Inference for Directed Acyclic Graph using Deep Generative Learning

Lexin Li

Professor
Division of Biostatistics &
Helen Wills Neuroscience Institute
University of California, Berkeley

Outline

- talk outline:
 - a general overview
 - a case study: hypothesis testing for directed acyclic graph
 - discussion
- thanks:
 - ► NSF CIF-2102227
 - NIH R01AG061303, R01AG062542
 - Chengchun Shi @ LSE & Yunzhe Zhou @ UC Berkeley

- deep generative learning is exploding
 - extremely rapid and widespread growth and advancements

- deep generative learning is exploding
 - extremely rapid and widespread growth and advancements
 - ► how to embrace it?

- deep generative learning is exploding
 - extremely rapid and widespread growth and advancements
 - ▶ how to embrace it?
- how can stat help AI?
 - data oversampling and data augmentation using LLM Nakada et al. (2025)
 - ▶ detection of data misappropriation in LLM Cai, Li and Zhang (2025)

- deep generative learning is exploding
 - extremely rapid and widespread growth and advancements
 - ▶ how to embrace it?
- ▶ how can stat help AI?
 - data oversampling and data augmentation using LLM Nakada et al. (2025)
 - ▶ detection of data misappropriation in LLM Cai, Li and Zhang (2025)
- how can AI help stat? employ AI as flexible and powerful learning tools to facilitate some classical statistical inference problems

- deep generative learning is exploding
 - extremely rapid and widespread growth and advancements
 - ▶ how to embrace it?
- how can stat help AI?
 - data oversampling and data augmentation using LLM Nakada et al. (2025)
 - detection of data misappropriation in LLM Cai, Li and Zhang (2025)
- how can AI help stat? employ AI as flexible and powerful learning tools to facilitate some classical statistical inference problems
 - ▶ inference for directed acyclic graph Shi, Zhou and Li (2024, JASA)
 ← this talk
 - ▶ inference for conditional independence Shi et al. (2021, JMLR)
 - ▶ inference for the Markov property in time series Zhou, et al. (2023, JRSSB)
 - ▶ individual treatment effect inference using diffusion models Cai, line and Li (2025, under review)

Deep generative learning

- generative adversarial networks (GANs, Goodfellow et al., 2014):
 - two neural networks, the generator and the discriminator, which are trained simultaneously
 - the generator creates data samples aiming to mimic the real data, while the discriminator evaluates and distinguishes between the generated and real samples, which helps in producing highly realistic outputs
- variational autoencoders (Rezende et al., 2014):
 - first encode input data into a latent space representation and then decode this representation back into data
- normalizing flows (Dinh et al., 2016):
 - ▶ a series of invertible transformations that map data to a simple distribution, like a Gaussian, and back
- diffusion models (Sohl-Dickstein et al., 2015):
 - learn to reverse a gradual process of adding noise to data
 - by learning the reverse diffusion process, can generate data starting from noise

Lexin Li Talk @ SNAB, 2025 4 / 14

Case Study: Inference for Directed Acyclic Graph

Motivation example

- brain effective connectivity analysis:
 - brain is a highly interconnected dynamic system, in which the activity and temporal evolution of neural elements are triggered and influenced by the activities of other elements
 - uncover the directional influence that one neural system / region exerts over another
 - ▶ a task-evoked functional magnetic resonance imaging (fMRI) dataset from the Human Connectome Project (HCP)
 - ▶ analyze the fMRI scans of individuals who undertook a story-math task: N=28 individuals with scores below 65 out of 100, and N=28 individuals with the perfect score of 100
 - ► fMRI: measures blood oxygen level over time, a surrogate measure of brain neural activity; 4D spatial temporal array
 - ▶ for each subject, map brain voxels to a list of pre-specified brain regions, then average the time courses of voxels within the same region ⇒ region × time matrix, with 316 time points, and 264 brain regions, grouped into 14 functional modules

Problem of interest

hypotheses we target:

$$\mathcal{H}_0(j,k): k \notin \mathsf{PA}_j, \quad \text{versus} \quad \mathcal{H}_1(j,k): k \in \mathsf{PA}_j.$$

- for a given pair of nodes (j, k), $j, k = 1, ..., d, j \neq k$
- ▶ d random variables, $X = (X_1, ..., X_d)^T$, that follow an additive noise model, $X_i = f_i(X_{PA_i}) + \varepsilon_i$, with continuous f_i , independent error ε_i
- ▶ the corresponding directed acyclic graph (DAG) is identifiable
- literature review:
 - penalized DAG estimation (Spirtes et al., 2000; van de Geer and Buhlmann, 2013; Zheng et al., 2018; Yuan et al., 2019)
 - ▶ Bayesian network (Chickering et al., 2004; Friston, 2011)
 - ▶ DAG inference under Gaussian linear DAG (Jankova and van de Geer, 2019; Li et al., 2020)
- challenges:
 - estimation is not the same as inference
 - Bayesian network is computationally intractable for a large network
 - linear DAG; independent data

Our proposal

- what we propose (in a nutshell):
 - ▶ a general (not necessarily linear) DAG with time dependent observational data $\{X_{i,t}\}_{i=1,t=1}^{N,T} \in \mathbb{R}^d$
 - ▶ a testing procedure that integrates three key deep learning ingredients:
 - a DAG structural learning method based on multilayer perceptron learner (MLP) to estimate the DAG
 - a supervised learning method based on MLP to estimate the conditional mean
 - a distribution generator produced by GANs to approximate the conditional distribution
 - the test statistic is doubly-robust when either the conditional mean or the distribution generator is well approximated
 - use data splitting and cross-fitting to ensure a valid type-I error rate control under minimal conditions on the generators
 - employ multiplier bootstrap to compute the p-value
 - Show the resulting test achieves a valid control of the type-I error and the power approaches one, asymptotically, when either N or T diverges to ∞

Our proposal

equivalent hypotheses:

$$\mathcal{H}_0^*(j,k|\mathcal{M}): X_k \perp\!\!\!\!\perp X_j \mid X_{\mathcal{M}-\{k\}} \ \text{vs} \ \mathcal{H}_1^*(j,k|\mathcal{M}): X_k \perp\!\!\!\!\perp X_j \mid X_{\mathcal{M}-\{k\}}$$

- ▶ for a given set of indices $\mathcal{M} \subseteq \{1, \dots, d\}$ such that $j \notin \mathcal{M}$, $\mathsf{PA}_j \subseteq \mathcal{M}$ and $\mathcal{M} \cap \mathsf{DS}_i = \emptyset$
- when devising a conditional independence test for $\mathcal{H}_0(j,k)$, the conditioning set \mathcal{M} should contain the parents of node j, but cannot contain any common descendants of j,k
- key quantity for test statistic construction:

$$S(j, k|\mathcal{M}; h) = \mathbb{E}\left\{X_{j} - \mathbb{E}\left(X_{j}|X_{\mathcal{M}-\{k\}}\right)\right\} \times \left[h\left(X_{k}, X_{\mathcal{M}-\{k\}}\right) - \mathbb{E}\left\{h\left(X_{k}, X_{\mathcal{M}-\{k\}}\right)|X_{\mathcal{M}-\{k\}}\right\}\right].$$

- \blacktriangleright use DAG structural learning (Zheng et al., 2020) to learn the set of indices ${\cal M}$
- ▶ use MLP to estimate the conditional mean $\widehat{\mathbb{E}}(X_j|X_{\mathcal{M}-\{k\}})$
- ightharpoonup use GANs to learn the conditional distribution of X_k given X_{Λ_k}

Our proposal

- testing procedure:
 - ▶ the test statistic S is a maximum over B transformation functions for improved power; $B = 2000 \Leftarrow$ where generative Al kicks in
 - $\blacksquare = \{ \cos(\omega X_k), \sin(\omega X_k) : \omega \in \mathbb{R} \}$
 - data splitting and cross-fitting
 - multiplier bootstrap to compute the *p*-value
- theoretical guarantees:
 - the sample test statistic \hat{S} is doubly robust
 - ▶ \hat{S} converges at the \sqrt{n} -rate: it suffices to require $\kappa_1 + \kappa_2 > 1/2$, where κ_1, κ_2 is the convergence rate of the conditional mean estimator and the conditional distribution estimator, respectively
 - our proposed test achieves a parametric convergence rate and a parametric power guarantee while using nonparametric estimators
 - establish the asymptotic size control and power property, when either $N \to \infty$, or $T \to \infty$

Numerical analysis

- brain effective connectivity example revisited:
 - ▶ a task-evoked functional magnetic resonance imaging (fMRI) dataset from the Human Connectome Project (HCP)
 - ▶ analyze the fMRI scans of individuals who undertook a story-math task: N = 28 individuals with scores below 65 out of 100, and N = 28 individuals with the perfect score of 100
 - MRI data summarized as a matrix of time series, with length T=316, and 264 brain regions, grouped into 14 functional modules
 - ▶ focus on d=127 brain regions from 4 functional modules: auditory, visual, frontoparietal task control, and default mode, which are generally believed to be involved in language processing and problem solving domains
 - apply the proposed test to the two datasets separately, with the false discovery control at 0.05

Numerical analysis

brain effective connectivity example:

	Auditory (13)		Default mode (58)		Visual (31)		Fronto-parietal (25)	
	low	high	low	high	low	high	low	high
Auditory (13)	20	17	0	0	0	1	2	0
Default mode (58)	0	0	68	46	3	2	11	23
Visual (31)	0	0	3	2	56	46	0	1
Fronto-parietal (25)	2	1	11	23	0	1	22	27

- identify many more within-module connections than the betweenmodule connections; lending data-driven support
- ▶ identify more within-module connections for the **frontoparietal** module for the high-performance subjects \Leftarrow known to be involved in sustained attention, complex problem solving and working memory
- ▶ identify fewer within-module connections for the **default mode** module and the **visual** module for the high-performance subjects ← know be more active during passive rest and mind-wandering

Discussion

- concluding remarks:
 - ► AI / DL methods offer a set of highly flexible and powerful tools
 - how to integrate those methods properly and effectively into a test with desired theoretical guarantees is highly nontrivial
 - our proposed test achieves a parametric convergence rate and a parametric power guarantee while using nonparametric estimators
 - provide some examples of harnessing the power of AI to address classical statistical problems
- reference:
 - ▶ Shi, C., Zhou, Y., and Li, L. (2024). Testing directed acyclic graph via structural, supervised and generative adversarial learning. *Journal of the American Statistical Association*, 119, 1833-1846.

Thank You!

