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Introduction



Tensor models

I Kolda and Bader [2009] demonstrated that the high-order tensor data often
exhibit intrinsic low-rank structures, which are key to efficient analysis.

I To capture the low-rank structures of the high-order tensor, we consider the
following d-fold rank-R spiked tensor model:

T =
R∑

r=1

βr x(r,1) ⊗ · · · ⊗ x(r,d) +
1
√

N
X. (1)

I Key components:

• β1 ≥ · · · ≥ βR > 0 are the signal-to-noise ratios (SNRs), indicating the strength of the
signal.

• {x(1,l), · · · , x(R,l)} are mutually orthogonal unit vectors in Rnl for 1 ≤ l ≤ d .

• X = [Xi1···id ] ∈ Rn1×···×nd is a noise tensor with i.i.d. entries Xi1···id such that
E[Xi1···id ] = 0 and E[X 2

i1···id
] = 1.

• The tensor dimensions n1, · · · , nd tend to infinity proportionally.

• N = n1 + · · · + nd .
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Our goal

I Majority of literature focuses on “recovering signal vectors” from the observed
tensor T .

I Difficulty: Challenges arise when SNRs fall below a critical threshold (phase
transition), making recovery extremely difficult or even theoretically impossible.

I Our goal: hypothesis testing: We consider the following two hypothesis testing
problems:

• Tensor Signal Alignment: Assessing whether two tensor signals can be aligned.

• Tensor Signal Matching: Determining if two tensor signals are statistically equivalent.
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Test 1: tensor signal alignment

Let T be a d-dimensional tensor defined as

T =
R∑

r=1

βr x(r,1) ⊗ · · · ⊗ x(r,d) +
1
√

N
X,

test the alignment of tensor signals with a given directional tensor a(1) ⊗ · · · ⊗ a(d),
where a(l) ∈ Rnl are deterministic unit vectors for 1 ≤ l ≤ d :

H0 : a(l) ⊥ x(r,l) for 1 ≤ l ≤ d, 1 ≤ r ≤ R,

H1 : There exists at least one 1 ≤ l ≤ d, 1 ≤ r ≤ R such that a(l) 6⊥ x(r,l)
.
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Test 2: tensor signal matching

Consider two independent tensor observations T (0) and T (1) defined as:{
T (0) =

∑R0
r0=1 βr0,0x(r0,1) ⊗ · · · ⊗ x(r0,d) + 1√

N
X(0),

T (1) =
∑R1

r1=1 βr1,1y (r1,1) ⊗ · · · ⊗ y (r1,d) + 1√
N

X(1),

where X(0) and X(1) are independent and x(r0,l), y (r1,l) ∈ Rnl are deterministic unit
vectors for 1 ≤ l ≤ d , 1 ≤ r0 ≤ R0, 1 ≤ r1 ≤ R1. Test the tensor signal matching can
be formulated as the following hypothesis test:

H0 :x(r0,l) ⊥ y (r1,l) for any 1 ≤ r0 ≤ R0, 1 ≤ r1 ≤ R1 and 1 ≤ l ≤ d ,

H1 :There exists at least one 1 ≤ r0 ≤ R0, 1 ≤ r1 ≤ R1 and 1 ≤ l ≤ d

such that x(r0,l) 6⊥ y (r1,l).
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Tensor contraction operator

The tensor contraction operator Φd (introduced in Seddik et al. [2024]) maps a d-fold
tensor T ∈ Rn1×···×nd and unit vectors a(1) ∈ Rn1 , · · · , a(d) ∈ Rnd to a matrix
representation:

R = Φd (T , a(1)
, · · · , a(d))

=


0n1×n1 T 12 · · · T 1d

(T 12)′ 0n2×n2 · · · T 2d

...
...

. . .
...

(T 1d )′ (T 2d )′ · · · 0nd×nd

 , (2)

where for 1 ≤ k < k′ ≤ d ,

T kk′ =

[ nj∑
ij =1,j 6=k,k′

Ti1···id

d∏
`=1,` 6=k,k′

a(`)
i`

]
nk×nk′

(3)

is an nk × nk′ matrix, called second order contraction matrix of T along the directions
{a(k), a(k′)}, introduced in Lim [2005].
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Example

For example, when d = 4, we have

Φd (T , a(1), a(2), a(3), a(4)) =


0n1×n1 T 12 T 13 T 14

∗ 0n2×n2 T 23 T 23

∗ ∗ 0n3×n3 T 34

∗ ∗ ∗ 0n4×n4

 ,

where ∗ denotes the symmetry, and

T 12 =
[ n3∑

i3=1

n4∑
i4=1

Ti1 i2 i3 i4 a(3)
i3 a(4)

i4

]
n1×n2

,

T 13 =
[ n2∑

i2=1

n4∑
i4=1

Ti1 i2 i3 i4 a(2)
i2 a(4)

i4

]
n1×n3

,

T 14 =
[ n2∑

i2=1

n3∑
i3=1

Ti1 i2 i3 i4 a(2)
i2 a(3)

i3

]
n1×n4

,

etc.
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Basic properties of the contraction operator Φd

I For the d-fold rank-R spiked tensor T , since Φd is linear in T , we have

R = Φd (T , a(1)
, · · · , a(d)) =

R∑
r=1

βr Φd (x(r,1) ⊗ · · · ⊗ x(r,d)
, a(1)

, · · · , a(d))

+
1
√

N
Φd (X, a(1)

, · · · , a(d)) = S + M.

I For the tensor signal alignment test, under the null hypothesis H0, i.e.
a(l) ⊥ x(r,l) for 1 ≤ l ≤ d and 1 ≤ r ≤ R, we have S = 0, so R = M.

I In contrast, under the alternative H1 of the tensor signal alignment test, S 6= 0,
result in R 6= M. This difference is the key to distinguish H0 and H1.
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Test statistic for the alignment test

I The statistic of the tensor signal alignment test is defined as:

T̂ (d)
N = ‖R‖2

2 − N
∫ ∞
−∞

x2ν(dx), (4)

where ν is the limiting spectral distribution (LSD) of R.
I Under the null hypothesis H0:(

T̂ (d)
N − ξ(d)

N

)
/σ

(d)
N

d−→ N (0, 1).

I Under the alternative hypothesis H1:(
T̂ (d)

N − ξ(d)
N −D

(d)
)
/σ

(d)
N

d−→ N (0, 1),

where D(d) represents a positive mean drift, indicating an effect size.
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Main contributions

I We conduct an in-depth analysis of the contracted data matrix R, whose entries
display significant correlations and deviate from traditional random matrix models
in which the elements of the noise matrix are typically assumed to be
independent of one another, including

(a) The characterization of its LSD through a vector Dyson equation, along with entrywise
behaviors of the resolvent.

(b) The establishment of CLT for a broad class of its LSS.

I We establish a rigorous procedure for the tensor signal alignment test by
establishing the normality asymptotic of the test statistic and deriving its power
function under a general alternative hypothesis.

I We also address the problem of testing for the matching of two high-dimensional
low-rank tensor signals. To tackle this problem, we employ an approach similar to
the one established for the tensor signal alignment test.
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Assumptions

Assumption (Subexponential tails)

The noise variables Xi1···id are i.i.d. with zero mean, unit variance and subexponential
tails, that is, for some θ > 0,

lim sup
x→∞

exθP(|Xi1···id | ≥ x) <∞.

Assumption (High-dimensionality scheme)

The tensor dimensions n1, · · · , nd all tend to infinity in such a way that

lim
n1,··· ,nd→∞

nj

n1 + · · ·+ nd
= cj ∈ (0, 1), 1 ≤ j ≤ d .

We define N := n1 + · · ·+ nd →∞ and

c = (c1, · · · , cd )′. (5)
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The limiting spectral distribution of
the matrix M



Structures of the matrix M

I Recall the definition of M is as follows:

M =
1
√

N
Φd (X, a(1), · · · , a(d)) =

1
√

N


0n1×n1 X12 · · · X1d

(X12)′ 0n2×n2 · · · X2d

...
...

. . .
...

(X1d )′ (X2d )′ · · · 0nd×nd

 ,

where X l1 l2 ∈ Rnl1×nl2 is constructed as in (3).

I The entries of M are generally correlated.

d = 3 : Cov(X l1 l2
s1,t1 ,X

l1 l3
s2,t2 ) = δs1,s2 a(l2)

t1 a(l3)
t2 ,

d ≥ 4 : Cov(X i1j1
s1,t1 ,X

i2j2
s2,t2 ) = a(i1)

s1 a(i2)
s2 a(j1)

t1 a(j2)
t2 .

I While M is symmetric and its entries have zero mean and a variance of N−1,
similar to a standard Wigner matrix, these widespread correlations among X’s
entries complicate the theoretical analysis of the LSD of M.
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Vector Dyson equation and the LSD ν of M

I To study the LSD of M, we start by examining its resolvent matrix:

Q(z) := (M − zIN )−1, z ∈ C+. (6)

I vector Dyson equation induced by the matrix M:

−
c

g(z)
= z + Sd g(z), (7)

where

g(z) = (g1(z), · · · , gd (z))′,

Sd = 1d×d − Id .

I The solution g(z) is unique, and m(z) = g1(z) + · · ·+ gd (z) is the Stieltjes
transform of the LSD ν of M.
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CLT for LSS



CLT for the LSS of the matrix M

I Recall that our statistic T̂ (d)
N in (4) for the tensor signal alignment test is an LSS

of the matrix M under H0.

I We will establish the CLT for a broad class of the LSS of the matrix M.

I For simplicity, we only present the CLT for 3-fold tensors, as the general case of
d ≥ 3 involve more complicated formulas, though without fundamental difference.
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LSS of the matrix M

I Define v (3)
B := max{ζ, v3} and consider the class of functions

F3 :=
{

f (z) : f is analytic on an open set containing
[
− v (3)

B , v (3)
B

]}
. (8)

I For f ∈ F3, consider a LSS of M of the form:

LM (f ) :=
1
N

N∑
l=1

f (λl ) =
∫
R

f (x)νN (dx), (9)

where λ1, · · · , λN are the eigenvalues of M and νN = N−1
∑N

j=1 δλj is the ESD
of M.

I We will derive the asymptotic distribution of GN (f ) as follows:

GN (f ) := N

∫ ∞
−∞

f (x)(νN (dx)− ν(dx)) = N

(
LM (f )−

∫ ∞
−∞

f (x)ν(dx)

)
,

where ν is the LSD of M.
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Main result

Theorem

Under Assumptions 1.1 and 1.2 with d = 3, for any f ∈ F3 in (8) and deterministic
unit vectors a(1) ∈ Rn1 , a(2) ∈ Rn2 , a(3) ∈ Rn3 , we have(

GN (f )− ξ(3)
N

)
/σ

(3)
N

d−→ N (0, 1),

where

ξ
(3)
N : = −

1
2πi

∮
C1

f (z)µ(3)
N (z;κ3, κ4, a(1)

, a(2)
, a(3))dz, (10)

(σ(3)
N )2 : = −

1
4π2

∮
C1

∮
C2

f (z1)f (z2)C(3)
N (z1, z2;κ4, a(1)

, a(2)
, a(3))dz1dz2, (11)

and C1,C2 are two disjoint rectangular contours with vertices ±E1 ± iη1 and
±E2 ± iη2, respectively, such that E1,E2 ≥ v (3)

B + t, where t > 0 is a fixed constant
and η1, η2 > 0.
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Hypothesis tests



Test 1: tensor signal alignments

I 3-fold rank-R spiked tensor model:

T =
R∑

r=1

βr x(r,1) ⊗ x(r,2) ⊗ x(r,3) +
1
√

N
X.

I Tensor signal alignments test: For three deterministic unit vectors a(1), a(2), a(3),
consider

H0 : a(l) ⊥ x(r,l) for 1 ≤ l ≤ 3, 1 ≤ r ≤ R,

H1 : There exists at least one 1 ≤ l ≤ 3, 1 ≤ r ≤ R such that a(l) 6⊥ x(r,l)
.

I Test statistic:

T̂ (3)
N = ‖R‖2

2 − N
∫ ∞
−∞

x2ν(dx),

where R = Φ3(T , a(1), a(2), a(3)).
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CLT for the T̂ (3)
N

Proposition

Under Assumptions 1.1 and 1.2, the statistic T̂ (3)
N satisfies that(

T̂ (3)
N − ξ

(3)
N −D

(3)
)
/σ

(3)
N

d−→ N (0, 1),

where

D(3) := 2
R∑

r=1

β
2
r

3∑
l=1

〈x(r,l)
, a(l)〉2 ≥ 0, (12)

and ξ(3)
N , σ

(3)
N are derived from (10) and (11) by setting f (z) = z2,

ξ
(3)
N = −

1
2πi

∮
C1

z2
µ

3
N (z;κ3, κ4, a(1)

, a(2)
, a(3))dz,

(σ(3)
N )2 = −

1
4π2

∮
C1

∮
C2

z2
1 z2

2C
(3)
N (z1, z2;κ4, a(1)

, a(2)
, a(3))dz1dz2.
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Rejection region and power

I We conclude from Proposition 4.1 that{ (
T̂ (3)

N − ξ(3)
N

)
/σ

(3)
N

d−→ N (0, 1) under H0,(
T̂ (3)

N − ξ(3)
N −D

(3)
)
/σ

(3)
N

d−→ N (0, 1) under H1.
(13)

I Given a significance level α ∈ (0, 1), the rejection region of our test procedure is{
Reject H0 if

(
T̂ (3)

N − ξ(3)
N

)
/σ

(3)
N > zα

}
, (14)

where zα is α-th upper quantile of the standard normal.
I The asymptotic power of our test satisfies that

lim
N→∞

P(
(

T̂ (3)
N − ξ

(3)
N

)
/σ

(3)
N > zα|H1)− 1 + Φ(zα −D(3)

/σ
(3)
N ) = 0,

where Φ(·) is the cumulative distribution function of the standard normal.
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Test 2: tensor signal matching

I Consider two independent tensors T (0) and T (1) as follows:{
T (0) =

∑R0
r0=1

βr0,0x(r0,1) ⊗ x(r0,2) ⊗ x(r0,3) + 1√
N

X(0),

T (1) =
∑R1

r1=1
βr1,1y (r1,1) ⊗ y (r1,2) ⊗ y (r1,3) + 1√

N
X(1),

where X(0) and X(1) are independent and x(r0,l), y (r1,l) ∈ Rnl are deterministic
unit vectors for 1 ≤ l ≤ 3 and 1 ≤ r0 ≤ R0, 1 ≤ r1 ≤ R1.

I Tensor signal matching test:

H0 : x(r0,l) ⊥ y (r1,l) for any 1 ≤ r0 ≤ R0, 1 ≤ r1 ≤ R1 and 1 ≤ l ≤ 3,
H1 : there ∃ at least one 1 ≤ r0 ≤ R0, 1 ≤ r1 ≤ R1 and 1 ≤ l ≤ 3 s.t. x(r0,l) 6⊥ y (r1,l).

I Test statistic: define R(r0,1) := Φd (T (1), x(r0,1), x(r0,2), x(r0,3)) for 1 ≤ r0 ≤ R0
and

T̂ (3)
r0,N

= T̂ (3)
r0,N

(x(r0,1)
, x(r0,2)

, x(r0,3)) := ‖R(r0,1)‖2
2 − N

∫ ∞
−∞

x2
ν(dx). (15)
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CLT for the T̂ (3)
r0,N

Proposition

Under Assumptions 1.1 and 1.2, the statistic T̂ (3)
r0,N

satisfies that(
T̂ (3)

r0,N
− ξ(r0,3)

N −D(r0,3)
)
/σ

(r0,3)
N

d−→ N (0, 1),

where

D(r0,3) := 2
R1∑

r1=1

β2
r1,1

3∑
l=1

〈x(r0,l), y (r1,l)〉2 ≥ 0,

and ξ(r0,3)
N , σ

(r0,3)
N are derived from (10) and (11) by setting f (z) = z2, i.e.

ξ
(r0,3)
N = −

1
2πi

∮
C1

z2µ
(3)
N (z;κ3, κ4, x(r0,1), x(r0,2), x(r0,3))dz,

(σ(r0,3)
N )2 = −

1
4π2

∮
C1

∮
C2

z2
1 z2

2C
(3)
N (z1, z2;κ4, x(r0,1), x(r0,2), x(r0,3))dz1dz2.
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Numerical experiments



Experiment 1: test for signal alignment

I This experiment focuses on the tensor signal alignment test. We generate the
observation T as follows with varying values of β.

T = βx(1) ⊗ x(2) ⊗ x(3) +
1
√

N
X.

I We are particularly interested in the test’s performance when the signal is below
the phase transition threshold, i.e., β ∈ (0, βs ]. For the case c1 = c2 = c3 = 1/3,
the phase transition threshold is βs = 2/

√
3, as stated in Corollary 3 of Seddik

et al. [2024].

I We use the same settings as in Experiment 1, with a significance level of
α = 0.05. We compute the test’s empirical power for different β values with 200
repetitions. All results are summarized in Table 1 and Figures 1 and 2
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Experiment 1: test for signal alignment

Table 1: Empirical sizes (β = 0) and powers of T̃ (3)
N (x(1), x(2), x(3)) under different β’s and types

of noises X and vectors x(i).

β N (0, 1), N (0, 1), Unif(±
√

3), Unif(±
√

3),

delocalized localized delocalized localized
0 0.045 0.050 0.045 0.055

0.2 0.075 0.055 0.075 0.090
0.4 0.135 0.115 0.145 0.230
0.6 0.345 0.355 0.340 0.685
0.8 0.745 0.730 0.735 0.975
1 0.970 0.980 0.965 1

1.2 1 1 1 1
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Experiment 1: test for signal alignment

(a) X ∼ N (0, 1), delocalized x(i). (b) X ∼ Unif(±
√

3), delocalized x(i).

Figure 1: Power plots of T̃ (3)
N (x(1), x(2), x(3)) under different β’s and types of noises X and delocalized vectors

x(i), where the dashed red line is the significance level α = 0.05 and the dashed blue line is the threshold of phase
transition.
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Experiment 1: test for signal alignment

(a) X ∼ N (0, 1), localized x(i). (b) X ∼ Unif(±
√

3), localized x(i).

Figure 2: Power plots of T̃ (3)
N (x(1), x(2), x(3)) under different β’s and types of noises X and localized vectors

x(i), where the dashed red line is the significance level α = 0.05 and the dashed blue line is the threshold of phase
transition.
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Experiment 2: test for signal matching

I This experiment focuses on the tensor signal matching test. We generate two
independent samples, T (0) and T (1), using the following model:{

T (0) = β0x(1) ⊗ x(2) ⊗ x(3) + 1√
N

X(0),

T (1) = β1x(1) ⊗ x(2) ⊗ x(3) + 1√
N

X(1),

where the noise tensors X(0) and X(1) are independent, and the two rank-1 tensor
signals are parallel but have different strengths.

I We first apply the tensor unfolding method to estimate the x̂(1) ⊗ x̂(2) ⊗ x̂(3)

using the first tensor data T (0). Then, we test whether T (1) contains a signal
along x̂(1) ⊗ x̂(2) ⊗ x̂(3) or not.
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Experiment 2: test for signal matching

I The main objective of this experiment is to investigate how the values of β0 and
β1 affect the power of the tensor signal matching test and to compare it with the
power of T̃ (3)

N (x(1), x(2), x(3)) when using known directional vectors.

I We set β0 = 2, 2.5, 3 and estimate x̂(1), x̂(2), x̂(3) for each β0. The rest of the
setting is essentially the same as in Experiment 2, with the addition of
β1 ∈ [0, 1.2]. We compute the empirical power of T̃ (3)

N (x̂(1), x̂(2), x̂(3)) and
present the power plots in Figures 3 and 4.
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(a) X ∼ N (0, 1), delocalized x(i). (b) X ∼ Unif(±
√

3), delocalized x(i).

Figure 3: Power plots of T̃ (3)
N (x̂(1), x̂(2), x̂(3)) under different β0, β1 and types of noises X and delocalized

vectors x(i). “Known” denotes the empirical power of T̃ (3)
N (x(1), x(2), x(3)), while “Beta0=a” represents the

empirical power of T̃ (3)
N (x̂(1), x̂(2), x̂(3)) when β0 = a, a = 2, 2.5, 3. The dashed red line and blue line indicate

the significance level α = 0.05 and the threshold of phase transition βs = 2/
√

3 = 1.1547, respectively.
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(a) X ∼ N (0, 1), localized x(i). (b) X ∼ Unif(±
√

3), localized x(i).

Figure 4: Power plots of T̃ (3)
N (x̂(1), x̂(2), x̂(3)) under different β0, β1 and types of noises X and localized vectors

x(i). “Known” denotes the empirical power of T̃ (3)
N (x(1), x(2), x(3)), while “Beta0=a” represents the empirical

power of T̃ (3)
N (x̂(1), x̂(2), x̂(3)) when β0 = a, a = 2, 2.5, 3. The dashed red line and blue line indicate the

significance level α = 0.05 and the threshold of phase transition βs = 2/
√

3 = 1.1547, respectively.
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