Z_i) + \sigma \mathbf{E}_{ij}$$

- 1. latent variables $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} \mu$, where μ supported on metric space (\mathcal{Z}, d)
- 2. random functions X_1, \ldots, X_p , each acting $\mathcal{Z} \to \mathbb{R}$, so for each $z \in \mathcal{Z}$, $X_j(z)$ is a r.v.
- 3. **noise** matrix $\mathbf{E} \in \mathbb{R}^{n \times p}$ of zero mean, unit variance random variables

Definition: Latent Metric Model

data matrix: $\mathbf{Y} = [\mathbf{Y}_1| \cdots |\mathbf{Y}_n]^{\top} \in \mathbb{R}^{n \times p}$

$$\mathbf{Y}_{ij} \coloneqq X_j(Z_i) + \sigma \mathbf{E}_{ij}$$

- 1. latent variables $Z_1, \dots, Z_n \overset{\text{iid}}{\sim} \mu$, where μ supported on metric space (\mathcal{Z}, d)
 - hyp: Z is compact
- 2. random functions X_1,\ldots,X_p , each acting $\mathcal{Z}\to\mathbb{R}$, so for each $z\in\mathcal{Z}$, $X_j(z)$ is a r.v.
- 3. **noise** matrix $\mathbf{E} \in \mathbb{R}^{n \times p}$ of zero mean, unit variance random variables

Definition: Latent Metric Model

data matrix: $\mathbf{Y} = [\mathbf{Y}_1|\cdots|\mathbf{Y}_n]^{\top} \in \mathbb{R}^{n \times p}$

$$\mathbf{Y}_{ij} \coloneqq X_j(Z_i) + \sigma \mathbf{E}_{ij}$$

- 1. **latent variables** $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} \mu$, where μ supported on metric space (\mathcal{Z}, d)
 - hyp: Z is compact
- 2. random functions X_1, \ldots, X_p , each acting $\mathcal{Z} \to \mathbb{R}$, so for each $z \in \mathcal{Z}$, $X_j(z)$ is a r.v.
 - hyp: for each j, $z \to z' \Rightarrow \mathbb{E}[|X_j(z) X_j(z')|^2] \to 0$.
- 3. **noise** matrix $\mathbf{E} \in \mathbb{R}^{n \times p}$ of zero mean, unit variance random variables

Definition: Latent Metric Model

data matrix: $\mathbf{Y} = [\mathbf{Y}_1| \cdots |\mathbf{Y}_n]^{\top} \in \mathbb{R}^{n \times p}$

$$\mathbf{Y}_{ij} \coloneqq X_j(Z_i) + \sigma \mathbf{E}_{ij}$$

- 1. latent variables $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} \mu$, where μ supported on metric space (\mathcal{Z}, d)
 - hyp: Z is compact
- 2. random functions X_1, \ldots, X_p , each acting $\mathcal{Z} \to \mathbb{R}$, so for each $z \in \mathcal{Z}$, $X_j(z)$ is a r.v.
 - hyp: for each $j, z \to z' \Rightarrow \mathbb{E}[|X_j(z) X_j(z')|^2] \to 0.$
- 3. **noise** matrix $\mathbf{E} \in \mathbb{R}^{n \times p}$ of zero mean, unit variance random variables
 - hyp: \mathbf{E}_{ij} are uncorrelated across i and independent across j

Definition: implict kernel and feature map

implicit kernel

$$f(z, z') := \frac{1}{p} \sum_{j=1}^{p} \mathbb{E}[X_j(z)X_j(z')]$$

• by Mercer's theorem, \exists **feature map** $\phi: \mathcal{Z} \to \ell_2$ s.t.

$$f(z, z') = \langle \phi(z), \phi(z') \rangle_{\ell_2}.$$

• **image** of ϕ ,

$$\mathcal{M} \coloneqq \{\phi(z); z \in \mathcal{Z}\} \subset \ell_2$$

sketch

Intrinsic random projections

Proposition

Let $r\in\{1,2,\ldots,\}\cup\{\infty\}$ be the rank of the implicit kernel f and define the matrix $\mathbf{W}\in\mathbb{R}^{p\times r}$ with elements

$$\mathbf{W}_{jk} := \frac{1}{(p\lambda_k^f)^{1/2}} \int_{\mathcal{Z}} X_j(z) u_k^f(z) \mu(\mathrm{d}z)$$

where λ_k^f, u_k^f is the k-th eigenvalue/function pair assoc. with f, μ . Then:

$$\mathbf{Y}_i \stackrel{m.s.}{=} p^{1/2} \mathbf{W} \phi(Z_i) + \sigma \mathbf{E}_i, \quad i = 1, \dots, n, \qquad \mathbb{E}[\mathbf{W}^\top \mathbf{W}] = \mathbf{I}_r,$$

where \mathbf{I}_r is the identity matrix with r rows and columns.

Intrinsic random projections

Proposition

Let $r\in\{1,2,\ldots,\}\cup\{\infty\}$ be the rank of the implicit kernel f and define the matrix $\mathbf{W}\in\mathbb{R}^{p\times r}$ with elements

$$\mathbf{W}_{jk} := \frac{1}{(p\lambda_k^f)^{1/2}} \int_{\mathcal{Z}} X_j(z) u_k^f(z) \mu(\mathrm{d}z)$$

where λ_k^f, u_k^f is the k-th eigenvalue/function pair assoc. with f, μ . Then:

$$\mathbf{Y}_i \stackrel{m.s.}{=} p^{1/2} \mathbf{W} \phi(Z_i) + \sigma \mathbf{E}_i, \quad i = 1, \dots, n, \qquad \mathbb{E}[\mathbf{W}^\top \mathbf{W}] = \mathbf{I}_r,$$

where \mathbf{I}_r is the identity matrix with r rows and columns.

$$\frac{1}{p} \mathbb{E}[\langle \mathbf{Y}_i, \mathbf{Y}_j \rangle | Z_i, Z_j] = \langle \phi(Z_i), \mathbb{E}[\mathbf{W}^\top \mathbf{W}] \phi(Z_j) \rangle_{\ell_2} + 0 + 0 + \sigma^2 \frac{1}{p} \mathbb{E}[\langle \mathbf{E}_i, \mathbf{E}_j \rangle]
= \langle \phi(Z_i), \phi(Z_j) \rangle_{\ell_2} + \sigma^2 \mathbf{I}[i = j].$$

Intrinsic random projections

Proposition

Let $r\in\{1,2,\ldots,\}\cup\{\infty\}$ be the rank of the implicit kernel f and define the matrix $\mathbf{W}\in\mathbb{R}^{p\times r}$ with elements

$$\mathbf{W}_{jk} := \frac{1}{(p\lambda_k^f)^{1/2}} \int_{\mathcal{Z}} X_j(z) u_k^f(z) \mu(\mathrm{d}z)$$

where λ_k^f, u_k^f is the k-th eigenvalue/function pair assoc. with f, μ . Then:

$$\mathbf{Y}_i \stackrel{m.s.}{=} p^{1/2} \mathbf{W} \phi(Z_i) + \sigma \mathbf{E}_i, \quad i = 1, \dots, n, \qquad \mathbb{E}[\mathbf{W}^\top \mathbf{W}] = \mathbf{I}_r,$$

where \mathbf{I}_r is the identity matrix with r rows and columns.

$$\frac{1}{p} \mathbb{E}[\langle \mathbf{Y}_i, \mathbf{Y}_j \rangle | Z_i, Z_j] = \langle \phi(Z_i), \mathbb{E}[\mathbf{W}^\top \mathbf{W}] \phi(Z_j) \rangle_{\ell_2} + 0 + 0 + \sigma^2 \frac{1}{p} \mathbb{E}[\langle \mathbf{E}_i, \mathbf{E}_j \rangle]
= \langle \phi(Z_i), \phi(Z_j) \rangle_{\ell_2} + \sigma^2 \mathbf{I}[i = j].$$

sketch

Homeomorphism

Definition: homeomorphism

A mapping between two metric spaces is a **homeomorphism** if it is continuous, one-to-one, and has a continuous inverse.

Homeomorphism

Definition: homeomorphism

A mapping between two metric spaces is a **homeomorphism** if it is continuous, one-to-one, and has a continuous inverse.

Homeomorphism

Definition: homeomorphism

A mapping between two metric spaces is a **homeomorphism** if it is continuous, one-to-one, and has a continuous inverse.

Proposition

 ϕ is a homeomorphism between ${\mathcal Z}$ and ${\mathcal M}$ if and only if

$$\forall z, z' \in \mathcal{Z}, \quad z \neq z' \implies \sum_{j=1}^{p} \mathbb{E}\left[\left|X_{j}(z) - X_{j}(z')\right|^{2}\right] \neq 0.$$

Definition: weak stationarity

Weak stationarity of any one of the random functions X_j means that:

- $\mathbb{E}[X_i(z)]$ is constant in z, and
- $Cov[X_i(z), X_i(z')]$ depends only on distance d(z, z')

Definition: weak stationarity

Weak stationarity of any one of the random functions X_j means that:

- $\mathbb{E}[X_j(z)]$ is constant in z, and
- $Cov[X_j(z), X_j(z')]$ depends only on distance d(z, z')

...it follows that if X_1, \ldots, X_p are all weakly stationary, then f(z, z') depends only on d(z, z').

Definition: path and path length

- a **path** in $\mathcal Z$ is a continuous mapping $\eta:[a,b]\to\mathcal Z$ for some a,b.
- write $\gamma:[a,b]\to\mathcal{M}$ given by $\gamma_t\coloneqq\phi(\eta_t)$ the corresponding path in \mathcal{M} ,
- lengths of η and γ :

$$L(\eta) \coloneqq \sup_{\mathcal{T}} \sum_{k=1}^{n} d(\eta_{t_k}, \eta_{t_{k-1}}), \quad L(\gamma) \coloneqq \sup_{\mathcal{T}} \sum_{k=1}^{n} \|\gamma_{t_k} - \gamma_{t_{k-1}}\|_2,$$

the sup is over $n \geq 1$ and $\mathcal{T} = (t_0, \dots, t_n)$ s.t. $t_0 = a \leq t_1 \leq \dots \leq t_n = b$.

Definition: path and path length

- a **path** in $\mathcal Z$ is a continuous mapping $\eta:[a,b]\to\mathcal Z$ for some a,b.
- write $\gamma:[a,b]\to\mathcal{M}$ given by $\gamma_t\coloneqq\phi(\eta_t)$ the corresponding path in \mathcal{M} ,
- lengths of η and γ :

$$L(\eta) \coloneqq \sup_{\mathcal{T}} \sum_{k=1}^{n} d(\eta_{t_k}, \eta_{t_{k-1}}), \quad L(\gamma) \coloneqq \sup_{\mathcal{T}} \sum_{k=1}^{n} \|\gamma_{t_k} - \gamma_{t_{k-1}}\|_2,$$

the sup is over $n \geq 1$ and $\mathcal{T} = (t_0, \dots, t_n)$ s.t. $t_0 = a \leq t_1 \leq \dots \leq t_n = b$.

Proposition

Assume there exists $\epsilon>0$ and a C^2 function g such that g'(0)<0 and

$$f(z, z') = g(d(z, z')^2)$$
 whenever $d(z, z') \le \epsilon$.

Then for any path η in \mathcal{Z} such that $L(\eta) < \infty$,

$$L(\gamma) = \sqrt{-2g'(0)}L(\eta).$$

sketch

Uniform consistency of PCA embedding

Theorem

Let $Y \sim$ Latent Metric Model and assume additionally that:

- X_1, X_2, \ldots are mutually independent,
- $\sup_{j>1} \sup_{z\in\mathcal{Z}} \mathbb{E}[|X_j(z)|^4] < \infty$, $\sup_{j>1} \sup_{i>1} \mathbb{E}[|\mathbf{E}_{ij}|^4] < \infty$,
- the kernel f has rank $r<\infty$, with positive eigenvalues bounded above and below uniformly in p.

Let $\zeta_1, \ldots, \zeta_n \in \mathbb{R}^r$ be the r-dimensional PCA embedding of \mathbf{Y} . Then there exists a random orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{r \times r}$ depending on p, n such that:

$$\max_{i=1,\dots,n} \left\| p^{-1/2} \mathbf{Q} \zeta_i - \phi(Z_i) \right\|_2 \in O_{\mathbb{P}} \left(\frac{1}{\sqrt{n}} + \sqrt{\frac{n}{p}} \right), \quad \text{as} \quad p, n \to \infty.$$

some take home messages

... data points are actually samples from a low-dimensional manifold that is embedded in a high-dimensional space."

Cayton, "Algorithms for manifold learning", UCSD Tech. Rep., 2005.

1. manifold structure emerges from elementary statistical concepts: latent variables, correlations, stationarity ↔ homeomorphism, isometry, etc.

some take home messages

... data points are actually samples from a low-dimensional manifold that is embedded in a high-dimensional space."

Cayton, "Algorithms for manifold learning", UCSD Tech. Rep., 2005.

- manifold structure emerges from elementary statistical concepts: latent variables, correlations, stationarity ↔ homeomorphism, isometry, etc.
- 2. perhaps more nuanced than traditional formulation of manifold hypothesis

some take home messages

... data points are actually samples from a low-dimensional manifold that is embedded in a high-dimensional space."

Cayton, "Algorithms for manifold learning", UCSD Tech. Rep., 2005.

- manifold structure emerges from elementary statistical concepts: latent variables, correlations, stationarity ↔ homeomorphism, isometry, etc.
- 2. perhaps more nuanced than traditional formulation of manifold hypothesis

 rethink high-dimensional behaviour of: PCA, spiked covariance models, Gaussian Process Latent Variables Model, Hierarchical Clustering, nonlinear dimension reduction, ... Statistical exploration of the Manifold Hypothesis N.W., Annie Gray and Patrick Rubin-Delanchy arXiv:2208.11665, To appear as RSS discussion paper.

How high is 'high'? Rethinking the roles of dimensionality in topological data analysis and manifold learning.

Hannah Sansford, N.W., and Patrick Rubin-Delanchy

arxiv:2505.16879, 2025

The Origins of Representation Manifolds in Large Language Models. Alex Modell, Patrick Rubin-Delanchy and N.W., arxiv.org:2505.18235, 2025

return to images example

Data from the Amsterdam library of object images

- n = 72 grayscale photographs, taken from angles $0, 5, 10, \ldots, 355$ degrees.
- $p=110592=384\times288$ pixels per photograph, reduced to 3 dimensions using PCA

Linear dimension reduction by PCA

Definition: PCA embedding

- ullet input: data matrix $\mathbf{Y} = [\mathbf{Y}_1|\dots|\mathbf{Y}_n]^{ op} \in \mathbb{R}^{n imes p}$ and dimension $r \leq \min\{p,n\}$
- compute v_1, \dots, v_r orthonorm. eig-vecs associated with r largest eig-vals of $\mathbf{Y}^{\top}\mathbf{Y} \in \mathbb{R}^{p \times p}$,
- the **PCA embedding** $\zeta_1, \ldots, \zeta_n \in \mathbb{R}^r$ is:

$$\zeta_i := \mathbf{V}^{\top} \mathbf{Y}_i, \quad \text{where} \quad \mathbf{V} := [v_1| \cdots | v_r]$$

return to images example

- **Hyp.1** = \mathcal{Z} is a circle + homeomorphism
- Hyp.2 = Hyp.1 + z_1, \ldots, z_n are equi-spaced around \mathcal{Z} + isometry

