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The Manifold Hypothesis

"...the idea that the dimensionality of many data sets is only artificially
high; though each data point consists of perhaps thousands of

features, it may be described as a function of only a few underlying
parameters. That is, the data points are actually samples from a
low-dimensional manifold that is embedded in a high-dimensional space.”

Cayton, “Algorithms for manifold learning”, UCSD Tech. Rep., 2005.
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low dimensional structure in high dimensional data?

24 of 72 photos in the data set, taken from camera angles 0,15,30,...,355 degrees
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Data from the Amsterdam library of object images

® n = 72 grayscale photographs, taken from angles 0,5, 10, ... ,355 degrees.
® p=110592 = 384 x 288 pixels per photograph, reduced to 3 dimensions using PCA
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low dimensional structure in high dimensional data?
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Novembre et al. “Genes mirror geography within Europe’, Nature, 2008

® n, = 3000 European individuals

® p=15x10° genotyped DNA sites per individual, reduced to 2 dimensions using PCA
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exploring and exploiting manifold structure

® Nonlinear dimension reduction
® attempt to “flatten” or “unfold” manifolds in order visualize in 2d or 3d
® |aplacian Eigenmaps, Locally Linear Embedding, Isomap, t-SNE, U-MAP...
® Regression and classification with covariates on manifolds
® nearest neighbour methods, locally linear regression, tree-based methods, ...
® statistical performance driven by dimension of manifold, not ambient
dimension
® Al technologies and deep neural networks
® Nakada and Imaizumi. Adaptive approximation and generalization of deep
neural network with intrinsic dimensionality, JMLR, 2020.
® Huang, Wei and Chen. Denoising diffusion probabilistic models are optimally
adaptive to unknown low dimensionality. arXiv:2410.18784, 2024
® and many others...

ML, Math and Stats perspectives
® Bengio et al. “Representaton Learning...”. |IEEE PAMI, 2013.

® Fefferman et al. “Testing the manifold hypothesis”. J. Amer. Math. Soc, 2016.
® Wasserman. “ Topological Data Analysis’. Annu. Rev. Stat. Appl., 2018
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The Latent Metric Model

Definition: Latent Metric Model
data matrix: Y = [Y|---|Y,]T € R**?

Yij = XJ(Zl) + O'Eij
comprising three independent sources of randomness:

1. latent variables 71, ...,7, i , where 1 supported on metric space (Z,d
I
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data matrix: Y = [Y|---|Y,]T € R**?

Yij = XJ(Zl) + O'Eij
comprising three independent sources of randomness:
1. latent variables 71, ...,7, S 1, where i supported on metric space (2, d)

® hyp: Z is compact

2. random functions X1, ..., X, each acting Z — R, so for each z € Z,
X,(z) is ar.v.

® hyp: for each j, z — 2’ = E[|X;(2) — X;(2")[*] — 0.
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data matrix: Y = [Y|---|Y,]T € R**?

Yij = XJ(Zl) + O'Eij
comprising three independent sources of randomness:

1. latent variables 71, ...,7, S 1, where i supported on metric space (2, d)
® hyp: Z is compact

2. random functions X1, ..., X, each acting Z — R, so for each z € Z,
X,(z) is ar.v.

® hyp: for each j, z — 2’ = E[|X;(2) — X;(2")[*] — 0.
3. noise matrix E € R"*P of zero mean, unit variance random variables

® hyp: E;; are uncorrelated across i and independent across j
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The Latent Metric Model

Definition: implict kernel and feature map

¢ implicit kernel
p
Z )l

® by Mercer's theorem, 3 feature map ¢ : Z — /5 s.t.

f(z,2') = (8(2), $(z')) es-

® image of ¢,

M ={d(z);z€ Z} C ¥ty
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Intrinsic random projections

Proposition

Let r € {1,2,...,} U{oo} be the rank of the implicit kernel f and define the
matrix W € RP*" with elements

Wi = (pw/z/f (2)uf ()u(d2)

where /\,’:,ui is the k-th eigenvalue/function pair assoc. with f, u. Then:

Y, "= p PWo(Z) +oE;, i=1,...,n, EW' W] =1,,

where I, is the identity matrix with 7 rows and columns.
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Homeomorphism

Definition: homeomorphism

A mapping between two metric spaces is a homeomorphism if it is continuous,
one-to-one, and has a continuous inverse.
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Homeomorphism

Definition: homeomorphism

A mapping between two metric spaces is a homeomorphism if it is continuous,
one-to-one, and has a continuous inverse.

Proposition

¢ is a homeomorphism between Z and M if and only if

P
V2,2 € Z, 242 = ZE|:|Xj(Z)_Xj(ZI)|2 # 0.
=1
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Isometry

Definition: weak stationarity

Weak stationarity of any one of the random functions X, means that:
® E[X;(z)] is constant in z, and
® Cov[X;(z),X,(2)] depends only on distance d(z, z’)
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Isometry

Definition: weak stationarity

Weak stationarity of any one of the random functions X, means that:
® E[X;(z)] is constant in z, and
® Cov[X;(z),X,(2)] depends only on distance d(z, z’)

...it follows that if X7,..., X, are all weakly stationary, then f(z,z’)
depends only on d(z, 2').
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Isometry

Definition: path and path length

® a path in Z is a continuous mapping 7 : [a,b] — Z for some a, b.
® write v : [a,b] — M given by 7 := ¢(n;) the corresponding path in M,
® lengths of n and v:

n

L(’?) ‘= sup Z d(ntk’ntk—l)a L(’Y) ‘= sup Z ”’Ytk = Vtr—1 ||2’
T k=1 T k=1

thesup isovern >1and T = (tg,...,tn) st. to=a<t; <---<t, =b.

v
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T k=1 T k=1

thesup isovern >1and T = (tg,...,tn) st. to=a<t; <---<t, =b.

| \

Proposition

Assume there exists € > 0 and a C? function g such that ¢’(0) < 0 and
f(z,2") = g(d(z,2)*) whenever d(z,2') <e.

Then for any path 7 in Z such that L(n) < oo,

L(y) = v/—2¢'(0)L(n).
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Uniform consistency of PCA embedding

Theorem
Let Y ~ Latent Metric Model and assume additionally that:
® X, Xo,...are mutually independent,

® SUp;>qSUP.cz E[|X;(2)]Y] < oo, SUpP,>1 SUP;>1 E[|E;|*] < oo,
® the kernel f has rank r < oo, with positive eigenvalues bounded above and
below uniformly in p.
Let (1,...,C, € R" be the r-dimensional PCA embedding of Y. Then there exists
a random orthogonal matrix Q € R"*" depending on p,n such that:

€ 0 L + i as n— 0o
2 P \/ﬁ » ) D, °

max
i=1,...,n

p2QG - 6(Z:)
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some take home messages
... data points are actually samples from a low-dimensional manifold that is
embedded in a high-dimensional space.”
Cayton, "“Algorithms for manifold learning”, UCSD Tech. Rep., 2005.

1. manifold structure emerges from elementary statistical concepts:
latent variables, correlations, stationarity <> homeomorphism, isometry, etc.
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some take home messages

... data points are actually samples from a low-dimensional manifold that is

embedded in a high-dimensional space.”
Cayton, "“Algorithms for manifold learning”, UCSD Tech. Rep., 2005.

1. manifold structure emerges from elementary statistical concepts:
latent variables, correlations, stationarity <> homeomorphism, isometry, etc.

2. perhaps more nuanced than traditional formulation of manifold hypothesis
RP LY M C ly

3. rethink high-dimensional behaviour of: PCA, spiked covariance models,
Gaussian Process Latent Variables Model, Hierarchical Clustering, nonlinear
dimension reduction, ...
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Statistical exploration of the Manifold Hypothesis
N.W., Annie Gray and Patrick Rubin-Delanchy
arXiv:2208.11665, To appear as RSS discussion paper.

How high is ‘high’? Rethinking the roles of dimensionality in topological
data analysis and manifold learning.

Hannah Sansford, N.W., and Patrick Rubin-Delanchy

arxiv:2505.16879, 2025

The Origins of Representation Manifolds in Large Language Models.
Alex Modell, Patrick Rubin-Delanchy and N.W.,
arxiv.org:2505.18235, 2025
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return to images example

24 of 72 photos in the data set, taken from camera angles 0,15,30,...,355 degrees
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Data from the Amsterdam library of object images

® n = 72 grayscale photographs, taken from angles 0,5, 10, ... ,355 degrees.
® p=110592 = 384 x 288 pixels per photograph, reduced to 3 dimensions using PCA
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Linear dimension reduction by PCA

Definition: PCA embedding

® input: data matrix Y = [Yy|...|Y,]" € R™*P and dimension r < min{p,n}

® compute vy, ..., v, orthonorm. eig-vecs associated with r largest eig-vals of
YTY € RP*P,

® the PCA embedding ¢i,...,(, € R" is:

G=V'Y,, where V= [vg]---|u,]
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return to images example
® Hyp.l =
® Hyp.2 = Hyp.1 + z4,..

Z is a circle + homeomorphism
., Zn are equi-spaced around Z + isometry

a) dimension selection b) kde for || il c) persistence diagram
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