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Background

• Residential property demand (and price) estimation is extremely important, but it is 
complicated by heterogeneous preferences, unique goods, low turn-over, intangible 
features, geospatially distributed alternatives, and many other factors. 

• Demand for a location is usually estimated using physics-based gravity modeling 
approaches, neo-classical economic market models, or hedonic pricing models.

• Hedonic pricing models are based on the theory that the value of a property is the sum of 
the values of the property’s features; neighborhood features and transportation 
convenience should be core valuable features.
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Claims

• Demand (and therefore prices) should be based on four levels of features:

1. the unit

2. the building

3. the surrounding area

4. accessibility to other areas of interest

• Accessibility-based demand should utilize multiple modes of transportation and multiple 
possible objectives/interests.
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Objective

• In this first pass, we aim to estimate demand for locations…

1. for the main Tokyo Metro area using

2. travel by walking and train

3. based on employment locations.

• We estimate location demand using network diffusion to propagate potential access to jobs 
across an integrated network to each location in the region.

• Leverage the predictive power of machine learning methods, while still addressing the demands 
of reason and responsibility by using “explicable AI” methods.



Creating the Demand Score
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Tokyo Main Area

• Our region of analysis is “Tokyo Main”; 
a custom region roughly following the 
E16 circuit route.

• This region covers 36% of the land area 
of the four prefectures but includes 
92% of the population.

• Surface area is 4893 km2.

• The population is 32,197,448 people! 
(25% of Japan’s population).

• There are 15,080,305 salaried 
employees in the region.

Greater Tokyo
4 prefectures

Tokyo Main

23 Wards

By comparison, both the population and surface area are roughly four times the combined five boroughs of New York City.
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Train Network

• Build from open data (OSM and Wikipedia) 
with traversal times bought from Ekitan.

• The region contains 1440 train, subway, 
and tram stations (1247 by name).

• Network includes through service, time
needed to transfer, express trains, etc.
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Train Network

• Network is directed; traversal times and 
cost differ by direction.

• Train edges have platform nodes for 
stopping position.  

• Platforms are connected to stations and 
other platforms.

• Stations are connected to nearby stations 
and station entrance/exit nodes on the 
road network.
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Walking (Road) Network

• All walkable edges from OSM.

• Manually improved connectivity of 
stations, ensuring each one has proper 
exits and those exits are integrated into 
the larger network.

• It’s awesome, but the road network too big 
to use directly.
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Hex Network Construction

• Create a grid of 250m inner diameter 
hexagons, resulting in 144,849 hexes.  

• Connect each hex centroid to the closest 
point on the road network.

• Connect hexes to neighboring hexes within 
550m (radius-2 neighbors)

• Connect hexes to station entrances/exits 
within 550m.

• Inter-hex traversal times are generated 
from road traversals.

• Keep links with traversal times less than 
15 minutes by foot.

• Remove the road network.
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• Both the hex and the train network include 
station entrance/exit nodes, so they are 
easy to integrate.

Hex+Train Network
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Hex Network Accuracy

• We calculated the accuracy of 10,000 trips using 

▪ radius-1 vs radius-2 connectivity

▪ including vs excluding the hex link time

▪ walking only vs walking+train

• When including the train network, the average 
trip time was 59.8 minutes, closely matching 
the average commute time.

• Only actually accessible routes exist.
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Hex Network Accuracy

• When including the train network and the hex link time, the mean absolute error between the 
road+train times and radius-2 hex+train times was 2.5 minutes of a 60-minute trip (4% error).

• There is a consistent bias in the estimates, so further refinement should be able to achieve even 
closer agreement.
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Employment Data

• The employment data comes as a 500m square grid.

• I resample the data to the hex grid by assigning a 
grid’s value to the hex that overlaps the grid’s 
centroid, or closest hex if none does.

• The result is 17,433 hex nodes with source demand.
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• We use four different discount functions: a 
linear function and a cosine based curve 
parameterized with three values (λ=0.5, 
1.0, 2.0).

• All four are run with two different 
horizons: 60 minutes and 90 minutes.

Propagation Function
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Employment Diffusion Results
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• We calculate estimated employee demand
as the time-weighted potential flow of 
salaried employees from places of work, 
across the transportation network, to each 
location.

• Results are qualitatively similar for all four 
curves, and increasing the horizon from 60 
to 90 minutes has the obvious effect.

• Although there are jobs all over, the high 
concentration in the city center and 
secondary centers dominates the flow.



Simple Validation 
of the Demand Score
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Property Data

• Rental properties in concrete structures from 2022-01 
to 2024-01.

• There are 806,863 total records, 793,375 entries with 
complete data.

• We filter available rental prices to reduce 
heterogeneity.

▪ Prices published since January 2022.

▪ Built within the years 2010 through 2014.

▪ Footprints of 25-28 m2 (one room apartments)

• We find 356,744 units of similar size and age.

• There are 8,412 hexes with prices (~6.65%)
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Validation with Rent Prices

Linear 60  0.825

sCurve 60, 0.5 0.788

sCurve 60, 1.0  0.804

sCurve 60, 2.0  0.82

Linear 90 0.81

sCurve 90, 0.5 0.832

sCurve 90, 1.0  0.826

sCurve 90, 2.0 0.8

Linear 60  0.81

sCurve 60, 0.5 0.758

sCurve 60, 1.0  0.779

sCurve 60, 2.0  0.802

Linear 90 0.825

sCurve 90, 0.5 0.828

sCurve 90, 1.0  0.832

sCurve 90, 2.0 0.819

Pearson Correlation with Prices Pearson Correlation with log Prices
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Validation with Rent Prices

• Not only is the fit high at 83.2%, but the residuals are nicely distributed.



Full Pricing Model 
Using the Demand Score

22

with Masayoshi Mita
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Pricing Model Using Four Levels of Data

• Demand (and therefore prices) should be based on four levels of features:

1. the unit

2. the building

3. the surrounding area

4. accessibility to other areas of interest

• We use machine learning models to determine the usefulness of the accessibility scores.

• We compare opaque models using lon, lat, and station IDs to “explicable models” using the 
geospatial data.
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Rich Geospatial Data

• In addition to the property and network data, we have amassed a large amount and variety of 
data for the greater Tokyo area including: 

• Zoning

• Land use

• Vegetation

• Natural Hazards

• Population

• Jobs and Companies

• Stores and Amenities

• Embassies 

• Undesirable Establishments (pachinko, yakuza, etc.)

• Building Structure Sizes and Shapes
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• For some features, we aggregate within 15 
minutes (1200m at 80 meters per minute) 
using the hex network (about 4 hexes).

• For others (not based on access) we 
aggregate over hexes within a 1200m 
radius.

• We use other values in some special cases; 
e.g. embassy score uses 30 min, train 
accessibility scores use 60 min, estimated 
demand uses 90 min.

• In all cases, we use the same equation to 
weight the contribution of reachable nodes 
to the focal node.

Xj is the value at hex j
T is the threshold (e.g. 15 min)
 is the distance from i to j
λ is a tuning parameter =1.0 here

Aggregate Neighborhood Data
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• The result is a smoothing (aliasing) of the 
features across hexes in a way that

1. Respects movement constraints and 

2. Captures the strength of influence.

• We normalize the data by first identifying 
the lower and upper 0.1 percentile mark

• We use those limits to map the values to 
the [0, 1] range 

• We clip lower values to 0 and larger values 
to 1.

Normalized Scores
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Network Based Features
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• In addition to using the network to 
generate the time/distance weighting 
of geospatial data, we also create 
additional features.

• Number of hexes reachable 
within 15 min.

• Number of stations reachable 
within 15 min.

• Furthest point reachable within 
60 min.

• Total track length coverable 
within 60 min.
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Data Summary

• Our full collection of 79 explanatory features spans all four levels:

1. unit variables: number of rooms, unit floor, surface area

2. building variables: building floors, build year, closest station time, age in months

3. neighborhood variables: store score, station area score, number of buildings, percent area 
covered by buildings, mean building surface area, embassy scores, unpleasant score, percent of 
each zoning type, percent of each land use type, percent of each vegetation type, reachable 
hexes 15min, number of nearby stations

4. wider accessibility variables: estimated employee demand, station accessibility score

• Our prediction target is log adjusted rent per square meter (including fees and key money)



The Analysis

29



30

Methods

• Our analysis uses gradient boosted decision trees from LightGBM (LGBM) for the prediction 
tasks in three cases: 

1. The model using longitude, latitude, and station IDs (implicit).

2. The model using my geospatial data.

3. The model using both.

• Recognizing the temporal aspect of rent prices…

▪ We use the last 30 days of data as the test set. 

▪ This gives us 750,411|47,826 split.

(We also do spatial holdout experiments.)
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Main Results

• The LGBM yields a MAPE of 7% and an R2 of 
0.934.

• The LGBM performance is practically 
identical for all spatial data types.  

• Using only room and building data, the 
LGBM yields a MAPE of 15.696% and an R2 of 
0.802, so clearly the geospatial relationships 
are playing an important role. 

• These results show that the rich geospatial 
data accounts for all the spatial features 
implicitly captured using station IDs and 
coordinates. 
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Feature Importance

• We measure feature importance using a variety of methods, but we report the results from 
permutation feature importance from the Scikit Learn package.

• This technique randomly re-sorts the values for each feature, allowing one to measure the 
resulting change in prediction values (similar to a variable dropout analysis).  

• Unlike the “split” and “gain” importance measures provided by LGBM, or SHAP values, 
permutation feature importance is model-agnostic and clearly interpretable.  

• Primarily we are interested in:

1. The relative importance of geospatial and implicitly spatial features when both are 
included

2. Whether geospatial estimation analyses really do improve when integrating 
information from all four levels

3. Which kinds of geospatial features are most relevant to rental prices.
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Feature Importance

• When including both explicitly and implicitly 
spatial features, the implicit features DO 
appear in the top 15.

• Features from all four levels DO appear in the 
top 15, with a wider accessibility feature in the 
#2 spot.

• Room and building features are generally 
among the strongest features.

• Neighborhood features play a minor role; 
perhaps redundancy is to blame.

• Among the neighborhood features, economic 
and status variables come out on 
top…correlated with being near city centers.
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Feature Importance

• When including only explicitly geospatial 
features, the top 10 are very similar.

• Population variables enter the top 15.

• Building size also appears.

• Time to closest station (thought to be a key 
feature in Tokyo) appears as #11 here.

• Even though the prediction target is rent per 
square meter, the unit surface area is the 
strongest determinant of price because there is 
a strong non-linear relationship.
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Conclusions

• Using a hex grid network with traversal times set from the walking traversal times creates a 
highly accurate simplified geospatial network that enables the detailed analysis of 
unprecedently large physical areas.

• Propagation on that hex network can be used to create novel accessibility features.

• Using rich geospatial data can fully replace implicitly spatial variables typically used real estate
prediction models without any accuracy penalty.

• All four levels of variables are important for price prediction (and presumably other tasks).

• One wider accessibility variable (estimated demand) is especially important.

• Patterns in the prediction residuals reveal that additional data would likely improve the results, 
but additional geospatial data is unlikely to improve results; thus, more detailed property data 
is likely needed.  Our in-house analyses confirm this.
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Demand Analysis Expansions

• Include travel by bus, automobile, and bicycle.

• Tweek hex network connectivity to eliminate biased error in route time estimation. 

• Determine reasonable multimodal routes beyond walking to the stations and bus stops.

• Include additional sources of demand: 

• other job types 

• include estimated students at colleges and universities

• access to shopping based on store counts

• access to amenities such as parks, sports centers, shinkansen, airports, hospitals, etc.

• Expand coverage to the whole country (or at least our service areas).



Discussion

2025.6.3

Aaron Bramson    a_bramson@ga-tech.co.jp



Supplementary Materials
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• Enhancing the road network to include 
slopes for mobility-adjusted accessibility 
and more accurate traversal times and 
effort.

• Extracting rich survey data to determine 
road widths and the presence of sidewalks; 
these relate to safety and estimating 
speed limits for cars.

Network Refinements in Progress
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Route Composition Matters for Hedonic Modeling

• The demand score only considers total time from home to work; however, the two options: 

• 20 minute walk and 10 minutes by train, and

• 5 minutes walk and 25 minutes by train

are not actually equivalent.

• Given the same travel time, people prefer trains to buses.

• People will ride longer overall in order to avoid transfers.

• Longer walks are tolerated at the begining and end of trips, but not in the middle (e.g. 10-
minute walk transfers).
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From Opaque to Explicable

• While machine learning can make fairly accurate predictions using station IDs and coordinates 
in place of geospatial data, these variables lack meaningful interpretations and render the 
model location-specific. 

• Even though the specific structure of NN and LGBM models are largely inscrutable, using 
intuitive variables means that the results can still be interpreted by nonspecialists (in terms of 
accuracy and feature importance). 

• In this application, when setting rent prices, this rich foundation allows one explain price 
differences using features with intuitive relationships to price.  

• It still begs certain questions, like why the percent females or proximity to embassies has the 
observed effect on rent prices, perhaps they are just correlated with the actual causal factors.

• But unlike coordinates and named areas, these deeper questions can potentially be answered, 
although that would probably require even richer data.



42

Spatial Holdout

• One purported advantage of the explicitly 
geospatial data is that the model should be 
more portable to other locations.

• So we perform a spatial holdout test by using 
two administrative areas as the test data 
instead of using the last 30 days.

• The LGBM models perform worse on the spatial holdout compared to the temporal 
holdout, but drops least when using only the geospatial data.

• This means that, even when relying on informative geospatial characteristics, the 
predictions may depend on nuanced variations within the training regions.  

• The OLS model improves on the spatial holdout, and the NN is comparable to LGBM.

• The Shinjuku (a city center) holdout is more difficult than the Suginami (suburban) 
holdout for all models.
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Other Applications

• Imagine getting turned down for a loan based on an ML algorithm.  

▪ When asked for the reasons, the bank could (maybe) tell you the variables that 
contributed the most to your risk score (using something like SHAP).  

▪ But what if features like postal code, time at current job, and height are offered as 
explanation? 

▪ Do these variables have plausible causal impacts on loan risk?
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SHAP Feature Importance

• SHAP is a popular method of measuring feature importance in machine learning models.

• It measures the effects of values in a particular row in comparison to the whole dataset,
thus it can tell you how particular values in a sample change the predicted value 
compared to the predictions of all other samples.

• Permutation feature importance is based on the decrease in model performance, whereas 
SHAP is based on the magnitude of feature attributions.  

• That is, a high average SHAP score would tell us which feature changes the price the 
most, but not whether those changes were important for accurately predicting 
prices.



45

SHAP Feature Importance

• However, the same features are revealed as the most important, but at slightly different levels.
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SHAP Feature Importance

• However, the same features are revealed as the most important, but at slightly different levels.
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