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Human-centered Al with a purpose: bridging info gaps in Inter-disciplinary Al, interactive
climate and environment, understanding daily moral visualisations, vision and language ... ...
dilemmas

Design + teach: {ML, algorithm, games} view of Network Science 2
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Attention is a scarce resource
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Abundance of content » scarcity of attention [Simon 1971]

e How do attention evolve, what drives it? (with publicly available data)
e \What are the properties of the market system involving content, users, and
platforms?



What is item popularity?
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Popularity scale over time
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e 172K+ videos, >8K in each 5% popularity bin;
e videos in the middle bins are within 1.3x of each other’s view-count.
e < 1% videos has 1M views after 2 years



Popularity scale over time

total views
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172K+ videos, >8K in each 5% popularity bin;

videos in the middle bins are within 1.3x of each other’s view-count.

only 1% videos has 1M views after 2 years


https://docs.google.com/file/d/1f2WOu3RSg4qeN9BWttWydwwzZKHWRNNN/preview

“Rich-get-richer” as videos age
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Videos (of the same popularity percentile) has Y100x in views over 2 years



Talk outline

Users Platform Creators
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e How to describe Attention as a marketplace?

e Are there implicit potential (Lyapunov) functions for the underlying
dynamics?

o Do the distributed interactions have equilibria — are they reachable?
Are they good?

o Can we incentivize or influence quality of production?

Aside: morals, LLMs, influence flowers



Attention as a marketplace
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Popularity update

Markets “Traditional” Attention
e.g. Arrow-Debreu
Supply limited 00
Price modulate constant (per
supply-demand unit time)
Scarcity S attention/time
Market minimal power recsys/reward
maker




The Musiclab Experiment

"Experimental study of inequality and unpredictability in an artificial cultural market." Salganik, Dodds, and Watts. Science, 311:854-856, 2006.

14.3K participants, 48 unknown songs from unknown bands; 8x2+1 “worlds”
- popularity signal and ranking each plays a role
- unpredictable market shares observed across 8 separate “worlds”

“Success was also only partly determined by quality: The best songs rarely did poorly, and
the worst rarely did well, but any other result was possible.”
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https://www.science.org/doi/10.1126/science.1121066

[Salganik et al. 2006, Krumme et al

Musiclab as a Trial-offer Market 2012, Maldonado et al. 2018]

ltems

User i)/Q Buy?
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e Trial-offer market with
choice model describes
the musiclab experiment.
There is at least one fixed
point in market share.

What is the dynamic and

Q0@

Probability to try item j - Probability to buy item j: interactions between visibility,
multinomial logit choice binomial coin-flip market share and quality?
(AT ¢ g t+1
X Uy (‘/59) ¢ gi; € 0, 1] ¢
Visibility (platform Market share (after round t)  Quality (intrinsic of

controls this) ¢ € A n-dim simplex each item)
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Toy example: attention market with 3 items

Item 1

e visibility (normalised)
» quality (normalised) /
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Toy example: how does quality affect market share?

Item 1
visibility
®  (0.33, 0.33, 0.33) t41 -
quality rob. to buy item j : X a.; vl
®  (0.45, 0.35, 0.20) P y J ¢J q; 9(¢J)
(.70‘,:10, .20) setr=0.5

Does this dynamical system have an

objective function?
(.33, .33, .33)

Will this stochastic process converge?

(.15, .70, .15)

Iltem 3

Iltem 2
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Two potential functions
let d; = v;q; Trial-offer update ¢§+1 XX qj (¢;)’l"
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Attention market with personal preferences

Change of variable  ¢}; « normalize(b;) v} = Zbﬁj -
‘ Positive feedback loop:
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Attention market with personal preferences

Change of variable  ¢i; < normalize(b;) 4 =2 ¥;
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e Overall objective function is similar to Nash social welfare
e The probabilistic response dynamic is stochastic mirror descent

Positive feedback loop:
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Attention Markets are Two-sided

Users Platform
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“Best response” by creators

Creators act by adjusting their g to maximize their own utilities.
t+1 Nr
o))
t+1 (4t
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C; (qj) = st]_ : Exposure - prob. 'of item j
being shown at time t

maximize ut(q].) =g, —¢j(qj).
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“Best response” by creators

Largerr

r=0.32

stronger feedback from market

share.
Can stimulate creators to improve —

qguality and hence be more
competitive.
Subject to randomness in initial g

o

Time step t

[Intialisation: s0 = [0:4, 0.5 0.1]}




Potential function

[Intialisation: s° =[0.4, 0.5, 0.1]|
Sj
max Z (Sj logv; + (r —1)s;logs; + r/ log(c;.)—l(z) dz)
- 0
J

l ' :

Alignment between Entropy Production cost
exposure and recsys
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What can the platform do?

Users Platform Creators
b ot vitl
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Mixed recommendation: to Nl LENT
balance among quality g, Hj (qj) (¢])

popularity ¢, signal from any Z Mi(qt)a(¢t)r
(/ 1 (/

other data n

r: market signal strength
a: quality signal strength
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Potential functions — generalised

Mixed recommendation strategy - a, b, are constants defined by a, r and
learning rate.

max Y~ (s;logv; 4+ ( b )s;logs; + 3/0 log(c;) ™" (2) dZ)

J
Constant recommendation

max ; (sj logv; 4+ (r —1)s;logs; + r/()% log(C;')_l(Z) dz)
' ' *

Alignment between Entropy Production cost
exposure and recsys
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[Zhu, Xie, Cheung, in
submission]

Entry fees vs quality

2.5 1 — p=1
— p:2

Can one discourage or prevent production of L5 — p=3
. —_— p:oo
low-quality content? 1

lall,
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e “Structural” ... existing participants 65
prevents new participants with worse /‘fﬂ_—x X
cost functions from entering ﬁ

o Strategic: Platform charge a commission IO N N O A A
and redistribute the income to creators 000 005 010 015 020 025 030 035

Q: What can we say about other
people’s work on creator incentives?
In fact, we should have a related work
slide, what should it say? >

Different reward strategies for two-sided
markets is worth further investigation.



aside 10f 3 - Mapping 100,000 real-life moral dilemmas

communication
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/rIAmITheAsshoe - what moral issues do people grapple with?

47 topics found, people perceive them in pairs

Empirical philosophy meets moral psychology - judgements are malleable
NLP method: prompting right is the key to labeling moral+value relevance
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[Nguyen, Chen et al,
ICWSM 2022, 2024, in
submission]]
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See arxiv.org/2105.14328  this flower

aside 2 of 3- What is an influence flower?

A qualitative visualisation and webapp to profile the incoming and outgoing intellectual
influence among academic entities.
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Blue arcs denote incoming influence from the authors to the paper, with their thickness proportional to the number of references made. 25
Red arcs denote outgoing influence from the paper to the authors, with their thickness proportional to the number of citations received.
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Summary and outlook

Users PIatform Creators
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=> Distributed interactions among Users, creators, platform is a market
with positive feedback loop

=> We uncover a series of underlying potential functions

=> Natural interaction dynamics correspond to mirror descent on this

landscape
=> Structural and strategic barriers can incentivize creators
Ongoing work: fairness of the attention ecosystem, attention market in science
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