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Preferential attachment models

Initial graph G2 consists of two vertices connected by m parallel edges
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Preferential attachment models

At each time t, a new vertex t arrives and forms m edges, one at a time,
to existing nodes v ∈ [t− 1]:

P {t → v} ∝ deg(v) + δt
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Preferential attachment models

At each time t, a new vertex t arrives and forms m edges, one at a time,
to existing nodes v ∈ [t− 1]:

P {t → v} ∝ deg(v) + δt,

• deg(v) is updated after each edge is added

• δt = ∞: uniform attachment (ignore degrees)

• δt = 0: Barabási-Albert model [Barabási-Albert ’99]

• The smaller δt, the stronger preference for high-degree vertices

• A most popular dynamic graph model: various properties (e.g.
limiting degree distribution) are well-understood [van der Hofstad ’16 ’24]
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Changepoint detection problem

Definition

H0 : δt = δ

H1 : δt = δ1t≤τn + δ′1τn<t≤n

• δ ̸= δ′ > −m are two fixed constants

• Only final network snapshot is observed (node arrival time unknown)

• Problem gets harder with increasing τn: Quickest change detection

• Changepoint localization: estimate τn under H1 [Bhamidi-Jin-Nobel ’18]

• Applications: detect structural changes in various settings, such as
communication networks, social networks, financial networks, and
biological networks [Cirkovic-Wang-Zhang ’24].
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Looks like a daunting task

Change or no change?
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A simple test based on minimum-degree

n = 1000, m = 2, δ(t) ≡ 0 n = 1000, m = 2, δ(t) = 10 · 1
(
t > n− n0.8

)
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A simple test based on minimum-degree

• Let Nm(Gn) denote the number of degree-m vertices

• Let pm(δ) = limn→∞ 1
nE0 [Nm(Gn)] under H0

• Consider test T (Gn) = Nm(Gn)− npm(δ)

Theorem (Bet-Bogerd-Castro-van der Hofstad ’23)

Suppose τn = n− cnγ for a constant c and γ ∈ (0, 1). If γ > 1/2, by
choosing αn/

√
n slowly tending to infinity,

P0 {|T (Gn)| ≥ αn}+ P1 {|T (Gn)| ≤ αn} → 0

• Intuition: There are Θ(1) fraction of degree-m nodes ⇒ probability
of attaching to degree-m nodes changes by Θ(1) after τn ⇒
E1[T ] = Θ(nγ), while Std[T ] = O(

√
n)

• If δ is unknown, can be replaced by a ML estimator

• Can establish weak detection when γ = 1/2
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Changepoint detection conjecture

Conjecture (Bet-Bogerd-Castro-van der Hofstad ’23)

Suppose τn = n− cnγ for a constant c and γ < 1/2.

1 All tests based on vertex degrees are powerless.

2 All tests are powerless.

• Part 2 of the conjecture is particularly striking, because, if true,
neither degree information nor any higher-level graph structure is
useful for detection when γ < 1/2
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Significant progress

Theorem (Kaddouri-Naulet-Gassiat ’24)

Suppose τn = n−∆. If ∆ = o(n1/3) for δ > 0 or ∆ = o(n1/3/ log n) for
δ = 0, then

P0(An) → 0 =⇒ P1(An) → 0, for all sequences of events An

• As a consequence, TV(P0,P1) ≤ 1− Ω(1) ⇒ strong detection is
impossible

• Does not cover the entire regime ∆ = o(
√
n) and the regime δ < 0

• Does not rule out the possibility of weak detection
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Our resolution

Theorem (Du-Gong-X. ’25)

Suppose τn = n−∆. If ∆ = o(n1/2), then

TV(P0,P1) = o(1)

• As a consequence, all tests are powerless ⇒ resolves the changepoint
detection conjecture [Bet-Bogerd-Castro-van der Hofstad ’23] in positive

• We prove a stronger statement: all tests remain powerless even if, in
addition to Gn, the entire network history were observed up to time
n−N for ∆2 ≪ N ≪ n

• As a corollary, we prove no estimator can locate τn within o(
√
n)

with Ω(1) probability ⇒ the estimator in [Bhamidi-Jin-Nobel’18], which
achieves |τ̂n − τn| = OP (

√
n), is order-optimal
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Proof ideas



Challenge of directly bounding likelihood ratio

Define the likelihood ratio

L(G) ≜
P1(G)

P0(G)

Then

VarGn∼P0 [L(Gn)] = o(1) =⇒ TV(P1,P0) = o(1)

• Widely used to prove impossibility of detection in high-dimensional
statistics and network analysis (e.g. community detection)

• However, since only final network snapshot is observed, L(Gn)
involves an average over compatible network histories, making it
hard to bound its variance directly
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Consider an “easier” problem

• To simplify the likelihood ratio, one can make the problem “easier”
by revealing network history

• However, revealing entire network history renders problem too easy...

Theorem (Kaddouri-Naulet-Gassiat ’24)

Denote Gn as the entire network history and P1,P0 as its law under
H0,H1, respectively. Then

TV(P1,P0) = 1− o(1),

if and only if ∆ ≜ n− τn → ∞.

• Reveal arrival times of all vertices, except for a carefully chosen
subset of n2/3 leaf vertices ⇒ ∆ ≪ n1/3

• However, to prove the impossibility up to ∆ = o(
√
n), can only

reveal network history up to n− o(n)
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Our proof strategy

1 Interpolation: reduce to analyzing changepoint τn = n− 1

2 Simplified model: reveal network history up to time n− o(n)

3 Derive the likelihood ratio

4 Bound its variance via Efron-Stein inequality and coupling

Jiaming Xu (Duke) Changepoint Detection in PA Models 14



Step 1: Interpolation

• Pn,n−k: distribution of Gn with changepoint at time n− k

P0 = Pn,n → Pn,n−1 → Pn,n−2 → · · · → Pn,n−∆−1 → Pn,n−∆ = P1

• Applying triangle’s and data-processing inequality, reduces to show

TV(Pn,n,Pn,n−1) = o

(
1

∆

)
,
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Step 2: Consider an “easier” model

Reveal the network history up to time M = n−N where ∆2 ≪ N ≪ n

1 2

4 7 3 5 8

10 6 9

M

GM

G[V ]

m = 1 and τn = n− 1: connected components are denoted by dashed ellipses

Jiaming Xu (Duke) Changepoint Detection in PA Models 16



Step 3: Derive the likelihood ratio

Let V denote the set of vertices arriving after time M = n−N .
Consider the subgraph of Gn induced by V and let C(v) denote its
connected component containing v ∈ V .

1 2

4 7 3 5 8

10 6 9

M

GM

G[V ]

m = 1 and τn = n− 1: connected components are denoted by dashed ellipses

Then the likelihood ratio

L =
C1

N

∑
v∈V

|C(v)|λvXv,

where C1 is bounded constant,
∑

w∈C(v) λw = 1, and c1 ≤ Xv ≤ c2.
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Step 4: Efron-Stein inequality and coupling

• Encode the PA model using Nm ind. r.v.s {Ut,i}M<t≤n,1≤i≤m

• Let U = (UM+1,1, . . . , Ut,i, . . . , Un,m) and
U (t,i) = (UM+1,1, . . . , U

′
t,i, . . . , Un,m), where U ′

t,i is an independent
copy of Ut,i. Write LRT L as f(U) and apply Efron-Stein

Var[L] ≤ 1

2

∑
M<t≤n

∑
1≤i≤m

E
[(

f(U)− f(U (t,i))
)2

]

≤ O

(
1

N

)

• Bound TV (recall ∆2 ≪ N ≪ n):

2TV = E [|L− 1|] ≤
√

Var [L] = O

(
1√
N

)
= o

(
1

∆

)
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Concluding remarks

• We show changepoint detection threshold is τn = n− o(
√
n),

confirming a conjecture of [Bet-Bogerd-Castro-van der Hofstad ’23]

• As by-product, we show changepoint localization threshold is also
τn = n− o(

√
n), matching upper bound in [Bhamidi-Jin-Nobel ’18]

• Key proof ideas: reduces to bounding TV when changepoint occurs
at n− 1, reveal network history up to n− o(n), and bound the
variance of likelihood ratio using Efron-Stein and coupling

Future directions

• General attachment rule: P (t → v) ∝ f (deg(v))
[Banerjee-Bhamidi-Carmichael ’22]

• Changepoint detection in general dynamic graph models
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Backup slides



Limitation of previous strategy

• Reveal arrival times of all vertices, except for a carefully chosen
subset S of leaf vertices (bolded red vertices shown below):

τ ′n

τn

Gτ ′
n

Last ∆ vertices

∆′ −∆ vertices

Figure credit [Kaddouri-Naulet-Gassiat ’24]: m = 1

• S needs to contain all vertices arriving after τn, which happens w.p.

≈
(
1−∆′/n

)∆
= 1 + o(1) when ∆′∆ ≪ n

• For detection to be impossible, also need |S| ≍ ∆′ ≫ ∆2

⇒ ∆ ≪ n1/3
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Challenge in the regime n1/3 ≲ ∆ ≪
√
n

• To prove the impossibility up to ∆ ≤ o(
√
n), can only reveal

network history up to τ ′n = n−∆′, where ∆2 ≪ ∆′ ≪ n

τ ′n

τn

Gτ ′
n

Last ∆ vertices

∆′ −∆ vertices

Figure credit [Kaddouri-Naulet-Gassiat ’24]: m = 1

• Vertices arriving after τn may attach to vertices arrived in [τ ′n+1, τn]
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Our proof strategy

1 Interpolation: reduce to analyzing changepoint τn = n− 1

2 Simplified model: reveal network history up to time n− o(n)

3 Bound TV by the second moment of likelihood ratio

4 Use Efron-Stein inequality and coupling
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Step 1: Interpolation

• Pn,n−k: distribution of Gn with changepoint at time n− k

P0 = Pn,n → Pn,n−1 → Pn,n−2 → · · · → Pn,n−∆−1 → Pn,n−∆ = P1

TV(P0,P1) = TV(Pn,n,Pn,n−∆)

≤
∆∑

k=1

TV(Pn,n−k+1,Pn,n−k) triangle’s inequality

DP
≤

∆∑
k=1

TV(Pn−k+1,n−k+1,Pn−k+1,n−k)

• Suffices to show

TV(Pn′,n′ ,Pn′,n′−1) = o

(
1

∆

)
, ∀n′ ∈ [n−∆+ 1, n]

WLOG, focus on n′ = n and τn = n− 1 henceforth
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Step 2: Consider an “easier” model

• Reveal the network history up to time M = n−N , denoted by GM ,
where ∆2 ≪ N ≪ n

• Let P and Q denote the joint law of GM and Gn, under H0 and
H1, respectively

TV(Pn,n,Pn,n−1) = TV(PGn ,QGn)

DP
≤ TV

(
PGn,GM

,QGn,GM

)
Jensen
≤ EGM∼PGM

[
TV

(
PGn|GM

,QGn|GM

)]

• Reduce to proving

TV
(
PGn|GM

,QGn|GM

)
= o

(
1

∆

)
, ∀GM

Jiaming Xu (Duke) Changepoint Detection in PA Models 25



Step 2: Consider an “easier” model

• Reveal the network history up to time M = n−N , denoted by GM ,
where ∆2 ≪ N ≪ n

• Let P and Q denote the joint law of GM and Gn, under H0 and
H1, respectively

TV(Pn,n,Pn,n−1) = TV(PGn ,QGn)

DP
≤ TV

(
PGn,GM

,QGn,GM

)
Jensen
≤ EGM∼PGM

[
TV

(
PGn|GM

,QGn|GM

)]
• Reduce to proving

TV
(
PGn|GM

,QGn|GM

)
= o

(
1

∆

)
, ∀GM

Jiaming Xu (Duke) Changepoint Detection in PA Models 25



Step 2: Consider an “easier” model

• Reveal the network history up to time M = n−N , denoted by GM ,
where ∆2 ≪ N ≪ n

• Let P and Q denote the joint law of GM and Gn, under H0 and
H1, respectively

TV(Pn,n,Pn,n−1) = TV(PGn ,QGn)

DP
≤ TV

(
PGn,GM

,QGn,GM

)

Jensen
≤ EGM∼PGM

[
TV

(
PGn|GM

,QGn|GM

)]
• Reduce to proving

TV
(
PGn|GM

,QGn|GM

)
= o

(
1

∆

)
, ∀GM

Jiaming Xu (Duke) Changepoint Detection in PA Models 25



Step 2: Consider an “easier” model

• Reveal the network history up to time M = n−N , denoted by GM ,
where ∆2 ≪ N ≪ n

• Let P and Q denote the joint law of GM and Gn, under H0 and
H1, respectively

TV(Pn,n,Pn,n−1) = TV(PGn ,QGn)

DP
≤ TV

(
PGn,GM

,QGn,GM

)
Jensen
≤ EGM∼PGM

[
TV

(
PGn|GM

,QGn|GM

)]

• Reduce to proving

TV
(
PGn|GM

,QGn|GM

)
= o

(
1

∆

)
, ∀GM

Jiaming Xu (Duke) Changepoint Detection in PA Models 25



Step 2: Consider an “easier” model

• Reveal the network history up to time M = n−N , denoted by GM ,
where ∆2 ≪ N ≪ n

• Let P and Q denote the joint law of GM and Gn, under H0 and
H1, respectively

TV(Pn,n,Pn,n−1) = TV(PGn ,QGn)

DP
≤ TV

(
PGn,GM

,QGn,GM

)
Jensen
≤ EGM∼PGM

[
TV

(
PGn|GM

,QGn|GM

)]
• Reduce to proving

TV
(
PGn|GM

,QGn|GM

)
= o

(
1

∆

)
, ∀GM

Jiaming Xu (Duke) Changepoint Detection in PA Models 25



Step 3: Bound the second moment

• Define likelihood ratio L ≜
QGn|GM
PGn|GM

. Then

2TV
(
PGn|GM

,QGn|GM

)
= EPGn|GM

[|L− 1|] ≤
√
VarPGn|GM

[L]

• Enough to show
VarPGn|GM

[L] = O(1/N),

where recall M = n−N and ∆2 ≪ N ≪ n
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Step 3: Bound the second moment

Let V denote the set of vertices arriving after time M = n−N .
Consider the subgraph of Gn induced by V and let C(v) denote its
connected component containing v ∈ V .

1 2

4 7 3 5 8

10 6 9

M

GM

G[V ]

m = 1: connected components are denoted by dashed ellipses

Then

L ≜
QGn|GM

PGn|GM

=
C1

N

∑
v∈V

|C(v)|λvXv,

where C1 is bounded constant,
∑

w∈C(v) λw = 1, and c1 ≤ Xv ≤ c2.
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M
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Step 4: Efron-Stein inequality and coupling

• Encode PGn|GM
using Nm ind. r.v.s {Ut,i}M<t≤n,1≤i≤m

e.g. for m = 1 and δ = 0, recall at every time t,

P {t → v} ∝ deg(v)

Equivalently, v is chosen by first sampling from all existing edges
and then picking one of its two endpoints, uniformly at random
⇒ PGn|GM

can be encoded by N independent uniform random

variables supported over [2(M − 1)], [2M ], . . . , [2(n− 2)],
respectively

Similar encoding scheme extends to general m ≥ 1 and δ > −m
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Step 4: Efron-Stein inequality and coupling

• Encode PGn|GM
using Nm ind. r.v.s {Ut,i}M<t≤n,1≤i≤m

• Let U = (UM+1,1, . . . , Ut,i, . . . , Un,m) and
U (t,i) = (UM+1,1, . . . , U

′
t,i, . . . , Un,m), where U ′

t,i is an independent
copy of Ut,i. Write LRT L as f(U) and apply Efron-Stein

Var[L] ≤ 1

2

∑
M<t≤n

∑
1≤i≤m

E
[(

f(U)− f(U (t,i))
)2

]
• Our encoding scheme ensures that resampling Ut,i can only affect
C(t) (the component containing vertex arrived at time t), so∣∣∣f(U)− f(U (t,i))

∣∣∣ ≤ O

(
|C(t)|+ |C′(t)|

N

)
.

• Show the growth of C(t) is dominated by a sub-critical branching
process to conclude E[|C(t)|2] = O(1)
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