An Optimisation View of Online Attention Markets

Lexing Xie, School of Computing, The Australian National University In collaboration with Marco Cheung and Haiqing Zhu

Integrated AI Network https://ai.anu.edu.au/ Computational Media Lab http://cmlab.dev

computational media lab @ ANU

http://cmlab.dev

Human-centered AI with a purpose: bridging info gaps in climate and environment, understanding daily moral dilemmas

Inter-disciplinary AI, interactive visualisations, vision and language

Attention is a scarce resource

Abundance of content → scarcity of attention [Simon 1971]

- How do attention evolve, what drives it? (with publicly available data)
- What are the properties of the market system involving content, users, and platforms?

What is item popularity?

Popularity scale over time

- 172K+ videos, >8K in each 5% popularity bin;
- videos in the middle bins are within 1.3x of each other's view-count.
- < 1% videos has 1M views after 2 years</p>

Popularity scale over time

- 172K+ videos, >8K in each 5% popularity bin;
- videos in the middle bins are within 1.3x of each other's view-count.
- only 1% videos has 1M views after 2 years

"Rich-get-richer" as videos age

Videos (of the same popularity percentile) has ~100x in views over 2 years

Talk outline

- How to describe Attention as a marketplace?
- Are there implicit potential (Lyapunov) functions for the underlying dynamics?
- Do the distributed interactions have equilibria are they reachable?
 Are they good?
- Can we incentivize or influence quality of production?

8

Attention as a marketplace

Markets	"Traditional" e.g. Arrow-Debreu	Attention
Supply	limited	∞
Price	modulate supply-demand	constant (per unit time)
Scarcity	\$	attention/time
Market maker	minimal power	recsys/reward

Popularity update

$$\phi^t = \mathcal{P}(\mathbf{v}^t, \mathbf{q}^t, \phi^{t-1})$$

The Musiclab Experiment

"Experimental study of inequality and unpredictability in an artificial cultural market." Salganik, Dodds, and Watts. Science, 311:854-856, 2006.

14.3K participants, 48 unknown songs from unknown bands; 8x2+1 "worlds"

- popularity signal and ranking each plays a role
- unpredictable market shares observed across 8 separate "worlds"

"Success was also only partly determined by quality: The best songs rarely did poorly, and the worst rarely did well, but any other result was possible."

- Trial-offer market with choice model describes the musiclab experiment.
- There is at least one fixed point in market share.

What is the dynamic and interactions between visibility, market share and quality?

Toy example: attention market with 3 items

Toy example: how does quality affect market share?

prob. to buy item j $\phi_j^{t+1} \propto q_j \ v_j (\phi_j^t)^r$

set r = 0.5

Does this dynamical system have an objective function?

Will this stochastic process converge?

Two potential functions

$${ar q}_j = v_j q_j$$

Trial-offer update

$$\phi_j^{t+1} \propto \bar{q}_j (\phi_j^t)^r$$

Total utility

$$\max \sum_{j=1}^{|I|} \bar{q}_j \phi_j^r,$$

subject to $\phi \in \Delta$.

Log utility regularised by entropy $\max \quad \Psi(\phi) := \sum_{j=1}^{|\mathcal{T}|} \left(\phi_j \log \bar{q}_j - (1-r)\phi_j \log \phi_j \right),$ subject to $\phi \in \Delta$.

Does it naturally get to the optimal?

 $\phi_j^* \propto (\bar{q}_j)^{1/(1-r)}$

Unique equilibrium

Attention market with personal preferences

Change of variable
$$\phi_{ij}^t \leftarrow \operatorname{normalize}(b_{ij}^t)$$
 $b_j^t = \sum_i b_{ij}^t$

$$b_{ij}^{t} = w_{i}q_{ij} \frac{v_{ij}(\phi_{j}^{t-1})^{r_{i}}}{\sum_{k} v_{ik}(\phi_{k}^{t-1})^{r_{i}}} = w_{i}q_{ij} \frac{v_{ij}(b_{j}^{t-1})^{r_{i}}}{\sum_{k} v_{ik}(b_{k}^{t-1})^{r_{i}}}$$

Fraction of the population w preference q_{ii}

Positive feedback loop: higher market share begets more attention

Attention market with personal preferences

Change of variable
$$\phi_{ij}^t \leftarrow \text{normalize}(b_{ij}^t)$$
 $b_j^t = \sum_i b_{ij}^t$

$$b_{ij}^{t} = w_{i}q_{ij} \frac{v_{ij}(\phi_{j}^{t-1})^{r_{i}}}{\sum_{k} v_{ik}(\phi_{k}^{t-1})^{r_{i}}} = w_{i}q_{ij} \frac{v_{ij}(b_{j}^{t-1})^{r_{i}}}{\sum_{k} v_{ik}(b_{k}^{t-1})^{r_{i}}}$$

Positive feedback loop: higher market share begets more attention

Proportional response in Fisher Markets

$$b_{ij}^{t} = w_i \frac{v_{ij}(b_{ij}^{t-1}/b_{j}^{t-1})^{r_i}}{\sum_{k=1}^{t} v_{ik}(b_{ik}^{t-1}/b_{k}^{t-1})^{r_i}}$$

Negative feedback loop: higher price drives down consumption

- Overall objective function is similar to Nash social welfare
- The probabilistic response dynamic is stochastic mirror descent

Attention Markets are Two-sided

 $\phi_j^{t+1} \propto q_j v_j (\phi_j^t)^r$

17

"Best response" by creators

Creators act by adjusting their q to maximize their own utilities.

maximize
$$\mathbf{u}^{t}(\mathbf{q}_{j}) = q_{j} \cdot \frac{v_{j}^{t+1}(\phi_{j}^{t})^{r}}{\sum_{i} v_{i}^{t+1}(\phi_{i}^{t})^{r}} - c_{j}(q_{j}).$$

$$c_{j}'(q_{j}) = s_{j}^{t} : \text{Exposure - prob. of item j being shown at time t}$$

"Best response" by creators

Larger r

- stronger feedback from market share.
- Can stimulate creators to improve quality and hence be more competitive.
- Subject to randomness in initial q

Potential function

What can the platform do?

Mixed recommendation: to balance among quality q, popularity ϕ , signal from any other data μ

$$\frac{\mu_j(q_j^t)^{\alpha}(\phi_j^t)^r}{\sum_i \mu_i(q_i^t)^{\alpha}(\phi_i^t)^r}$$

r: market signal strength α: quality signal strength

Potential functions – generalised

Mixed recommendation strategy - a, b, are constants defined by α , r and learning rate.

$$\max \sum_{j} \left(s_j \log v_j + (\mathbf{b}) s_j \log s_j + \mathbf{a} \int_0^{s_j} \log(c_j')^{-1}(z) \, \mathrm{d}z \right)$$

Constant recommendation

$$\max \sum_{j} \left(s_{j} \log v_{j} + (r-1)s_{j} \log s_{j} + r \underbrace{\int_{0}^{s_{j}} \log(c'_{j})^{-1}(z) dz} \right)$$

Alignment between Entropy exposure and recsys

Production cost

Entry fees vs quality

Can one discourage or prevent production of low-quality content?

- "Structural" ... existing participants prevents new participants with worse cost functions from entering
- Strategic: Platform charge a commission and redistribute the income to creators

Different reward strategies for two-sided markets is worth further investigation.

Q: What can we say about other people's work on creator incentives? In fact, we should have a related work slide, what should it say?

Aside 1 of 3 - Mapping 100,000 real-life moral dilemmas

[Nguyen, Chen et al, ICWSM 2022, 2024, in submission]]

- /r/AmlTheAsshoe what moral issues do people grapple with?
- 47 topics found, people perceive them in pairs
- Empirical philosophy meets moral psychology judgements are malleable
- NLP method: prompting right is the key to labeling moral+value relevance

Aside 2 of 3 - What is an influence flower?

A qualitative visualisation and webapp to profile the incoming and outgoing intellectual influence among academic entities.

Aside 2 of 3 - Influence Flower for Academic Entities

t

Summary and outlook

- → Distributed interactions among Users, creators, platform is a market with positive feedback loop
- → We uncover a series of underlying potential functions
- → Natural interaction dynamics correspond to mirror descent on this landscape
- → Structural and strategic barriers can incentivize creators

 Ongoing work: fairness of the attention ecosystem, attention market in science