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The Manifold Hypothesis

“...the idea that the dimensionality of many data sets is only artificially
high; though each data point consists of perhaps thousands of
features, it may be described as a function of only a few underlying
parameters. That is, the data points are actually samples from a
low-dimensional manifold that is embedded in a high-dimensional space.”

Cayton, “Algorithms for manifold learning”, UCSD Tech. Rep., 2005.
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low dimensional structure in high dimensional data?

24 of 72 photos in the data set, taken from camera angles 0,15,30,...,355 degrees
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Data from the Amsterdam library of object images

• n = 72 grayscale photographs, taken from angles 0, 5, 10, . . . , 355 degrees.
• p = 110592 = 384× 288 pixels per photograph, reduced to 3 dimensions using PCA
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low dimensional structure in high dimensional data?

Novembre et al. “Genes mirror geography within Europe”, Nature, 2008

• n = 3000 European individuals
• p = 5×105 genotyped DNA sites per individual, reduced to 2 dimensions using PCA
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exploring and exploiting manifold structure
• Nonlinear dimension reduction

• attempt to “flatten” or “unfold” manifolds in order visualize in 2d or 3d
• Laplacian Eigenmaps, Locally Linear Embedding, Isomap, t-SNE, U-MAP...

• Regression and classification with covariates on manifolds
• nearest neighbour methods, locally linear regression, tree-based methods, ...
• statistical performance driven by dimension of manifold, not ambient

dimension
• AI technologies and deep neural networks

• Nakada and Imaizumi. Adaptive approximation and generalization of deep
neural network with intrinsic dimensionality, JMLR, 2020.

• Huang, Wei and Chen. Denoising diffusion probabilistic models are optimally
adaptive to unknown low dimensionality. arXiv:2410.18784, 2024

• and many others...

ML, Math and Stats perspectives
• Bengio et al. “Representaton Learning...” . IEEE PAMI, 2013.
• Fefferman et al. “Testing the manifold hypothesis”. J. Amer. Math. Soc, 2016.
• Wasserman. “Topological Data Analysis”. Annu. Rev. Stat. Appl., 2018

6 / 21



The Latent Metric Model

Definition: Latent Metric Model

data matrix: Y = [Y1| · · · |Yn]
> ∈ Rn×p

Yij := Xj(Zi) + σEij

comprising three independent sources of randomness:

1. latent variables Z1, . . . , Zn
iid∼ µ, where µ supported on metric space (Z, d)

• hyp: Z is compact

2. random functions X1, . . . , Xp, each acting Z → R, so for each z ∈ Z,
Xj(z) is a r.v.

• hyp: for each j, z → z′ ⇒ E[|Xj(z)−Xj(z
′)|2]→ 0.

3. noise matrix E ∈ Rn×p of zero mean, unit variance random variables

• hyp: Eij are uncorrelated across i and independent across j
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The Latent Metric Model

Definition: implict kernel and feature map
• implicit kernel

f(z, z′) :=
1

p

p∑

j=1

E[Xj(z)Xj(z
′)]

• by Mercer’s theorem, ∃ feature map φ : Z → `2 s.t.

f(z, z′) = 〈φ(z), φ(z′)〉`2 .

• image of φ,
M := {φ(z); z ∈ Z} ⊂ `2
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Figure 1: Illustration of theory in the case d = 1. Our analysis reveals how geodesic distance, along
M, between �(Zi) and �(Zj), is related to geodesic distance, along Z , between Zi and Zj .

infinite-dimensional Hilbert space, which will be denoted `2, and the inner-product h�(Zi), �(Zj)i2
in this space equals f(Zi, Zj).

The spectral embedding procedure. For p  n, we define the p-dimensional spectral embedding of
A to be X̂ = [X̂1, . . . , X̂n]> = Û|Ŝ|1/2 2 Rn⇥p, where |Ŝ| 2 Rp⇥p is a diagonal matrix containing
the absolute values of the p largest eigenvalues of A, by magnitude, and Û 2 Rn⇥p is a matrix
containing corresponding orthonormal eigenvectors, in the same order. The R packages irlba and
RSpectra provide fast solutions which can exploit sparse inputs.

One should think of X̂i as approximating the vector of first p components of �(Zi), denoted �p(Zi),
up to orthogonal transformation, and this can be formalised to a greater or lesser extent depending
on what assumptions are made. There are several situations, e.g. f any polynomial [45], the cosine
kernel used in Section 4.1, the degree-corrected [29] or mixed-membership [6] stochastic block
model, in which only the first p0 (say) components of �(·) are nonzero, where typically p0 � d. If,
after n reaches p0, we embed into p = p0 dimensions, then with k · k the Euclidean norm, we have
[18]:

max
i=1,...,n

kQX̂i � �p(Zi)k = OP
⇣

(log n)c

n1/2

⌘
, (2)

for a universal constant c � 1, orthogonal matrix Q, under regularity assumptions on the Zi’s, f
and E (that Zi are i.i.d., f(Zi, Zj) has finite expectation, and the perturbations Eij are independent
and centered with exponential tails). This encompasses the case where A is binary, for example a
graph adjacency matrix [36, 46]. Similar results are available in the cases where A is a Laplacian
[46, 40], covariance matrix [17], or the matrix implicitly factorised by node2vec [64]. The methods
of this paper are based, in practice, on the distances kX̂i � X̂jk, which are invariant to orthogonal
transformations and so for purposes of validating kX̂i � X̂jk ⇡ k�p(Zi) � �p(Zj)k the presence of
Q in (2) is immaterial.

For X̂i to converge to �(Zi) more generally, we must let its dimension p grow with n and, at least
given the present state of literature, accept weaker consistency results, for example, convergence in
Wasserstein distance between QX̂1, . . .QX̂n and �p(Z1), . . . , �p(Zn) [32]. Uniform consistency
results, in the style of (2), are also available for indefinite [46], bipartite, and directed graphs [25].
These are left for future work because of the complications of Q no longer being orthogonal.

Rank selection. In real data, where n is typically fixed, there is no ‘best’ way of selecting p, as
discussed for example in [42]. The method of [65], based on profile-likelihood, provides a popular,
practical choice, taking as input the spectrum of A, and is implemented in the R package igraph.

2.2 Isomap, as estimating Zi

In Theorem 1 below we establish that under realistic and quite general assumptions on f , � is a
bi-Lipschitz homeomorphism, meaning M := �(Z) and Z are topologically equivalent, M has
Hausdorff dimension exactly equal to that of Z (as opposed to an upper bound [45]) and M can be

3
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Intrinsic random projections

Proposition

Let r ∈ {1, 2, . . . , } ∪ {∞} be the rank of the implicit kernel f and define the
matrix W ∈ Rp×r with elements

Wjk :=
1

(pλfk)
1/2

∫

Z
Xj(z)u

f
k(z)µ(dz)

where λfk , u
f
k is the k-th eigenvalue/function pair assoc. with f, µ. Then:

Yi
m.s.
= p1/2Wφ(Zi) + σEi, i = 1, . . . , n, E[W>W] = Ir,

where Ir is the identity matrix with r rows and columns.

1

p
E[〈Yi,Yj〉|Zi, Zj ] = 〈φ(Zi),E[W>W]φ(Zj)〉`2 + 0 + 0 + σ2 1

p
E[〈Ei,Ej〉]

= 〈φ(Zi), φ(Zj)〉`2 + σ2I[i = j].
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Homeomorphism

Definition: homeomorphism

A mapping between two metric spaces is a homeomorphism if it is continuous,
one-to-one, and has a continuous inverse.

Proposition

φ is a homeomorphism between Z andM if and only if

∀z, z′ ∈ Z, z 6= z′ =⇒
p∑

j=1

E
[
|Xj(z)−Xj(z

′)|2
]
6= 0.
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Isometry

Definition: weak stationarity

Weak stationarity of any one of the random functions Xj means that:
• E[Xj(z)] is constant in z, and
• Cov[Xj(z), Xj(z

′)] depends only on distance d(z, z′)

...it follows that if X1, . . . , Xp are all weakly stationary, then f(z, z′)
depends only on d(z, z′).
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Isometry
Definition: path and path length
• a path in Z is a continuous mapping η : [a, b]→ Z for some a, b.
• write γ : [a, b]→M given by γt := φ(ηt) the corresponding path inM,
• lengths of η and γ:

L(η) := sup
T

n∑

k=1

d(ηtk , ηtk−1
), L(γ) := sup

T

n∑

k=1

‖γtk − γtk−1
‖2,

the sup is over n ≥ 1 and T = (t0, . . . , tn) s.t. t0 = a ≤ t1 ≤ · · · ≤ tn = b.

Proposition

Assume there exists ε > 0 and a C2 function g such that g′(0) < 0 and

f(z, z′) = g(d(z, z′)2) whenever d(z, z′) ≤ ε.

Then for any path η in Z such that L(η) <∞,

L(γ) =
√
−2g′(0)L(η).
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in this space equals f(Zi, Zj).

The spectral embedding procedure. For p  n, we define the p-dimensional spectral embedding of
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the absolute values of the p largest eigenvalues of A, by magnitude, and Û 2 Rn⇥p is a matrix
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after n reaches p0, we embed into p = p0 dimensions, then with k · k the Euclidean norm, we have
[18]:

max
i=1,...,n
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⌘
, (2)

for a universal constant c � 1, orthogonal matrix Q, under regularity assumptions on the Zi’s, f
and E (that Zi are i.i.d., f(Zi, Zj) has finite expectation, and the perturbations Eij are independent
and centered with exponential tails). This encompasses the case where A is binary, for example a
graph adjacency matrix [36, 46]. Similar results are available in the cases where A is a Laplacian
[46, 40], covariance matrix [17], or the matrix implicitly factorised by node2vec [64]. The methods
of this paper are based, in practice, on the distances kX̂i � X̂jk, which are invariant to orthogonal
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discussed for example in [42]. The method of [65], based on profile-likelihood, provides a popular,
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Uniform consistency of PCA embedding

Theorem
Let Y ∼ Latent Metric Model and assume additionally that:
• X1, X2, . . . are mutually independent,
• supj≥1 supz∈Z E[|Xj(z)|4] <∞, supj≥1 supi≥1 E[|Eij |4] <∞,
• the kernel f has rank r <∞, with positive eigenvalues bounded above and

below uniformly in p.
Let ζ1, . . . , ζn ∈ Rr be the r-dimensional PCA embedding of Y. Then there exists
a random orthogonal matrix Q ∈ Rr×r depending on p, n such that:

max
i=1,...,n

∥∥∥p−1/2Qζi − φ(Zi)
∥∥∥
2
∈ OP

(
1√
n
+

√
n

p

)
, as p, n→∞.
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containing corresponding orthonormal eigenvectors, in the same order. The R packages irlba and
RSpectra provide fast solutions which can exploit sparse inputs.

One should think of X̂i as approximating the vector of first p components of �(Zi), denoted �p(Zi),
up to orthogonal transformation, and this can be formalised to a greater or lesser extent depending
on what assumptions are made. There are several situations, e.g. f any polynomial [45], the cosine
kernel used in Section 4.1, the degree-corrected [29] or mixed-membership [6] stochastic block
model, in which only the first p0 (say) components of �(·) are nonzero, where typically p0 � d. If,
after n reaches p0, we embed into p = p0 dimensions, then with k · k the Euclidean norm, we have
[18]:

max
i=1,...,n

kQX̂i � �p(Zi)k = OP
⇣

(log n)c
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, (2)

for a universal constant c � 1, orthogonal matrix Q, under regularity assumptions on the Zi’s, f
and E (that Zi are i.i.d., f(Zi, Zj) has finite expectation, and the perturbations Eij are independent
and centered with exponential tails). This encompasses the case where A is binary, for example a
graph adjacency matrix [36, 46]. Similar results are available in the cases where A is a Laplacian
[46, 40], covariance matrix [17], or the matrix implicitly factorised by node2vec [64]. The methods
of this paper are based, in practice, on the distances kX̂i � X̂jk, which are invariant to orthogonal
transformations and so for purposes of validating kX̂i � X̂jk ⇡ k�p(Zi) � �p(Zj)k the presence of
Q in (2) is immaterial.

For X̂i to converge to �(Zi) more generally, we must let its dimension p grow with n and, at least
given the present state of literature, accept weaker consistency results, for example, convergence in
Wasserstein distance between QX̂1, . . .QX̂n and �p(Z1), . . . , �p(Zn) [32]. Uniform consistency
results, in the style of (2), are also available for indefinite [46], bipartite, and directed graphs [25].
These are left for future work because of the complications of Q no longer being orthogonal.

Rank selection. In real data, where n is typically fixed, there is no ‘best’ way of selecting p, as
discussed for example in [42]. The method of [65], based on profile-likelihood, provides a popular,
practical choice, taking as input the spectrum of A, and is implemented in the R package igraph.

2.2 Isomap, as estimating Zi

In Theorem 1 below we establish that under realistic and quite general assumptions on f , � is a
bi-Lipschitz homeomorphism, meaning M := �(Z) and Z are topologically equivalent, M has
Hausdorff dimension exactly equal to that of Z (as opposed to an upper bound [45]) and M can be
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some take home messages

... data points are actually samples from a low-dimensional manifold that is
embedded in a high-dimensional space.”

Cayton, “Algorithms for manifold learning”, UCSD Tech. Rep., 2005.

1. manifold structure emerges from elementary statistical concepts:
latent variables, correlations, stationarity ↔ homeomorphism, isometry, etc.

2. perhaps more nuanced than traditional formulation of manifold hypothesis
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Figure 1: Illustration of theory in the case d = 1. Our analysis reveals how geodesic distance, along
M, between �(Zi) and �(Zj), is related to geodesic distance, along Z , between Zi and Zj .
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the absolute values of the p largest eigenvalues of A, by magnitude, and Û 2 Rn⇥p is a matrix
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return to images example

24 of 72 photos in the data set, taken from camera angles 0,15,30,...,355 degrees
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Data from the Amsterdam library of object images

• n = 72 grayscale photographs, taken from angles 0, 5, 10, . . . , 355 degrees.
• p = 110592 = 384× 288 pixels per photograph, reduced to 3 dimensions using PCA
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Linear dimension reduction by PCA

Definition: PCA embedding

• input: data matrix Y = [Y1| . . . |Yn]
> ∈ Rn×p and dimension r ≤ min{p, n}

• compute v1, . . . , vr orthonorm. eig-vecs associated with r largest eig-vals of
Y>Y ∈ Rp×p,
• the PCA embedding ζ1, . . . , ζn ∈ Rr is:

ζi := V>Yi, where V := [v1| · · · |vr]
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return to images example
• Hyp.1 = Z is a circle + homeomorphism
• Hyp.2 = Hyp.1 + z1, . . . , zn are equi-spaced around Z + isometry
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