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Network Data

Traditional network data: collection of two-way relation

I interactions between a pair of nodes

I two-way relations are independent to each other

I Real world complex network: multi-way (subgroup) interaction
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Motivation: Ego Network in Social Media

Fig. 1: Facebook Ego-network, adapted from McAuley and Leskovec (2012)

Two-way relations: friendships among people

Social circles: multi-way relations among people
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Network Beyond Two-way Relation

Multi-way relations: protein complex, social circle, authorship, ...

I relations among a group of nodes

I capture higher-order interactions among nodes

I subgroup information in network

Two-way and multi-way relations coexist among the same set of
nodes
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Model Multi-Way Relations as Hyperlink

Hyperlink: links to connect nodes in a subgroup

M-order hyperlink: links connecting M nodes

Fig. 2: Left: pairwise links; Right: three 3-order hyperlinks

A pairwise link is a special case: 2-order hyperlink
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Hyperlink Encodes Subgroup Similarity

Capture nodes’ similarity at different levels
Pairwise link:

I common features shared by two nodes only
Hyperlink:

I common features shared by all nodes in a subgroup

Fig. 3: Differences between pairwise similarity and subgroup similarity
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Dependency among Pairwise Links and Hyperlinks

Dependency between pairwise links and hyperlinks
I sharing the same set of nodes
I high-order relations arise from specific connection patterns

Incorporate mutual information

Fig. 4: B and D are more likely to be friends or enemies given that they are in
the same department; protein A, B, C, and D are more likely to form a protein
complex given that they are pairwisely interacted with each other
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Goal: Link Prediction

Informal scoring methods (Adamic and Adar, 2003; Katz, 1953;
Kossinet, 2006)

Exponential-family random graph models (Holland and Leinhardt,
1981; Hunter et al., 2012)

Latent variable models (Hoff et al., 2002; Handcock et al., 2007; Kim
et al., 2018)

Embedding-based methods:
I matrix factorization (Ahmed et al., 2013; Cao et al., 2015)
I random walk (Grover and Leskovec, 2016; Perozzi et al., 2014)
I graph neural networks (Scarselli et al., 2009)

Our goals
I Predict pairwise links and hyperlinks jointly

I Borrow information between pairwise links and hyperlinks
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Network Embedding

Embedding: map nodes into latent factors Zi ∈ R r ,Z = {Zi}Ni=1

Zir represents hidden features for node i

Fig. 5: The probability of potential link depends on the concordance via inner
product between latent factors Z1, Z2, and f (·) is a link function.

Measure concordance among nodes: transform a binary link to a
continuous probability
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Proposed Embedding Framework

Observed data:
I V: a set of nodes {vi}Ni=1
I ΩA: a set of pairwise links and non-links on V
I ΩA: a set of hyperlinks and non-hyperlinks on V
I |ΩA|, |ΩA|: cardinality of ΩA and ΩA

Obtain latent factors Z = argminZ Loss(Z ; ΩA,ΩA)

Loss(Z ; ΩA,ΩA) = Losspair (Z ; ΩA) + Losshyper (Z ; ΩA) + λPenalty(Z )

Losspair : mismatch between observed and predicted pairwise links

Losshyper : mismatch between observed and predicted hyperlinks

Penalty : regularizations to filter out spurious links

Integrate different-order moment information of Z
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Encode Pairwise Links

Pairwise link network ⇒ adjacent matrix A = {−1, 0, 1}N2

Aij = Aji =


1, i and j are connected

0, i and j are not connected

− 1, not observed

Minimize Losspair (Z ) by encouraging concordance between
embeddings of connected nodes:

Losspair (Z ) =
1

|ΩA|
∑

Aij∈ΩA

(
Aij︸︷︷︸

observed

− f
[
ZT
i Zj

]
︸ ︷︷ ︸
P(Aij=1)

)2

where f (·) is a link function, such as logit

If vi and vj are connected ⇐⇒ a larger ZT
i Zj

Preserve observed pairwise similarity in latent space

(∗ΩA =
{
Aij |Aij ∈ {0, 1}

}
)

12 / 38



Tensor Modeling for Hyperlink Network

A m-order tensor representation A = {−1, 0, 1}Nm
:

Ai1···im =


1, hyperlink among {i1, · · · , im}
0, non-hyperlink among {i1, · · · , im}
− 1, not observed

No order among nodes in hyperlink: A is supersymmetric

Ai1···im = {Aσ(i1)···σ(im)|σ(·) is any index permutation}

Fig. 6: A 3-uniform hypergraph formulates as a third-order tensor.
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Tensor Decomposition

CANDECOMP/PARAFAC decomposition (Hitchcock, 1927):

A =
r∑

k=1

Z·k ◦ Z·k · · · ◦ Z·k︸ ︷︷ ︸
m

,

=⇒ Ai1i2···im =
r∑

k=1

Zi1k × Zi2k × · · · × Zimk ,

where Z·k(k = 1, · · · r) are N-dimensional vectors, ◦ is the outer
product, and r is the rank of tensor

Need to incorporate dependency between pairwise links and hyperlinks
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Proposed Hyperlink Tensor Modeling

Model Ai1i2···im ∈ {0, 1} via PZ (Ai1i2···im = 1) ∈ [0, 1]

Incorporate connectivity information at different resolution levels

f (·) can be a non-linear link function, e.g., logit function and probit
function
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High-Order Concordance Modeling

m-order concordance =
r∑

k=1

ψk

∣∣Zi1k × Zi2k × · · · × Zimk

∣∣,
ψk =

{
1, signs of Zi1k ,Zi2k , · · · ,Zimk are the same

−1, otherwise

ψk captures the common latent features

(*| · | is absolute value)
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Dependency between Pairwise Link and Hyperlink

Density of pairwise connections within {Zi1 , · · · ,Zim}
Model dependency between pairwise link and hyperlink
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Embed Hyperlinks

Represent observed hyperlink statuses on latent space by minimizing

Losshyper (Z ; ΩA) =
1

|ΩA|
∑

(i1i2···im)∈ΩA

{
Ai1i2···im︸ ︷︷ ︸
observed

−PZ (Ai1i2···im = 1)︸ ︷︷ ︸
predicted prob.

}2

If Ai1i2···im = 1, encourage large concordance among {Zi1 ,Zi2 · · ·Zim}

Size of subgroup m: features shared by all m nodes

Decompose hyperlink tensor {P(Ai1i2···im = 1)} on Z
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Predict Hyperlinks and Pairwise Links

Obtain embedding representation of nodes via Ẑ :

Ẑ = argmin
Z

Losspair (Z ; ΩA) + Losshyper (Z ; ΩA) + λ‖Z‖2
F

Predict probability of a pairwise link:

P̂(Aij = 1) = f
(
ẐT
i Ẑj

)
Predict probability of a m-order hyperlink:

P̂(Ai1i2···im = 1) = f
( ∑

(i ,j)∈{i1i2···im}

ẐT
i Ẑj +

r∑
k=1

ψk |Ẑi1k Ẑi2k · · · Ẑimk |
)

Joint link embedding (JLE) estimator:

Θ̂ = {P̂(Aij = 1), P̂(Ai1i2···im = 1)}
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Hyperlink Augmentation from Observed Networks

Hyperlinks might be sparse: infer unobserved hyperlink statuses

Observed network + clique dependency = augmented training data

clique dependency
P(Ai1,··· ,im = 1|clique,Z )− P(Ai1,··· ,im = 1|non-clique,Z ) > 0

Augmented Embedding: embedding with a set of augmented
hyperlink statuses ΩÂ

Ẑaug = argmin
Z

Loss(Z ; ΩA,ΩA,ΩÂ)
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Augmentation as Regularization on Embedding

Hyperlink augmentation as implicit regularization on latent space
Shrink distances among within-subgroup nodes: increase dependence
between hyperlinks and cliques
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Asymptotic Property of Augmented JLE

Goal: recover Θ0 = {P(Aij = 1),P(Ai1i2···im = 1)} via observed links

ρ := P(Ai1···im = 1|clique,Z )− P(Ai1···im = 1|no clique,Z )

|ΩÂ|: number of inferred hyperlinks from hyperlink augmentation procedure

Theorem 1

Under regularity conditions, we establish the convergence rate for Θ̂aug :

P

(
‖Θ̂aug −Θ0‖F√

nN,m
≥η

)
≤11 exp

−c |Ωaug |
(1 + C0ρ)2

(
1+c1 +c1

δ2

ε2

)−1

η2


where |Ωaug | = |ΩA|+ |ΩA|+ |ΩÂ|, nN,m =

(
N
2

)
+
(
N
m

)
, ε is prediction MSE from

Aug JLE, and η = max
(
ε, λ1/2

)
.

Hyperlink augmentation accelerates convergence rate of prediction MSE ε:

I pairwise links + hyperlinks + augmentation: ε ∼ 1+C0ρ

(|ΩA|+|ΩA|+|ΩÂ|)
1/2

I pairwise links + hyperlinks: ε ∼ 1+C0ρ
(|ΩA|+|ΩA|)1/2

I pairwise links only: ε ∼ 1
|ΩA|1/2
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Simulation Study

Comparing methods

I JLE: the proposed joint pairwise and hyperlink embedding

I Aug JLE: the proposed JLE incorporating augmented hyperlinks

I PLE: embedding only through pairwise links Losspair (Z )

I HLE: embedding only through hyperlinks Losshyper (Z )

I GraRep: graph representations with global structural information (Cao
et al., 2015)

I LINE: large-scale information network embedding (Tang et al., 2015)

I Node2Vec (Grover et al., 2016)

Performance criterion
I AUC: Area under the ROC Curve
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Comparison under Conditional Independent Model

{Aij} and {Aijk} are independent conditioning on Z
Training on observed networks (without augmented hyperlink)

AUC of link prediction on pairwise link and hyperlink testing sets
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Comparison under Conditional Dependent Model (Cont.)

Incorporate clique structure dependency
ρ = P(Aijk = 1|clique,Z )− P(Aijk = 1|no clique,Z ) > 0

{Aij} and {Aijk} are dependent conditioning on Z
Utilize hyperlink augmentation (Aug JLE)

Performances using observed networks are poor with large ρ

Improvement from Aug JLE increases as ρ increases
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Real Data: Facebook Ego-Network

Ego-Network: social network among user’s friends

Social circles

I categorization of users sharing similar features
I multi-way relations among users

Applications on detecting underlying social circles

I online advertising
I recommendation/content filtering
I personalized social network organization

Current methods: organize manually or by pre-specified attributes

I time consuming
I not update automatically
I missing user profiles
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Ego-Network Summary

224 people (N = 224)
6384 friendships (two-way relations)
14 social circles (multi-way relations)

I defined by the ego user
I describe different social relations: family, classmates, colleges

Fig. 7: The ego network in the Facebook dataset, where the social circles are
marked as polygons with different colors.
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Prediction Results

Prediction
I pairwise friendship (pairwise link)
I whether users {i1, i2, · · · , iM}(M = 6, 10) belong to the same circle

(M-order hyperlink)

Table 1: AUC of link prediction for ego-network

Link Prediction
Pairwise Link 6-order Hyperlink 10-order Hyperlink

Aug JLE 0.80 0.95 0.97
JLE 0.79 0.91 0.89
HLE 0.57 0.89 0.82
PLE 0.80 0.62 0.63

GraRep 0.79 0.77 0.51
LINE 0.62 0.51 0.75

Node2Vec 0.49 0.49 0.48
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Concluding Remarks

Hierarchical modeling for multi-way relations
I detect subgroup structures and high-order interactions
I capture nodes’ similarities at different network levels

Joint embedding of two-way and multi-way links
I borrow mutual information for predictions
I increase prediction performance

Hyperlink augmentation

I model structural dependency between pairwise and hyperlinks in latent
space

I infer potential unobserved hyperlinks
I achieve fast convergence rate of estimation
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Appendix

Proportion of hyperlinks with high certainty:
fclique(ϕ), fnon-clique(ϕ):[0, 1]→[0, 1]

fclique(ϕ) =
|{Yi1i2···im ∈ Ωclique|P(Yi1i2···im = 1|Z ) ∈ [1− ϕ, 1)}|

|Ωclique|

fnon-clique(ϕ) =
|{Yi1i2···im ∈ Ωnon-clique|P(Yi1i2···im = 1|Z ) ∈ (0, ϕ]}|

|Ωnon-clique|

Size from augmented hyperlinks
∣∣ΩÂ (εaug , ρ)

∣∣ = |Ωlink|+ |Ωnon-link|

|Ωlink| = fclique

(
min

{
ε

1− ρ
, 1

})
|Ωclique |

|Ωnon-link| = fnon-clique

(
min

{
ε

1− ρ
, 1

})
|Ωnon-clique|
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Appendix: Hyperlink Augmentation Procedure

Hyperlink augmentation procedure on three-order hyperlinks

Infer {Aijk} ∈ Ωc
A based on {{Aijk} ∈ ΩA, {Aij} ∈ ΩA}

Step 1: construct candidate for hyperlink status: Ωclique and
Ωnon-clique

(hyperlink) Ωclique : {(i , j , k)|Aij = Aik = Ajk = 1} ∩ Ωc
A

(non-hyperlink) Ωnon-clique : {(i , j , k)|Aij = Aik = Ajk = 0} ∩ Ωc
A

|Ωclique| and |Ωnon-clique|: estimable from observed network

Use hierarchical dependency prior, not involve network model
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Appendix: Hyperlink Augmentation Procedure (Continue)

Step 2: select candidate hyperlink status with high certainty
1 obtain {P̂(Ai1i2i3 )} via JLE based on observed networks
2 construct the set of augmented hyperlink statuses as

Âijk =

{
1, (i , j , k) ∈ Ωclique and P̂(Aijk) ≥ 1− δ,
0, (i , j , k) ∈ Ωnon-clique and P̂(Aijk) ≤ δ.

Augmented hyperlink ΩÂ := {Âijk}: |ΩÂ| = f (δ, ρ, |Ωcliq|, |Ωnon-cliq|)1

I larger δ (require higher inference certainty) =⇒ smaller |ΩÂ(δ, ρ)|
I larger ρ (stronger hierarchical dependency) =⇒ larger |ΩÂ(δ, ρ)|

(larger ρ =⇒ smaller |P(Aijk = 1|Z )− P(4ijk = 1|Z )|)
Step 3: embedding with augmented hyperlinks

Ẑaug = argmin
Z

Loss(Z ; ΩA,ΩA,ΩÂ)

1detailed |ΩÂ| is provided in paper
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Appendix: Model Setup for Theoretical Analysis

Hierarchical link generation (A,A) ∼ PZ (A,A) = PZ (A|A)PZ (A)

Pairwise link PZ (A): Aij ∼ Bern
(
P(Aij = 1|Z )

)
Hyperlink PZ (A|A): Ai1···im ∼ Bern(P(Ai1···im = 1|4,Z ))

I P(Ai1···im = 1|4,Z ): dependent on A via clique indicator 4i1···im

4i1···im =

{
1, if Aij = 1, (i , j) ∈ {i1, · · · , im},
0, otherwise.

I functional form of P(Ai1···im = 1|4,Z ) is not specified
I degree of structural dependency

ρi1···im := P(Ai1···im = 1|4i1···im = 1,Z )− P(Ai1···im = 1|4i1···im = 0,Z )

I ρi1···im = 0: conditional independent, ρi1···im > 0: conditional correlated

34 / 38



Appendix: Simulation Settings

Hierarchical network generation

Latent position Z = {Zi = (Zir )5
r=1}Ni=1, N: number of nodes

Zir ∼ µ× Unif(−1,−0.6) + (1− µ)× Unif(0.6, 1), µ ∼ Bern(1, 0.5)

Pairwise links A: {Z (α)
i = Zi � α}Ni=1, α = (1, 1, 1, 0.2, 0.2)

Aij ∼ Bern(σ(Z
(α)T
i Z

(α)
j )), σ(·) is logistic function

Hyperlinks A: {Z (β)
i = Zi � β}Ni=1, β = (0.2, 0.2, 0.2, 1, 1)

Aijk ∼ Bern(θijk), θijk = σ
( ∑
(s,t)∈{i,j,k}

Z (β)T
s Z

(β)
t +

5∑
r=1

ψr |Z (β)
ir Z

(β)
jr Z

(β)
kr |
)

{Aij} and {Aijk} are independent conditioning on Z

(∗� denotes element-wise multiplication)
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Appendix: Simulated Multi-Level Network

Randomly split A
I training set (ΩA): 60%
I validation and testing set: 20% and 20%

Sampling for hyperlinks: Ωpool ={Aijk |Aij ∈ ΩA,Aik ∈ ΩA,Ajk ∈ ΩA}
I sample 5% from Ωpool as a training set ΩA
I split Ωpool ∩ Ωc

A into validation (50%) and testing (50%) set
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Appendix: Comparison of Conditional Dependent Model

Incorporate structural dependency

ρ = P(Aijk = 1|clique,Z )− P(Aijk = 1|no clique,Z ) > 0

Hyperlink generating model

P(Aijk = 1|clique) = θijk + ρ
{

1−
∏

(p,q)∈{ijk}

θpq
}

P(Aijk = 1|no clique) = θij − ρ
{ ∏

(p,q)∈{ijk}

θpq
}

{Aij} and {Aijk} are dependent conditioning on Z
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Appendix: Asymptotic Results of the Proposed Estimator

Theorem 2

Denote nN,m :=
(N

2

)
+
(N
m

)
as the number of possible pairwise and

hyperlinks, under regularity conditions, we establish the convergence rate
for a JLE estimator Θ̂ using observed network. That is,

P

(
‖Θ̂−Θ0‖F√

nN,m
≥ η

)
≤ 11 exp

(
−c |ΩA|+ |ΩA|

(1 + C0ρ)2
η2

)
,

where ‖ · ‖F indicates the Frobenius norm, η = max
(
ε, λ1/2

)
, and λ is the

penalty parameter, c ≥ 0 is a constant, C0 is the degree of link overlap,

and the best possible rate is ε ∼
(

1+C0ρ
(|ΩA|+|ΩA|)1/2

)
when λ � ε2.
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