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Introduction

Spiked Wigner matrix

Spike: x = (x1, x2, . . . , xN) ∈ RN

Noise: H is an N × N real symmetric random matrix

Data: Signal-plus-noise

M =
√
λxxT + H

(λ: Signal-to-Noise Ratio (SNR))

Prior: distribution of x (‖x‖ = 1)

Spherical prior: x is uniformly distributed on the unit sphere.
Rademacher prior: P(

√
Nxi = 1) = P(

√
Nxi = −1) = 1

2 .

Wigner matrix: i.i.d. upper-diagonal entries with E[Hij ] = 0,
E[H2

ij ] = N−1.
(‖H‖ → 2 as N →∞)
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Introduction

Detection

M =
√
λxxT + H (‖x‖2 = 1, ‖H‖ → 2)

Hypothesis testing

H0 : λ = 0, H1 : λ = ω > 0

Error: err(ω) = P(Ĥ = H1|H0) + P(Ĥ = H0|H1)

Strong (reliable) detection: err(ω)→ 0 as N →∞
Weak detection: err(ω)→ α ∈ (0, 1) as N →∞
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Introduction

Main questions

Threshold for the strong detection

Fundamental limit of the weak detection

Efficient algorithm for the weak detection that achieves the optimal
error
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Introduction

Mathematical objects

Largest eigenvalue

(Log) likelihood ratio

Linear spectral statistics
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Largest eigenvalue

Edge universality

For a large class of random matrices, the fluctuation of the largest
eigenvalues are given by Tracy–Widom distribution.
(Dyson, Mehta, Tracy-Widom, Forrester, Soshnikov, Tao-Vu,
Erdős-Yau-Yin, L.-Yin)

For M =
√
λxxT + H, if λ = 0, then

N2/3(µ1 − 2)⇒ TW1
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Largest eigenvalue

Baik-Ben Arous-Péché (BBP) transition

M =
√
λxxT + H (‖x‖2 = 1, ‖H‖ → 2)

If λ = ω > 1,

µ1 →
√
ω +

1√
ω
> 2

If λ = ω < 1,
µ1 → 2

If λ = ω > 1, strong detection is possible via principal component analysis
(PCA).
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Largest eigenvalue

Entrywise transformation

M =
√
λxxT + H (‖x‖2 = 1, ‖H‖ → 2)

If we transform M entrywise by M̃ij = h(
√
NMij)/

√
N,

M̃ij ≈
h(
√
NHij)√
N

+
√
λh′(
√
NHij)xixj

≈
h(
√
NHij)√
N

+
√
λE[h′(

√
NHij)]xixj .

The transformed matrix is approximately a spiked Wigner matrix.
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Largest eigenvalue

Transformed PCA

M̃ij ≈
h(
√
NHij)√
N

+
√
λE[h′(

√
NHij)]xixj

If
√
NHij has the density p, the optimal transform h = −p′/p (up to

a constant factor).

The effective SNR is λF , where F is the Fisher information defined by

F =

∫ ∞
−∞

p′(x)2

p(x)
dx .

Fisher information F ≥ 1 with equality if and only if p is Gaussian.

Strong detection is possible via a transformed PCA if ω > 1/F , where
one checks the largest eigenvalue of the transformed matrix M̃.
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Largest eigenvalue

Reconstruction by the transformed PCA

Figure: Reconstruction performance of the transformed PCA (top lines) and the
standard PCA (bottom lines) for two FashionMNIST images, with 784 pixels and
[3136, 1568, 784, 588, 392] samples.
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Likelihood ratio

Likelihood ratio test

H0 : λ = 0, H1 : λ = ω > 0

Likelihood ratio (LR)

L(M;ω) :=

∫ ∏
i≤j

p(Mij)|H1dX (x)

/∏
i≤j

p(Mij)|H0


LR test: Accept H1 if L(M;ω) > 1. Reject H1 if L(M;ω) ≤ 1.

LR test minimizes err(ω) = P(Ĥ = H1|H0) + P(Ĥ = H0|H1).
(Neyman–Pearson)
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Likelihood ratio

LR with Gaussian noise

Assume that the noise H is GOE.

L(M;ω)

=

∫ ∏
i<j

exp[−N
2 (Mij −

√
ωxixj)

2]

exp[−N
2 M

2
ij ]

∏
k

exp[−N
4 (Mkk −

√
ωx2k )2]

exp[−N
4 M

2
kk ]

dX (x)

=

∫
exp

[N
2

N∑
i ,j=1

(
√
ωMijxixj −

ω

2
x2i x

2
j )
]
dX (x)

= e−ωN/4
∫

exp
(√ωN

2
〈x ,Mx〉

)
dX (x)
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Likelihood ratio

LR with Gaussian noise

From the theory of the Sherrington–Kirkpatrick model of spin glass,

logL(M;ω)⇒ N
(
±1

4
log

(
1

1− ω

)
,

1

4
log

(
1

1− ω

))
.

(Aizenman-Lebowitz-Ruelle, Baik-L., El Alaoui-Krzakala-Jordan)
Thus, with the LR test,

err(ω)→ erfc

(
1

4

√
log

(
1

1− ω

))
.

(erfc(z) = 2√
π

∫∞
z e−x

2
dx)
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Likelihood ratio

LR with non-Gaussian noise

For the spike x , we assume that the normalized entries
√
Nxi are i.i.d.

random variables with Rademacher distribution.

For the noise matrix H, let p and pd be the densities of the
normalized off-diagonal entries

√
NHij and the normalized diagonal

entries
√
NHii , respectively. We assume further

The density functions p and pd are smooth, positive everywhere, and
symmetric (about 0).
The functions p, pd , and their all derivatives vanish at infinity.
The functions h := −p′/p, hd := −p′d/pd , and their all derivatives are
polynomially bounded in the sense that for any s there exist constants

Cs , rs > 0, independent of N, such that |h(s)(w)|, |h(s)d (w)| ≤ Cs |w |rs .

L(M;ω) =
1

2N

∑
x

∏
i<j

p(
√
NMij −

√
ωNxixj)

p(
√
NMij)

∏
k

pd(
√
NMkk −

√
ωNx2k )

pd(
√
NMkk)

.
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Likelihood ratio

LR with non-Gaussian noise

Theorem (Chung-Lee-L.)

Suppose that M is a spiked Wigner matrix with the Rademacher prior.
Define

F :=

∫ ∞
−∞

(p′(x))2

p(x)
dx , Fd :=

∫ ∞
−∞

(p′d(x))2

pd(x)
dx , G :=

∫ ∞
−∞

(p′′(x))2

p(x)
dx .

If ωF < 1, the log likelihood ratio logL(M;ω) under H0 converges in
distribution to N (−ρ, 2ρ) as N →∞, where

ρ := −1

4

(
log(1− ωF ) + ω(F − 2Fd) +

ω2

4
(2F 2 − G )

)
.
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Likelihood ratio

Remarks

Applying Le Cam’s first lemma, the log likelihood ratio logL(M;λ)
under H1 converges in distribution to N (ρ, 2ρ).

The result implies the impossibility of the strong detection for
ω < 1/F (first proved by Perry-Wein-Bandeira-Moitra).

For the GOE noise, F = 1, Fd = 1
2 , G = 2, and thus the result

coincides with the known result.

The error probability

err(ω)→ erfc

(
1

4

√
log

(
1

1− ωF

)
− ω(F − 2Fd)− ω2

4
(2F 2 − G )

)
.
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Likelihood ratio

Idea of proof - Taylor expansion

Set

P
(s)
ij :=

p(s)(
√
NMij)

p(
√
NMij)

,

By the Taylor expansion

p(
√
NMij −

√
ωNxixj)

p(
√
NMij)

= 1−
√
ωNP

(1)
ij xixj +

ωP
(2)
ij

2N
− ω
√
ω

6
√
N
P
(3)
ij xixj +

ω2P
(4)
ij

24N2
+O(N−

5
2 ),
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Likelihood ratio

Idea of proof - Taylor expansion

P
(s)
ij :=

p(s)(
√
NMij)

p(
√
NMij)

,

Taking the logarithm and Taylor expanding it again,

log

(
p(
√
NMij −

√
ωNxixj)

p(
√
NMij)

)
= −
√
ωNxixj

(
P
(1)
ij +

ω

6N

(
P
(3)
ij − 3P

(1)
ij P

(2)
ij + 2(P

(1)
ij )3

))
+

ω

2N

(
P
(2)
ij − (P

(1)
ij )2

)
+

ω2

24N2

(
P
(4)
ij − 3(P

(2)
ij )2 − 4P

(1)
ij P

(3)
ij + 12(P

(1)
ij )2P

(2)
ij − 6(P

(1)
ij )4

)
+O(N−

5
2 ).
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Likelihood ratio

Idea of proof - Taylor expansion

log
1

2N

∑
x

∏
i<j

p(
√
NMij −

√
ωNxixj)

p(
√
NMij)

= log
1

2N

∑
x

exp

∑
i<j

log

(
p(
√
NMij −

√
ωNxixj)

p(
√
NMij)

)
= log

1

2N

∑
x

exp

∑
i<j

Aijxixj +
∑
i<j

(Bij + Cij) +O(N−
1
2 )

 .

Aij := −
√
ωN

(
P
(1)
ij +

ω

6N

(
P
(3)
ij − 3P

(1)
ij P

(2)
ij + 2(P

(1)
ij )3

))
.(

Aij = O(
√
N), Bij = O(N−1), Cij = O(N−2)

)
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Likelihood ratio

Idea of proof - Spin glass part

Proposition

Set

Z :=
1

2N

∑
x

exp

∑
i<j

Aijxixj

 .

Then, there exist random variables ζ and ζ ′ such that

logZ = ζ + ζ ′ +O(N−1),

where ζ and ζ ′ are asymptotically orthogonal to each other under L2B , the
conditional distribution of ζ given B converges in distribution to
N (−ν, 2ν), where

ν :=
∞∑
k=3

(ωF )k

4k
= −1

4

(
log(1− ωF ) + ωF +

ω2F 2

2

)
,
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Likelihood ratio

Idea of proof - Spin glass part

Proposition

and conditional on B,

ζ ′ =
1

2N2

∑
i<j

EB [A2
ij ]−

ω2

24
E[(P

(1)
12 )4] + U,

where U is a random variable whose asymptotic law is a centered Gaussian
with variance

θ :=
ω2

8
E
[
VarB

(
(P

(1)
12 )2

)]
.
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Likelihood ratio

Idea of proof - CLT part

The terms involving B in the decomposition of logL(M;ω) are∑
i<j

Bij +
1

2N2

∑
i<j

E[A2
ij |Bij ],

which is the sum of i.i.d. random variables that depend only on Bij . By
the central limit theorem, it converges to a Gaussian random variable with
the mean

ω2

12
E
[
P
(1)
12 P

(3)
12

]
and the variance

ω2

8
E
[
(P

(2)
12 )2 −Var

(
(P

(1)
12 )2|B12

)]
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Linear spectral statistics

LR with Gaussian noise

Assume that the noise H is GOE and the prior is spherical.

L(M;ω) = e−ωN/4
∫
SN

exp
(√ωN

2
〈x ,Mx〉

)
dX (x)

= e−ωN/4
∫
SN

exp
(√ωN

2

∑
i

µix
2
i

)
dX (x)

≈ e−ωN/4
∫
RN

∏
i

exp
(√ωN

2
µix

2
i

)√ N

2π
e−Nx

2
i /2dxi

=
∏
i

1

N(1−
√
ωµi + ω)

.

Thus,

logL(M;ω) ≈ 1

N

∑
i

log

(
1

1−
√
ωµi + ω

)
.
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Linear spectral statistics

Linear spectral statistics (LSS)

Denoting by µ1, . . . , µN the eigenvalues of M, LSS is defined as

LN(f ) =
N∑
i=1

f (µi )

for any sufficiently smooth f on an open interval containing [−2, 2].
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Linear spectral statistics

CLT for LSS

Theorem (Chung-L.)(
N∑
i=1

f (µi )− N

∫ 2

−2

√
4− x2

2π
f (x) dx

)
⇒ N (mM(f ),VM(f )) .

CLT holds if λ = 0. (Bai-Yao, Chatterjee, Lytova-Pastur)

CLT holds if λ > 0 and x = 1 = 1√
N

(1, 1, . . . , 1)T . (Baik-L.)

CLT holds if M is the adjacency matrix of a (sparse) Erdős-Rényi
graph and f is a polynomial. (Banerjee-Ma)

The mean depends on λ, but the variance does not.
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Linear spectral statistics

Test based on linear spectral statistics (LSS)

Goal: find f = f ∗ω that maximizes∣∣∣∣∣mM(f )−mH(f )√
VM(f )

∣∣∣∣∣
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Linear spectral statistics

Hypothesis Testing - Algorithm 1

f ∗ω (x) = log

(
1

1−
√
ωx + ω

)
+
√
ω

(
2

w2
− 1

)
x + ω

(
1

w4 − 1
− 1

2

)
x2.

Compute the test statistic

Lω =
N∑
i=1

f ∗ω (µi )− N

∫ 2

−2

√
4− z2

2π
f ∗ω (z) dz

= − log det
(
(1 + ω)I −

√
ωM

)
+
ωN

2

+
√
ω

(
2

w2
− 1

)
TrM +

ω

2

(
1

w4 − 1
− 1

2

)
(TrM2 − N).

Set mω = 1
2(mM(f ∗ω ) + mH(f ∗ω ))

Accept H0 if Lω ≤ mω; Accept H1 if Lω > mω
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Linear spectral statistics

Hypothesis Testing - Algorithm 1

Universality:

For any x with ‖x‖2 = 1, the proposed test and its error do not
change, and thus the test does not need any prior information on x .
The proposed test does not depend on the distribution of the
noise H except on E[H2

ii ] and E[H4
ij ].

Optimality:

The proposed test is with the lowest error among all tests based on
LSS.
For Gaussian noise, the proposed test achieves the optimal error (under
a fairly weak assumption on the prior).
For Gaussian noise, if the prior is sparse enough, the (optimal) error
from the LR test is lower then that of the proposed test. Nevertheless,
in this case, it is conjectured that no polynomial time tests can perform
better than the proposed test. (Moitra-Wein)
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Linear spectral statistics

Hypothesis Testing - Algorithm 2

h(x) := −p′(w)

p(w)
, M̃ij =

1

FHN
h(
√
NMij)

Theorem (Chung-L.)

Denoting by µ̃1, . . . , µ̃N the eigenvalues of M̃(
N∑
i=1

f (µ̃i )− N

∫ 2

−2

√
4− z2

2π
f (z)dz

)
⇒ N (m

M̃
(f ),V

M̃
(f ))

Find f = f̃ ∗ω that maximizes

∣∣∣∣mM̃
(f )−m

M̃0
(f )√

V
M̃
(f )

∣∣∣∣
Proposed test (Algorithm 2):

Compute the test statistic L̃ω :=
∑N

i=1 f̃
∗
ω (µ̃i )− N

∫ 2

−2

√
4−z2
2π f̃ ∗ω (z)dz

Set m̃ω = 1
2 (mM̃(f̃ ∗ω ) + mM̃0

(f̃ ∗ω ))

Accept H0 if L̃ω ≤ m̃ω; Accept H1 if L̃ω > m̃ω
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Linear spectral statistics

Example: Limiting errors of the two tests

Suppose that the density function of the noise matrix is given by

p(x) =
1

2 cosh(πx/2)
=

1

eπx/2 + e−πx/2

Apply the entrywise transformation

h(x) = −p′(x)

p(x)
=
π

2
tanh

πx

2
, M̃ij =

√
2

N
tanh

(
π
√
N

2
Mij

)
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