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§4.1: Posterior drift and concept drift
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Posterior drift and concept drift

For simplicity, we consider the target and one single source in this section.
◦ Target distribution X(0) ∼ P(0)

X , Y (0)|X(0) ∼ P(0)
Y |X

◦ Source distribution X(1) ∼ P(1)
X , Y (1)|X(1) ∼ P(1)

Y |X

◦ Posterior drift: P(0)
X = P(1)

X , P(0)
Y |X ∕= P(1)

Y |X

◦ Concept drift: P(0)
X ∕= P(1)

X , P(0)
Y |X ∕= P(1)

Y |X
◦ Goal: learn EP(1) [Y |X = x] or make prediction on target domain
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Posterior drift v.s. concept drift

``Posterior drift"

``Concept drift"
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Posterior drift

Liu et al. (2023) pointed out that posterior drift can be more common in tabular
data 1 compared to the covariate shift, due to the missing variables and hidden
confounders.

They run different methods on 5 real tabular datasets with different source-target
pairs. Out of 169 source-target pairs with significant performance degradation,
80% of them are primarily attributed to posterior drift. The evaluation is done via
the diagnosis tool proposed by Cai et al. (2023).

1Tabular data refers to data organized in a table/data frame.
[1] Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023). On the need for a language describing distribution shifts: Illustrations on
tabular datasets. Advances in Neural Information Processing Systems, 36.
[2] Cai, T. T., Namkoong, H., & Yadlowsky, S. (2023). Diagnosing model performance under distribution shift. arXiv preprint
arXiv:2303.02011.
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Posterior drift

◦ We will mostly focus on posterior drift in well-specified parametric models
◦ As we mentioned in the Section 3.1, for well-specified parametric models with

appropriate curvature, MLE on source domain can adapt to covariate shift for
free

◦ Therefore, for many problems we will discuss in this section:
taking care of posterior drift ⇒ taking care of concept drift
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Posterior drift: what we need

Recall that for covariate shift:
◦ Full (X,Y ) data from both the source and the target?

✓

◦ Full (X,Y ) data from the source, only X from the target?
✓ (in many cases)

◦ Full (X,Y ) data from the source, no data from the target?
✗ (in general), possible with domain generalization

For posterior drift:
◦ Full (X,Y ) data from both the source and the target?

✓

◦ Full (X,Y ) data from the source, only X from the target?
✗ (in general)

◦ Full (X,Y ) data from the source, no data from the target?
✗ (in general)
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§4.2: Biased regularization

◦ §4.2.1 Motivation
◦ §4.2.2 Ridge penalty
◦ §4.2.3 An adaptive ℓ2-penalty
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§4.2: Biased regularization

◦ §4.2.1 Motivation
◦ §4.2.2 Ridge penalty
◦ §4.2.3 An adaptive ℓ2-penalty
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Biased regularization: motivation
◦ In Lecture 2, with only source data available, we fitted a learner on source

data and directly applied it to target domain
◦ In Lecture 3, with source data and unlabeled target data available, we

fitted the density ratio by unlabeled data, then fitted a learner on reweighted
source data and applied it to target domain

◦ As we mentioned, when posterior drift exists, a learned fitted by source data can
be severely biased. We need to remove this bias by using labeled target data.
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Biased regularization: motivation

◦ This motivation leads to an idea called ``biased regularization". This
terminology first appeared in Schölkopf et al. (2001) in the context of penalized
kernel methods.

◦ Schölkopf et al. (2001) studies a non-parametric learner f ∈ H by minimizing
n󰁛

i=1

ℓ(xi, yi, f(xi)) + g(󰀂f󰀂). (󰂏)

They commented in ``Remark 1 (Biased regularization)" after their Theorem 2:

``When g(󰀂f󰀂) = 1
2󰀂f󰀂

2, adding a term −〈f0, f〉 into (󰂏) can be seen to
correspond to an effective overall regularizer of the form 1

2󰀂f − f0󰀂2. This, it is
no longer the size of 󰀂f󰀂 that is penalized, but the difference to f0."

In their context, the regularizer 󰀂f − f0󰀂 is biased towards the pre-trained f0.
That's why it is called ``biased regularization".

[1] Schölkopf, B., Herbrich, R., & Smola, A. J. (2001, July). A generalized representer theorem. In International conference on
computational learning theory (pp. 416-426). Berlin, Heidelberg: Springer Berlin Heidelberg.
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Biased regularization: motivation

Main idea of biased regularization:
◦ First fit a learner f̃ by using source data.
◦ Then debias f̃ to get f̂ by ERM on target data with regularizer 󰀂f − f̃󰀂
◦ Apply f̂ on target domain

Remark: Do not get confused by ``debias f̃ using biased regularization with
penalty 󰀂f − f̃󰀂". Every time we mention ``bias", it refers to the bias relative to
the target domain used as the baseline.

There are different regularizers we can use. The choice usually depends on the
metric of similarity between different domains. We will discuss some of them in
this section.

It is still an open question which penalty is more reliable to use in practice.
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Biased regularization: application examples
Biased regularization has been used in many applications 15-20 years ago and
achieved great success, even without comprehensive theoretical understandings.
◦ Orabona et al. (2009) solves the following modified SVM for hand prosthetics

control:

min
a,b,u,v

1

2
󰀂a− a′󰀂22 + C(1⊤u+ 1⊤v)

s.t. a⊤x
(1)
i + b ≥ 1− ui, i = 1 : n1

a⊤x
(0)
i + b ≤ −1 + vi, i = 1 : n0

u ≥ 0,v ≥ 0, a ∈ Rd, b ∈ R,

where they replaced 󰀂a󰀂2 by 󰀂a− a′󰀂2 with some pre-trained a′.
◦ Yang et al. (2007) models f − f ′ through an SVM with f ′ a pre-trained model,

in cross-domained video concept detection.

[1] Orabona, F., Castellini, C., Caputo, B., Fiorilla, A. E., & Sandini, G. (2009, May). Model adaptation with least-squares SVM
for adaptive hand prosthetics. In 2009 IEEE international conference on robotics and automation (pp. 2897-2903). IEEE.
[2] Yang, J., Yan, R., & Hauptmann, A. G. (2007, September). Cross-domain video concept detection using adaptive svms. In
Proceedings of the 15th ACM international conference on Multimedia (pp. 188-197).
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§4.2: Biased regularization

◦ §4.2.1 Motivation
◦ §4.2.2 Ridge penalty
◦ §4.2.3 An adaptive ℓ2-penalty
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Biased regularization: ridge penalty

In this section, we focus on a specific regularizer, the ridge penalty.
We adopt the following ERM setting from Kuzborskij and Orabona (2013, 2017).
◦ Target data D(0) = {x(0)

i , y
(0)
i }n0

i=1 ∼ µ⊗n0

◦ Source data ⇒ a learner f̃ , independent of D(0)

◦ Goal: Minimize R(0)(f) := E(X,Y )∼µ[ℓ(f(X), Y )] using D(0) and f̃

◦ Regularized ERM (Kuzborskij and Orabona, 2017): consider
f(x) = w⊤x+ f̃(x),

learn w through

ŵ = arg min
w

󰀝
1

n0

n0󰁛

i=1

ℓ
󰀃
w⊤x

(0)
i + f̃(x

(0)
i ), y

(0)
i

󰀄
+ λ󰀂w󰀂22

󰀞
,

and output f̂(x) = ŵ⊤x+ f̃(x).

[1] Kuzborskij, I., & Orabona, F. (2013, May). Stability and hypothesis transfer learning. In International Conference on Machine
Learning (pp. 942-950). PMLR.
[2] Kuzborskij, I., & Orabona, F. (2017). Fast rates by transferring from auxiliary hypotheses. Machine Learning, 106, 171-195.
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Biased regularization: ridge penalty
If f̃(x) = w̃⊤x, then the regularized ERM

ŵ = arg min
w

󰀝
1

n0

n0󰁛

i=1

ℓ
󰀃
w⊤x

(0)
i + f̃(x

(0)
i ), y

(0)
i

󰀄
+ λ󰀂w󰀂22

󰀞
, (1)

f̂(x) = ŵ⊤x+ f̃(x),

can be reparameterized as

ŵ = arg min
w

󰀝
1

n0

n0󰁛

i=1

ℓ
󰀃
w⊤x

(0)
i , y

(0)
i

󰀄
+ λ󰀂w − w̃󰀂22

󰀞
, (2)

f̂(x) = ŵ⊤x.

◦ (2) is in the form of biased regularization we defined before
◦ (1) is more flexible in general, because we can treat f̃ as a ``black box", which

means f̃ does not need to be linear
◦ ŵ in (2) can be viewed as the proximal operator of 1

n0

󰁓n0

i=1 ℓ
󰀃
w⊤x

(0)
i , y

(0)
i

󰀄

(as a function of w) at w̃. The entire minimum is called Moreau envelop of
1
n0

󰁓n0

i=1 ℓ
󰀃
w⊤x

(0)
i , y

(0)
i

󰀄
(as a function of w).
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Biased regularization: ridge penalty

Theorem 4.2.1 (Kuzborskij and Orabona, 2017)

Under certain conditions (second-order smooth and bounded ℓ, f̃(x) = w̃⊤x with
󰀂w̃󰀂2 ≤ C etc.), for λ ≍ τ−1n

−1/4
0 ≤ C, we have

R(0)(f̂) ≤ min
󰀂w󰀂2≤τ

R(0)(fw) +OP

󰀕
τ

n
1/4
0

+

󰁵
1

n0

󰀖
,

where fw(x) = w⊤x+ f̃(x), f̂(x) = fŵ(x) = ŵ⊤x+ f̃(x).

◦ The oracle inequality looks great: we can generalize to the target domain based
on the pre-trained f̃ with an adjustment linear term ŵ⊤x

◦ But there are also some issues.
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Biased regularization: ridge penalty

Main result from the last slide: λ ≍ τ−1n
−1/4
0 ≤ C

R(0)(f̂) ≤ min󰀂w󰀂2≤τ R
(0)(fw) +OP

󰀕
τ

n
1/4
0

+
󰁴

1
n0

󰀖
.

Consider f̃(x) = w̃⊤x and w∗ = arg min
w

R(0)(fw).

◦ Case 1: (transfer does help) 󰀂w∗󰀂2 = 0.
⊲ ERM on target data ⇒ R(0)(f̂)− min

w
R(0)(w⊤x) ≲P

󰁳
1/n0

⊲ Biased regularization: let's set λ ≍ C, then
R(0)(f̂)− min

w
R(0)(w⊤x) ≲P

󰁳
1/n0. No improvement.

◦ Case 2: (transfer doesn't help) 󰀂w∗󰀂2 = C ′ with some constant C ′.
⊲ ERM on target data ⇒ R(0)(f̂)− min

w
R(0)(w⊤x) ≲P

󰁳
1/n0

⊲ Biased regularization: let's set λ ≍ n
−1/4
0 , then

R(0)(f̂)− min
w

R(0)(w⊤x) ≲P n
−1/4
0 . Even worse.
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Biased regularization: ridge penalty
Intuition:
◦ Ridge penalty is not adaptive to the similarity between source and target

domains (which means we need different λ for different problems).
◦ In some problems, we are not improving the performance compared to ERM on

target data (which should serve as our benchmark).

But the ridge penalty often leads to explicit formulas of the learner and is very
popular in literature. Besides the previous two papers, the following papers also
study ridge penalty in biased regularization (there are many more).
◦ Evgeniou and Pontil (2004): regularized SVM
◦ Chen et al. (2015): linear regression with one auxiliary source dataset
◦ Denevi et al. (2018): optimize over w̃ in biased regularization with ridge penalty
◦ T Dinh et al. (2020): use of ridge penalty in federated learning

[1] Evgeniou, T., & Pontil, M. (2004, August). Regularized multi--task learning. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining (pp. 109-117).
[2] Chen, A., & Shi, M. (2015). Data Enriched Linear Regression. Electronic Journal of Statistics, 9, 1078-1112.
[3] Denevi, G., Ciliberto, C., Stamos, D., & Pontil, M. (2018). Learning to learn around a common mean. Advances in neural
information processing systems, 31.
[4] T Dinh, C., Tran, N., & Nguyen, J. (2020). Personalized federated learning with moreau envelopes. Advances in Neural
Information Processing Systems, 33, 21394-21405.
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Biased regularization: ridge penalty

We can further understand the non-adaptivity of ridge penalty through a simple
example. Consider the following Gaussian mean estimation problem.
◦ Target data {x(0)

i }n0
i=1

i.i.d.∼ N(θ∗, 1), we want to estimate θ∗

◦ Source data {x(1)
i }n1

i=1 ⇒ an estimator θ̃
◦ Biased regularization with ridge penalty:

θ̂ = arg min
θ∈R

󰀝
1

n0

n0󰁛

i=1

|x(0)
i − θ|2 + λ|θ − θ̃|2

󰀞

It is easy to see that the objective function can be written as
|x̄(0) − θ|2 + λ|θ − θ̃|2,

with sample mean x̄(0) = n−1
0

󰁓n0

i=1 x
(0)
i . Minimizing it leads to

θ̂ =
1

1 + λ
x̄(0) +

λ

1 + λ
θ̃.
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Biased regularization: ridge penalty
Let's take a closer look at θ̂ = 1

1+λ x̄
(0) + λ

1+λ θ̃. The L2
2-estimation error

E|θ̂ − θ∗|2 =

󰀕
1

1 + λ

󰀖2

E|x̄(0) − θ∗|2 +
󰀕

λ

1 + λ

󰀖2

E|θ̃ − θ∗|2

=

󰀕
1

1 + λ

󰀖2
1

n0
+

󰀕
λ

1 + λ

󰀖2

E|θ̃ − θ∗|2.

◦ Optimize over λ ≥ 0, we get λ = 1/n0

E|θ̃−θ∗|2 , which leads to the risk

E|θ̂−θ∗|2 =
1/n0 · E|θ̃ − θ∗|2

1/n0 + E|θ̃ − θ∗|2
≍ min

󰀝
1

n0
,E|θ̃−θ∗|2

󰀞
.→ minimax optimal

⊲ If E|θ̃ − θ∗|2 ≳ 1/n0 (transfer doesn't help):
we need a small λ to make θ̂ behave more like x̄(0)

⊲ If E|θ̃ − θ∗|2 ≲ 1/n0 (transfer does help):
we need a large λ to make θ̂ behave more like θ̃

◦ No universal λ can achieve the optimal rate (similar to previous examples)
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§4.2: Biased regularization

◦ §4.2.1 Motivation
◦ §4.2.2 Ridge penalty
◦ §4.2.3 An adaptive ℓ2-penalty
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Biased regularization: an adaptive ℓ2-penalty
Question: Does there exist a penalty which is adaptive to the problem structure
with a universal tuning parameter λ?

Let's consider the same Gaussian mean estimation problem, but a different
ℓ2-penalty:

θ̂ = arg min
θ∈R

󰀝
1

2n0

n0󰁛

i=1

|x(0)
i − θ|2 + λ|θ − θ̃|

󰀞
.

It can be seen that

θ̂ = arg min
θ∈R

󰀝
1

2
|x̄(0) − θ|2 + λ|θ − θ̃|

󰀞
=

󰀻
󰁁󰀿

󰁁󰀽

θ̃, if |θ̃ − x̄(0)| ≤ λ;

x̄(0) − λ, if x̄(0) > θ̃ + λ;

x̄(0) + λ, if x̄(0) < θ̃ − λ.

And

|θ̂ − θ∗| ≲ |θ̃ − θ∗| · 1(|θ̃ − θ∗| ≤ |x̄(0) − θ∗|+ λ)

+ (|x̄(0) − θ∗|+ λ)1(|θ̃ − θ∗| > λ− |x̄(0) − θ∗|).

Intuition: Set λ ≈ 2|x̄(0) − θ∗| then |θ̂ − θ∗| ≲ min{|θ̃ − θ∗|, |x̄(0) − θ∗|}.
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Biased regularization: an adaptive ℓ2-penalty
In fact, let

󰁳
1/n0 ≳ λ ≥ C

󰁳
1/n0 with a large C, it can be shown that

E|θ̂ − θ∗| ≲ min
󰀝

1

n0
,E|θ̃ − θ∗|2

󰀞
.

This is the adaptivity we want!

Copyright © 2024 Yang Feng & Ye Tian §4.2.3: An adaptive ℓ2-penalty 24 / 84



Biased regularization: an adaptive ℓ2-penalty
◦ With ℓ2-penalty and some λ ≍

󰁳
1/n0, we have the adaptivity:

E|θ̂ − θ∗| ≲ min
󰀝

1

n0
,E|θ̃ − θ∗|2

󰀞
. (󰂏)

◦ Recall that θ̃ is an estimator fitted on the source data {x(1)
i=1}n1 . If

{x(1)
i=1}n1

i.i.d.∼ N(θ′, 1),

then a natural choice of θ̃ would be the sample mean x̄(1) = n−1
1

󰁓n1

i=1 x
(1)
i ,

which satisfies E|θ̃ − θ∗|2 ≲ 1
n1

+ |θ′ − θ∗|2.

Plugging it into (󰂏), we have

E|θ̂ − θ∗|2 ≲ min
󰀝

1

n0󰁿󰁾󰁽󰂀
target-only rate: only variance

,
1

n1󰁿󰁾󰁽󰂀
source variance

+ |θ′ − θ∗|2
󰁿 󰁾󰁽 󰂀
source bias

󰀞
.

``Bias-variance trade-off" in transfer learning
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Biased regularization: literature about ℓ2-penalty
◦ Li and Bilmes (2007) used ℓ2-penalty in domain adaptation in classification.

They motivate this penalty from a Beyesian perspective and show that it can be
used to bound the cross-entropy between likelihood of two domains.

◦ The adaptivity of ℓ2-penalty was first comprehensively studied in Duan and
Wang (2022), in a multi-task learning context.

◦ A few of our follow-up works (Tian et al., 2022, 2024) have applied the
ℓ2-penalty on unsupervised problems [to be discussed later]

◦ Tian et al. (2023) extended this penalty to a representation learning setting and
see similar adaptivity patterns [to be discussed later]

Now, let's generalize the 1-dimensional single-source problem to a
multi-dimensional multi-source multi-task learning problem (Duan and Wang,
2022).
[1] Li, X., & Bilmes, J. (2007, March). A bayesian divergence prior for classiffier adaptation. In Artificial Intelligence and
Statistics (pp. 275-282). PMLR.
[2] Duan, Y., & Wang, K. (2022). Adaptive and robust multi-task learning. arXiv preprint arXiv:2202.05250. (version 2)
[3] Tian, Y., Weng, H., & Feng, Y. (2022). Unsupervised multi-task and transfer learning on gaussian mixture models. arXiv
preprint arXiv:2209.15224.
[4] Tian, Y., Weng, H., & Feng, Y. (2024). Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of
Federated EM Algorithms. arXiv preprint arXiv:2310.15330. (accepted by ICML 2024)
[5] Tian, Y., Gu, Y., & Feng, Y. (2023). Learning from similar linear representations: adaptivity, minimaxity, and robustness.
arXiv preprint arXiv:2303.17765.
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ℓ2-penalty in multi-task learning
Consider the following multi-task Gaussian mean estimation problem.
◦ The k-th dataset D(k) = {x(k)

i }nk
i=1

i.i.d.∼ N(θ(k)∗, Id), k = 1 : K := [K]
◦ θ(k)∗ ∈ Rd. For simplicity, assume nk ≡ n for all k
◦ Similarity between tasks: minθ̄ maxk∈S 󰀂θ(k)∗ − θ̄󰀂2 ≤ h, where h is unknown
◦ The set S is sometimes called the informative set, and 󰂃 = |Sc|/K is the

contamination proportion or outlier proportion, where Sc = [K]\S
◦ h characterizes the similarity level between tasks

◦ Goal: Find a good estimator 󰁥θ(k) for tasks in S to minimize
max
k∈S

󰀂󰁥θ(k) − θ(k)∗󰀂2. (worst-case performance)
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ℓ2-penalty in multi-task learning

Biased regularization with ℓ2-penalty: (Duan and Wang, 2022)

{󰁥θ(k)}Kk=1,
󰁥θ = arg min

{θ(k)},θ̄

󰀫
1

K

K󰁛

k=1

󰀕
1

n

n󰁛

i=1

󰀂x(k)
i − θ(k)󰀂22 +

λ√
n
󰀂θ(k) − θ̄󰀂2

󰀖󰀬

◦ This is an extension of the previous single-source case
◦ λ controls the bias towards 󰁥θ

⊲ λ ≈ 0: 󰁥θ(k) ≈ x̄(k) = n−1
k

󰁓K
k=1 x

(k)
i → good for large h

⊲ λ → ∞: 󰁥θ(k) ≡ 󰁥θ → good for small h
⊲ As before, we will have a universal λ that is adaptive

◦ We can rewrite the optimization problem into

{󰁥θ(k)}Kk=1,
󰁥θ = arg min

{θ(k)},θ̄

󰀫
1

K

K󰁛

k=1

󰀕
󰀂x̄(k) − θ(k)󰀂22 +

λ√
n
󰀂θ(k) − θ̄󰀂2

󰀖󰀬
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ℓ2-penalty in multi-task learning
Theorem 4.2.1 (Duan and Wang, 2022)
With λ ≍

√
p+ logK, w.h.p.:

max
k∈S

󰀂󰁥θ(k) − θ(k)∗󰀂2 ≲
󰁵

d

nK󰁿 󰁾󰁽 󰂀
oracle

+min
󰀝󰁵

d+ logK
n󰁿 󰁾󰁽 󰂀

single-task rate

, h
󰁿󰁾󰁽󰂀

heterogeneity

󰀞
+ 󰂃

󰁵
d+ logK

n󰁿 󰁾󰁽 󰂀
outliers

,

max
k∈Sc

󰀂󰁥θ(k) − θ(k)∗󰀂2 ≲
󰁵

d+ logK
n

.

◦ For single-task methods, the minimax rate is
󰁴

d+log K
n

◦ The rate is faster than single-task rate, with:
⊲ Sufficient similarity: h ≪

󰁴
d+log K

n

⊲ Many tasks: K → ∞
⊲ Small fraction of outlier tasks: 󰂃 → 0

◦ Therefore, we have achieved:
⊲ Adaptivity to task similarity h
⊲ Robustness against a small fraction of outliers
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ℓ2-penalty in multi-task learning

Question: We have explained the intuition of adaptivity before. But why do we
have robustness against outliers? In fact, the same result holds even for arbitrary
contamination on outlier tasks in Sc.

Answer: There are connections between penalized over-parameterized models
and robustified M-estimators. (She and Owen, 2011; Donoho and Montanari,
2016)

Let's consider mean estimation in the single-task setting.
◦ {xi}ni=1

i.i.d.∼ N(θ∗, 1)

◦ Huber contamination: An arbitrary contamination happens on Sc ⊆ [n]

◦ How can we consistently estimate θ∗?

[1] She, Y., & Owen, A. B. (2011). Outlier detection using nonconvex penalized regression. Journal of the American Statistical
Association, 106(494), 626-639.
[2] Donoho, D., & Montanari, A. (2016). High dimensional robust m-estimation: Asymptotic variance via approximate message
passing. Probability Theory and Related Fields, 166, 935-969.
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ℓ2-penalty in multi-task learning
Why are we in trouble with square loss and sample mean?

◦ Method 1: M-estimation with Huber's loss (Huber, 1964)

θ̂ = arg min
θ

󰀫
1

n

n󰁛

i=1

ρc(xi − θ)

󰀬
,

where ρc(x) =

󰀫
x2/2, if |x| ≤ c;

c|x|− c2/2, if |x| > c.

[1] Huber, P. J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 73-101.
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ℓ2-penalty in multi-task learning

◦ Method 1: M-estimation with Huber's loss

θ̂ = arg min
θ

󰀫
1

n

n󰁛

i=1

ρc(xi − θ)

󰀬
. (1)

◦ Method 2: Penalized over-parameterization (McCann and Welsch, 2007;
Gannaz, 2007)

θ̂, 󰁥∆ = arg min
θ,∆

󰀫
1

n

n󰁛

i=1

|xi − θ −∆i|2 + λ󰀂∆󰀂1

󰀬
. (2)

Theorem 4.2.2 (She and Owen, 2011)
(1) and (2) are equivalent and there is a one-to-one mapping between λ and c.

[1] McCann, L., & Welsch, R. E. (2007). Robust variable selection using least angle regression and elemental set sampling.
Computational Statistics & Data Analysis, 52(1), 249-257.
[2] Gannaz, I. (2007). Robust estimation and wavelet thresholding in partially linear models. Statistics and Computing, 17,
293-310.
[3] She, Y., & Owen, A. B. (2011). Outlier detection using nonconvex penalized regression. Journal of the American Statistical
Association, 106(494), 626-639.
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ℓ2-penalty in multi-task learning

Penalized over-parameterization (McCann and Welsch, 2007; Gannaz, 2007):

θ̂, 󰁥∆ = arg min
θ,∆

󰀫
1

n

n󰁛

i=1

󰀃
|xi − θ −∆i|2 + λ|∆i|

󰀄
󰀬
. (󰂏)

Recall the equivalent form of the ℓ2-biased regularization:

{󰁥θ(k)}Kk=1,
󰁥θ = arg min

{θ(k)},θ̄

󰀫
1

K

K󰁛

k=1

󰀕
󰀂x̄(k) − θ(k)󰀂22 +

λ√
n
󰀂θ(k) − θ̄󰀂2

󰀖󰀬
. (†)

◦ (†) can be seen as a variant of (󰂏) by re-parameterization 󰁥θ(k) = 󰁥θ + 󰁥∆
(k)

,
which illustrates the robustness against contamination.

◦ Note that the contamination in our setting is on the task level while the
contamination in classical robust statistics is on the observation level.
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ℓ2-penalty in multi-task learning
Recall the upper bound of estimation error:

max
k∈S

󰀂󰁥θ(k) − θ(k)∗󰀂2 ≲P

󰁵
d

nK󰁿 󰁾󰁽 󰂀
oracle

+min
󰀝󰁵

d+ logK
n󰁿 󰁾󰁽 󰂀

single-task rate

, h
󰁿󰁾󰁽󰂀

heterogeneity

󰀞
+ 󰂃

󰁵
d+ logK

n󰁿 󰁾󰁽 󰂀
outliers

We also have a nearly matching information-theoretic lower bound.

Theorem 4.2.3 (Duan and Wang, 2022)
With prob. ≥ 1/10,

inf
{󰁥θ(k)}

k=1K

sup
|Sc|/K≤󰂃

{θ(k)∗}Kk=1

max
k∈S

󰀂󰁥θ(k) − θ(k)∗󰀂2 ≳
󰁵

d

nK
+ min

󰀝󰁵
d+ logK

n
, h

󰀞
+

󰂃√
n
.

◦ The 󰂃-related term doesn't match.
◦ In fact, in one of our ongoing works (Tian and Avella, 2024+), we showed that

most biased regularization methods have the algorithmic lower bound 󰂃
󰁴

d
n

◦ Time for new robust multi-task learning methods!
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ℓ2-penalty in multi-task learning
Finally, the method & theory of ℓ2-biased regularization can be extended to an
ERM setting.
◦ The k-th dataset D(k) = {x(k)

i , y
(k)
i }nk

i=1
i.i.d.∼ (X(k), Y (k)), loss function

ℓ(θ, (X,Y )), and θ(k)∗ := arg minθ Eℓ(θ, (X(k), Y (k))), for k = 1 : K
◦ θ(k)∗ ∈ Rd. For simplicity, assume nk ≡ n for all k
◦ Similarity between tasks: minθ̄ maxk∈S 󰀂θ(k)∗ − θ̄󰀂2 ≤ h, where h is unknown
◦ The set S is sometimes called the informative set, and 󰂃 = |Sc|/K is the

contamination proportion or outlier proportion, where Sc = [K]\S

Theorem 4.2.4 (Duan and Wang, 2022)
Under certain assumptions, with λ ≍

√
p+ logK, w.h.p.:

max
k∈S

󰀂󰁥θ(k) − θ(k)∗󰀂2 ≲
󰁵

d

nK󰁿 󰁾󰁽 󰂀
oracle

+min
󰀝󰁵

d+ logK
n󰁿 󰁾󰁽 󰂀

single-task rate

, h
󰁿󰁾󰁽󰂀

heterogeneity

󰀞
+ 󰂃

󰁵
d+ logK

n󰁿 󰁾󰁽 󰂀
outliers

,

max
k∈Sc

󰀂󰁥θ(k) − θ(k)∗󰀂2 ≲
󰁵

d+ logK
n

.
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Key components for adaptivity and robustness

There are a few important ingredients to help design a regularizer adaptive to the
unknown task similarity and robust against outlier tasks.
◦ Some shrinkage regime: which leads to the oracle rate 1/

√
nK

⊲ This usually requires singularity around 0 (Fan and Li, 2001)
⊲ The shrinkage radius should be ≈ the single-task error rate
⊲ This can be connected to Hodge's ``super-efficiency" phenomenon

(Van der Vaart, 2000)
◦ The regularized learner should be connected to some robustified M-estimator

(She and Owen, 2011; Donoho and Montanari, 2016)
⊲ ℓ2-penalty ⇔ Huber's loss
⊲ SCAD-penalty ⇔ Hampel's loss
⊲ ...

[1] Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the
American statistical Association, 96(456), 1348-1360.
[2] Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge university press.
[3] She, Y., & Owen, A. B. (2011). Outlier detection using nonconvex penalized regression. Journal of the American Statistical
Association, 106(494), 626-639.
[4] Donoho, D., & Montanari, A. (2016). High dimensional robust m-estimation: Asymptotic variance via approximate message
passing. Probability Theory and Related Fields, 166, 935-969.

Copyright © 2024 Yang Feng & Ye Tian §4.2.3: An adaptive ℓ2-penalty 36 / 84



§4.3: Extension to high-dimensional regressions

◦ §4.3.1 ℓ1-penalty with GLMs
◦ §4.3.2 Go robust: better ways to aggregate data
◦ §4.3.3 Block penalty with multi-task learning
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Copyright © 2024 Yang Feng & Ye Tian §4.3.1: ℓ1-penalty with GLMs 38 / 84



ℓ1-penalty with GLMs
Compared to low-dimensional problems, transfer learning in high-dimensional
problems could be more helpful, because of the potentially limited target sample
size and high dimensionality of the problem.

Picture is from: Wu, Y., & Zhang, K. (2020). Tools for the analysis of high-dimensional single-cell RNA sequencing data. Nature
Reviews Nephrology, 16(7), 408-421.
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ℓ1-penalty with GLMs
Let us follow Li et al. (2021); Tian and Feng (2023); Li et al. (2023), and consider
the following high-dimensional regression setting.
◦ {(x(k)

i , y
(k)
i )}nk

i=1
i.i.d.∼ (X(k), Y (k)) for k = 0 : K, where X(k) ∈ Rd, Y (k) ∈ R,

and
Y (k) = (X(k))⊤θ(k)∗ + 󰂃(k),

E[X(k)(X(k))⊤] = Σ(k), 󰂃(k) is independent of X(k) and zero-mean
sub-Gaussian (with a constant-level variance proxy).

◦ For simplicity, assume nk ≡ n, Σ(k) ≡ Σ

◦ Sparsity: 󰀂θ(0)∗󰀂0 ≤ s ≪ d

◦ Relationship between tasks: maxk∈S 󰀂θ(k)∗ − θ(0)∗󰀂1 ≤ h (unknown), where
the informative set S ⊆ [K] is also unknown

◦ Goal: estimate θ(0)∗

[1] Li, S., Cai, T. T., & Li, H. (2022). Transfer learning for high-dimensional linear regression: Prediction, estimation and
minimax optimality. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(1), 149-173.
[2] Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. Journal of the American
Statistical Association, 118(544), 2684-2697.
[3] Li, S., Zhang, L., Cai, T. T., & Li, H. (2023). Estimation and inference for high-dimensional generalized linear models with
knowledge transfer. Journal of the American Statistical Association, 1-12.
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ℓ1-penalty with GLMs: S is known
Recall our bias regularization procedure. We need to:
(i) First aggregate the source datasets to obtain an estimator θ̃
(ii) Debias θ̃ using the target data by penalization

This motivates the following algorithm.

Two-step algorithm S-Trans-GLM: 2(Li et al., 2021; Tian and Feng, 2023)
◦ Step 1: (Transferring) Obtain a global estimator from data aggregation:

θ̃ = arg min
θ∈Rd

󰀫
1

(|S|+ 1)

󰁛

k∈{0}∪S

1

n

n󰁛

i=1

(y
(k)
i − θ⊤x

(k)
i )2 + λ1󰀂θ󰀂1

󰀬

◦ Step 2: (Debiasing) Debias θ̃ using the target data by penalization:

󰁥θ = arg min
θ∈Rd

󰀫
1

n

n󰁛

i=1

(y
(0)
i − θ⊤x

(0)
i )2 + λ2󰀂θ − θ̃󰀂1

󰀬

2Li et al. (2021) uses data splitting for two steps, while Tian and Feng (2023) does not.
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ℓ1-penalty with GLMs: theory

Theorem 4.3.1 (Li et al. (2021); Tian and Feng (2023))

With λ1 ≍
󰁴

log d
(|S|+1)n , λ2 ≍

󰁴
log d
n , we have

󰀂󰁥θ − θ(0)∗󰀂2 ≲P

󰁶
s log d

(|S|+ 1)n
+

󰀕󰁵
log d
n

h1/2

󰀖
∧ h,

󰀂󰁥θ − θ(0)∗󰀂1 ≲P s

󰁶
log d

(|S|+ 1)n
+ h.

◦ The target-only minimax ℓ2 and ℓ1 estimation errors are
󰁴

s log d
n and s

󰁴
log d
n ,

respectively.
◦ Transfer learning helps when the following conditions hold:

⊲ Sufficient similarity: h ≪ s
󰁴

log d
n ;

⊲ Many source datasets: |S| → ∞.
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ℓ1-penalty with GLMs: theory

Theorem 4.3.2 (Li et al. (2021); Tian and Feng (2023))
Suppose d ≳ s1.01. With prob. at least 1/4, there exists a parameter setting
{θ(k)∗}k∈{0}∪S s.t.

󰀂󰁥θ − θ(0)∗󰀂2 ≳
󰁶

s log d
(|S|+ 1)n

+

󰀕󰁵
log d
n

h1/2

󰀖
∧ h ∧

󰁵
s log d

n
,

󰀂󰁥θ − θ(0)∗󰀂1 ≳ s

󰁶
log d

(|S|+ 1)n
+ h ∧

󰀕
s

󰁵
log d
n

󰀖
.

◦ The two-step algorithm is minimax optimal when h ≲ s
󰁴

s log d
n

The method and theory can be extended to generalized linear models (GLMs).
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ℓ1-penalty with GLMs
GLMs: Y (k)|X(k) = x ∼ ρ(y) exp{yx⊤θ(k)∗ − ψ(x⊤θ(k)∗)} (density w.r.t.
base measure σ), ψ′(x⊤θ(k)∗) = E(Y (k)|X(k) = x) is the inverse link function
◦ Linear regression model: ψ(x) = x2/2

◦ Logistic regression model: ψ(x) = log(1 + ex)

◦ Poisson regression model: ψ(x) = ex

Two-step algorithm S-Trans-GLM: (Tian and Feng, 2023)
◦ Step 1: (Transferring) Obtain a global estimator from data aggregation:

θ̃ = arg min
θ∈Rd

󰀫
1

(|S|+ 1)

󰁛

k∈{0}∪S

1

n

n󰁛

i=1

[−y
(k)
i θ⊤x

(k)
i + ψ(θ⊤x

(k)
i )] + λ1󰀂θ󰀂1

󰀬

◦ Step 2: (Debiasing) Debias θ̃ using the target data by penalization:

󰁥θ = arg min
θ∈Rd

󰀫
1

n

n󰁛

i=1

[−y
(0)
i θ⊤x

(0)
i + ψ(θ⊤x

(0)
i )] + λ2󰀂θ − θ̃󰀂1

󰀬
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ℓ1-penalty with GLMs

◦ Two remaining problems:
⊲ We don't know S in practice
⊲ When h is large, the two-step algorithm may suffer from a bad estimation

error
◦ Two solutions:

⊲ Aggregation: Li et al. (2021, 2022)
⊲ Selection: Tian and Feng (2023); Li et al. (2024)

[1] Li, S., Cai, T. T., & Li, H. (2022). Transfer learning for high-dimensional linear regression: Prediction, estimation and
minimax optimality. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(1), 149-173.
[2] Li, S., Zhang, L., Cai, T. T., & Li, H. (2023). Estimation and inference for high-dimensional generalized linear models with
knowledge transfer. Journal of the American Statistical Association, 1-12.
[3] Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. Journal of the American
Statistical Association, 118(544), 2684-2697.
[4] Li, M., Tian, Y., Feng, Y., & Yu, Y. (2024). Federated Transfer Learning with Differential Privacy. arXiv preprint
arXiv:2403.11343.
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When S is unknown: aggregation

◦ Aggregation technique originates from the statistical aggregation literature
(Rigollet and Tsybakov, 2012; Dai et al., 2012)

◦ The main idea: construct estimators based on different candidates S, then
combine them by a weighted average

⊲ Construct an estimator R̂(k) to estimate the ``sparsity index"
R(k) := 󰀂Σ(θ(k)∗ − θ(0)∗)󰀂2.

⊲ Sort the K sources by R̂(k) values with increasing order
⊲ Construct candidate sets ( 󰁥G0 := ∅)

󰁥Gk = {1 ≤ k ≤ K : R̂(k) is among the first k smallest ones}.

⊲ Output 󰁥θ =
󰁓K

k=0 ŵk · [({0} ∪ 󰁥Gk)-Trans-GLM], with {ŵk}Kk=0 solved
from a variant of Lasso

◦ See Li et al. (2021) for details.

[1] Rigollet, P., & Tsybakov, A. B. (2012). Sparse Estimation by Exponential Weighting. Statistical Science, 27(4), 558-575.
[2] Dai, D., Rigollet, P., & Zhang, T. (2012). Deviation optimal learning using greedy q-aggregation. Annals of Statistics, 40(3),
1878-1905.
[3] Li, S., Cai, T. T., & Li, H. (2022). Transfer learning for high-dimensional linear regression: Prediction, estimation and
minimax optimality. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(1), 149-173.
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When S is unknown: selection

◦ Selection technique originates from the diagnosis in outlier detection (Cook,
2000; Belsley et al., 2005; Kwon and Zou, 2022).

◦ Main idea of informative source selection: evaluate source data quality by the
likelihood on target data or the distance between target-only estimator and
source-only estimator

⊲ Split the target data into two folds D(0)
1 and D(0)

2

⊲ Fit local estimators on target dataset D(0)
1 and each source dataset ⇒ 󰁥θ(k)

⊲ Calculate the likelihood of D(0)
2 based on each 󰁥θ(k) ⇒ 󰁥R(k)

⊲ Threshold and select the informative source by󰁥S = {1 ≤ k ≤ K : 󰁥R(k) − 󰁥R(0) ≤ threshold}
⊲ Run 󰁥S-GLM-Trans

◦ The above is the likelihood-based version in Tian and Feng (2023). A cleaner
distance-based version can be found in Li et al. (2024).

[1] Cook, R. D. (2000). Detection of influential observation in linear regression. Technometrics, 42(1), 65-68.
[2] Belsley, D. A., Kuh, E., & Welsch, R. E. (2005). Regression diagnostics: Identifying influential data and sources of collinearity.
John Wiley & Sons.
[3] Kwon, Y., & Zou, J. (2022, May). Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine
Learning. In International Conference on Artificial Intelligence and Statistics (pp. 8780-8802). PMLR.
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When S is unknown

Given certain conditions, both aggregation and selection can guarantee that

󰀂󰁥θ − θ(0)∗󰀂2 ≲P

󰁶
s log d

(|S|+ 1)n
+

󰀕󰁵
log d
n

h1/2

󰀖
∧ h∧

󰁵
s log d

n
,

󰀂󰁥θ − θ(0)∗󰀂1 ≲P s

󰁶
log d

(|S|+ 1)n
+ h ∧

󰀕
s

󰁵
log d
n

󰀖
.

This finally matches with the lower bound and makes our two-step algorithm free
of negative transfer.
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ℓ1-penalty with GLMs: overall review

Picture is adapted from: Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models.
Journal of the American Statistical Association, 118(544), 2684-2697.
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ℓ1-penalty with GLMs: history and other literature

Early explorations of ℓ1-based regularization date back to ∼ 10 years ago.
◦ Gross and Tibshirani (2016) studies the stratified linear model yi = x⊤

i θ
∗
gi + 󰂃i,

gi ∈ 1 : K, i = 1 : n, with data shared Lasso:

θ̃, { 󰁥∆k}Kk=1 = arg min
θ,{∆k}K

k=1

󰀝
1

2

n󰁛

i=1

[yi−x⊤
i (θ+∆gi)]

2+λ󰀂θ󰀂1+
K󰁛

k=1

λk󰀂∆k󰀂1
󰀞

◦ Ollier and Viallon (2017) studies the same model with some theory on variable
selection consistency under strong conditions (e.g. irrepresentative condition)

[1] Gross, S. M., & Tibshirani, R. (2016). Data Shared Lasso: A novel tool to discover uplift. Computational statistics & data
analysis, 101, 226-235.
[2] Ollier, E., & Viallon, V. (2017). Regression modelling on stratified data with the lasso. Biometrika, 104(1), 83-96.
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ℓ1-penalty with GLMs: history and other literature

◦ Bastani (2021) studies a single-source transfer learning problem on linear model
y
(k)
i = (x

(k)
i )⊤θ(k)∗ + 󰂃

(k)
i , k = 0 : 1, i = 1 : nk,

where n0 ≪ n1, and proposes a similar two-step approach.
⊲ Step 1: θ̃ = arg min

θ∈Rd

1
n1

󰁓n1

i=1[y
(1)
i − (x

(1)
i )⊤θ]2

⊲ Step 2: 󰁥θ = arg min
θ∈Rd

1
n0

󰁓n0

i=1[y
(0)
i − (x

(0)
i )⊤θ]2 + λ󰀂θ − θ̃󰀂1

They assume 󰀂θ(1)∗ − θ(0)∗󰀂0 ≤ s ≪ d and θ(0)∗ can be dense. They show that

󰀂󰁥θ − θ(0)∗󰀂1 ≲P
s log(dn0)√

n0
+

sd log(dn1)√
n1

≪ d
√
n0󰁿 󰁾󰁽 󰂀

target-only OLS

,

when n1 ≫ n0s
2 log2(dn1), d ≫ s log(dn0).

[1] Bastani, H. (2021). Predicting with proxies: Transfer learning in high dimension. Management Science, 67(5), 2964-2984.
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§4.3: Extension to high-dimensional regressions

◦ §4.3.1 ℓ1-penalty with GLMs
◦ §4.3.2 Go robust: better ways to aggregate data
◦ §4.3.3 Block penalty with multi-task learning
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Issues of the previous two-step approach

◦ Recall our previous linear regression setting:
{(x(k)

i , y
(k)
i )}ni=1

i.i.d.∼ (X(k), Y (k)) for k = 0 : K, where X(k) ∈ Rd, Y (k) ∈ R,
and

Y (k) = (X(k))⊤θ(k)∗ + 󰂃(k),

E[X(k)(X(k))⊤] = Σ(k), 󰂃(k) is independent of X(k) and zero-mean
sub-Gaussian.

◦ Recall the first transferring step of our algorithm (consider the case S = [K]):

θ̃ = arg min
θ∈Rd

󰀫
1

(K + 1)

K󰁛

k=0

1

n

n󰁛

i=1

(y
(k)
i − θ⊤x

(k)
i )2 + λ1󰀂θ󰀂1

󰀬

◦ In the second debiasing step, we penalize the bias 󰀂θ(0) − θ̃󰀂1 to learn
∆(k)∗ = θ(0)∗ − θ̃∗, where θ̃

P−→ θ̃∗ when n → ∞.
◦ An underlying assumption: ∆(k)∗ is ``sparse" in some sense so that the

debiasing step can succeed
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Issues of the previous two-step approach

If we ignore the regularizer, then our transferring step is equivalent to data
pooling:

θ̃ = arg min
θ∈Rd

󰀫
1

(K + 1)

K󰁛

k=0

1

n

n󰁛

i=1

(y
(k)
i − θ⊤x

(k)
i )2

󰀬
.

From the population-level, we are estimating

θ̃∗ = arg min
θ∈Rd

󰀫
1

(K + 1)

K󰁛

k=0

E(Y (k)−θ⊤X(k))2

󰀬
=

󰀣
K󰁛

k=0

Σ(k)

󰀤−1 K󰁛

k=0

Σ(k)θ(k)∗.

Therefore the actual bias is

θ(0)∗ − θ̃∗ =

󰀣
K󰁛

k=0

Σ(k)

󰀤−1 K󰁛

k=1

Σ(k)(θ(k)∗ − θ(0)∗).

◦ Problem: In general, there is no guarantee that this bias would be ``sparse" in
any sense!

◦ Previous we don't have this issue because we assume Σ(k) ≡ Σ for all k
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Issues of the previous two-step approach

◦ Bias of the transferring step:

θ(0)∗ − θ̃∗ =

󰀣
K󰁛

k=0

Σ(k)

󰀤−1 K󰁛

k=1

Σ(k)(θ(k)∗ − θ(0)∗).

◦ Problem: In general, there is no guarantee that this bias would be ``sparse" in
any sense!

◦ Previous we don't have this issue because we assume Σ(k) ≡ Σ for all k. Then
under the assumption maxk∈[K] 󰀂θ(k)∗ − θ(0)∗󰀂1 ≤ h, we have
󰀂θ(0)∗ − θ̃∗󰀂1 ≤ h

◦ If our similarity assumption is of ℓ0-pseudo norm, in the sense that
maxk∈[K] 󰀂θ(k)∗ − θ(0)∗󰀂0 ≤ h, then:

⊲ In general, θ(0)∗ − θ̃∗ could be dense in the sense that 󰀂θ(0)∗ − θ̃∗󰀂0 ≍ d
⊲ Even when Σ(k) ≡ Σ for all k, 󰀂θ(0)∗ − θ̃∗󰀂0 could still be as large as Kh!

Let's formulate the problem into a MTL framework and see how we can solve it.
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Multi-task linear regression

Multi-task linear regression (Xu and Bastani, 2021):
◦ {(x(k)

i , y
(k)
i )}ni=1

i.i.d.∼ (X(k), Y (k)) for k = 1 : K, where X(k) ∈ Rd, Y (k) ∈ R,
and

Y (k) = (X(k))⊤θ(k)∗ + 󰂃(k),

E[X(k)(X(k))⊤] = Σ(k), 󰂃(k) is independent of X(k) and zero-mean
sub-Gaussian.

◦ Decomposition: θ(k)∗ = θ∗ +∆(k)∗

◦ ℓ0-similarity: maxk∈[K] 󰀂∆(k)∗󰀂0 ≤ s, θ∗ can be dense
◦ Goal: Learn all θ(k)∗'s simultaneously and borrow information to perform

better than single-task estimators

[1] Xu, K., & Bastani, H. (2021). Learning across bandits in high dimension via robust statistics. arXiv preprint
arXiv:2112.14233, 52(7).
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Multi-task linear regression

◦ θ(k)∗ = θ∗ +∆(k)∗

◦ If we can void out the ``poorly aligned" features, then we only need to debias
|Iwell ∪ supp(∆(k))| ≲ s coordinates!

Picture adapted from: Xu, K., & Bastani, H. (2021). Learning across bandits in high dimension via robust statistics. arXiv
preprint arXiv:2112.14233, 52(7).
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Multi-task linear regression

Xu and Bastani (2021) proposes to use coordinate-wise trimmed mean as the
global estimation in the transferring step

Two-step algorithm with trimmied mean: (Xu and Bastani, 2021)
◦ Step 1: (Single-task OLS)

θ̃(k) = OLS on data {x(k)
i , y

(k)
i }ni=1 from the k-th task

◦ Step 2: (Transferring)
θ̃ = coordinate-wise trimmed mean of {θ̃(k)}Kk=1 with trimming proportion w

◦ Step 3: (Debiasing) Debias θ̃ for each task using by penalization:

󰁥θ(k) = arg min
θ∈Rd

󰀫
1

n

n󰁛

i=1

(y
(k)
i − θ⊤x

(k)
i )2 + λ󰀂θ − θ̃󰀂1

󰀬
, k = 1 : K.
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Multi-task linear regression: intuition revisited

◦ Trimmed mean can ``zero out" the ``poorly aligned" features in the
transferring step, then we only need to debias |Iwell ∪ supp(∆(k))| ≲ s
coordinates!

Picture adapted from: Xu, K., & Bastani, H. (2021). Learning across bandits in high dimension via robust statistics. arXiv
preprint arXiv:2112.14233, 52(7).
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Multi-task linear regression with trimmed mean: theory
Theorem 4.3.1 (Xu and Bastani, 2021)
Under certain conditions, let w ≍

󰁳
s/d and λ ≍

󰁴
log d
n , then up to a logarithmic

factor:
max
k∈[K]

󰀂󰁥θ(k) − θ(k)∗󰀂1 ≲P

󰁵
sd

n
+ d

󰁵
1

nK
≪ d

󰁵
1

n󰁿 󰁾󰁽 󰂀
single-task error

. (󰂏)

◦ Compared to the rate s
󰁴

1
n0

+ sd
󰁴

1
n1

obtained by Bastani (2021) for the case
K = 2 in a transfer learning context, the second term in (󰂏) is better while the
first term is worse.

◦ The minimax rate is proved to be s
󰁴

1
n + d

󰁴
1

nK and achieved by a
coordinate-wise median transferring step (Huang et al., 2023)

◦ The original paper (Xu and Bastani, 2021) applies the method to a multi-armed
contextual bandit problem.

[1] Xu, K., & Bastani, H. (2021). Learning across bandits in high dimension via robust statistics. arXiv preprint
arXiv:2112.14233, 52(7).
[2] Bastani, H. (2021). Predicting with proxies: Transfer learning in high dimension. Management Science, 67(5), 2964-2984.
[3] Huang, X., Xu, K., Lee, D., Hassani, H., Bastani, H., & Dobriban, E. (2023). Optimal Heterogeneous Collaborative Linear
Regression and Contextual Bandits. arXiv preprint arXiv:2306.06291.
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Multi-task linear regression: other aggregation methods
◦ Maity et al. (2022) discusses two other options as the transferring step. They

propose to use single-task debiased Lasso estimators as {θ̃(k)}Kk=1

⊲ A re-descending loss: θ̃j = arg min
θ∈R

󰁓K
k=1 Ψηj

(θ
(k)
j − θ) for j = 1 : d,

where Ψη(x) = x2 ∧ η2.
⊲ Quadratic + ℓ1 loss:
θ̃ = arg min

θ∈Rd

󰀋󰁓K
k=1

1
1+λ (λ󰀂θ̃

(k) − θ󰀂1 + 1
2󰀂θ̃

(k) − θ󰀂2)
󰀌

◦ They use coordinate-wise hard/soft-thresholding in the debiasing step to obtain
󰁥θ(k) instead of penalization (approx. equiv. to hard-thresholding/ℓ1 penalty).

◦ With certain conditions 3, they show the following ℓ∞ error bound.

Theorem 4.3.2 (Maity et al., 2022)
Up to logarithmic factors, we have

󰀂θ̃ − θ∗󰀂∞ ≲P

󰁵
log d
nK

, max
k=1:K

󰀂󰁥θ(k) − θ(k)∗󰀂∞ ≲P

󰁵
log d
n

.

3We need assumptions to make the global parameter θ∗ identifiable. Recall that θ(k)∗ = θ∗ + ∆(k)∗.
[1] Maity, S., Sun, Y., & Banerjee, M. (2022). Meta-analysis of heterogeneous data: integrative sparse regression in
high-dimensions. Journal of Machine Learning Research, 23(198), 1-50.
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§4.3: Extension to high-dimensional regressions

◦ §4.3.1 ℓ1-penalty with GLMs
◦ §4.3.2 Go robust: better ways to aggregate data
◦ §4.3.3 Block penalty with multi-task learning
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Block regularization
Definition 4.3.1
We define the Lp,q or ℓp/ℓq block norm (1 ≤ p, q ≤ ∞) of a matrix B ∈ Rm×n as

󰀂B󰀂p,q =

󰀕 m󰁛

i=1

󰀂bi󰀂pq
󰀖1/p

=

󰀗 m󰁛

i=1

󰀕 n󰁛

j=1

|bij |q
󰀖p/q󰀘1/p

,

where bi is the i-th row of B.

Some examples:
◦ Group Lasso penalty (Yuan and Lin, 2006): p = 1, q = 2

󰀂B󰀂1,2 =

m󰁛

i=1

󰀂bi󰀂2.

◦ ℓ1/ℓ∞-penalty (Negahban and Wainwright, 2011): p = 1, q = ∞

󰀂B󰀂1,∞ =

m󰁛

i=1

max
j=1:n

|bij |.

[1] Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 68(1), 49-67.
[2] Negahban, S. N., & Wainwright, M. J. (2011). Simultaneous Support Recovery in High Dimensions: Benefits and Perils of
Block ℓ1/ℓ∞-Regularization. IEEE Transactions on Information Theory, 57(6), 3841-3863.
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Block regularization

Block regularization is used in high-dimensional statistics when there is some
``block/group" structure.

We can utilize this block penalty for bias regularization in multi-task learning.

Image source: Bai, Y., Calhoun, V. D., & Wang, Y. P. (2020, February). Integration of multi-task fmri for cognitive study by
structure-enforced collaborative regression. In Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and
Functional Imaging (Vol. 11317, pp. 515-520). SPIE.
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Group Lasso with multi-task learning
Let's consider the linear regression setting we considered before, but in an MTL
framework (Lounici et al., 2011).
◦ We observe dataset D(k) = {x(k)

i , y
(k)
i }ni=1

i.i.d.∼ (X(k), Y (k)), where X(k) ∈ Rd,
Y (k) ∈ R, and

Y (k) = (X(k))⊤θ(k)∗ + 󰂃(k).

◦ Denote the coefficient matrix Θ∗ = (θ(1)∗, . . . ,θ(K)∗) ∈ Rd×K , where θ(k)∗ is
the k-th column of Θ∗. Denote the j-th row of Θ∗ as θ∗

j .
◦ Sparsity: S := {j ∈ [d] : θ∗

j ∕= 0K}, |S| ≤ s.
◦ Intuition: The support supp(θ(k)∗) overlaps a lot across tasks, but the values

of the same coordinate can differ.
◦ What we expect:

⊲ The simultaneous sparsity could help, because it might be easier for
variable selection

⊲ But the estimation error for each task may not improve a lot due to
heterogeneity

[1] Tsybakov, A. B., Lounici, K., Pontil, M., & van de Geer, S. (2011). Oracle inequalities and optimal inference under group
sparsity. Annals of Statistics, 39(4), 2164-2204.
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Group Lasso with multi-task learning
Sparsity: S := {j ∈ [d] : θ∗

j ∕= 0K}, |S| ≤ s.
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Group Lasso with multi-task learning

Lounici et al. (2011) proposes to use group Lasso regularization

󰁥Θ = arg min
Θ∈Rd×K

1

K

K󰁛

k=1

1

n

n󰁛

i=1

[(x
(k)
i )⊤θ(k) − y

(k)
i ]2 + λ󰀂Θ󰀂1,2,

where θ(k) and θj represent the k-th column and j-th row of Θ, and
󰀂Θ󰀂1,2 =

d󰁛

j=1

󰀂θj󰀂2.

Under certain conditions (regular eigenvalues of covariance matrices etc.), we have
the following result.

Theorem 4.3.2 (Lounici et al., 2011)

Let λ ≍ 1√
nK

󰁴
1 + log d

K , then

1

T
󰀂 󰁥Θ−Θ∗󰀂2F ≲P

s

n

󰀕
1 +

log d
K

󰀖

[1] Tsybakov, A. B., Lounici, K., Pontil, M., & van de Geer, S. (2011). Oracle inequalities and optimal inference under group
sparsity. Annals of Statistics, 39(4), 2164-2204.
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Group Lasso with multi-task learning

Let's compare the result with single-task Lasso.

◦ Single-task Lasso: 1
T 󰀂 󰁥Θ−Θ󰀂2F ≲P

s log d
n

◦ Group Lasso regularization: 1
T 󰀂 󰁥Θ−Θ󰀂2F ≲P

s
n

󰀕
1 + log d

K

󰀖

Our previous intuition is correct:
◦ Regularization helps, but we do not achieve big improvement.
◦ When K ≳ log d, we completely get rid of the full dimension d by using group

Lasso regularization.
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ℓ1/ℓ∞-penalty with multi-task learning

Besides Group Lasso penalty, Negahban and Wainwright (2011) explores the
following ℓ1/ℓ∞-regularization in the same problem.

󰁥Θ = arg min
Θ∈Rd×K

1

K

K󰁛

k=1

1

n

n󰁛

i=1

[(x
(k)
i )⊤θ(k) − y

(k)
i ]2 + λ󰀂Θ󰀂1,∞,

where θ(k) and θj represent the k-th column and j-th row of Θ, and
󰀂Θ󰀂1,∞ =

d󰁛

j=1

max
k=1:K

|θjk|.

Under certain conditions (irrepresentative condition, minimum signal strength etc.
for variable selection consistency), we have the following results.

[1] Negahban, S. N., & Wainwright, M. J. (2011). Simultaneous Support Recovery in High Dimensions: Benefits and Perils of
Block ℓ1/ℓ∞-Regularization. IEEE Transactions on Information Theory, 57(6), 3841-3863.
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ℓ1/ℓ∞-penalty with multi-task learning
Theorem 4.3.3 (Negahban and Wainwright, 2011)

Let λ ≍
󰁴

K2+K log d
n , then under Gaussian design, when n ≳ sK(K + log d):

◦ supp( 󰁥Θ) = supp(Θ∗) w.h.p.

◦ 󰀂 󰁥Θ−Θ∗󰀂max ≲P

󰁴
K2+K log d

n

The following phase transition result highlights the benefit of regularization in
MTL setting. Consider the case K = 2, |supp(θ(1)∗)| = |supp(θ(2)∗)| = s, and
the ``overlap proportion" α = |supp(θ(1)∗) ∩ supp(θ(2)∗)|/s.

Theorem 4.3.4 (Negahban and Wainwright, 2011)

We have the following phase transition when max
j∈supp(θ(1)∗)∩supp(θ(2)∗)

|θ(1)∗j − θ
(2)∗
j |

≪ λ:
◦ (Success) When n

s log(d−(2−α)s) > 4− 3α, results in Theorem 4.3.3 hold.

◦ (Failure) When n
s log(d−(2−α)s) < 4− 3α, no λ can make supp( 󰁥Θ) = supp(Θ∗).

[1] Negahban, S. N., & Wainwright, M. J. (2011). Simultaneous Support Recovery in High Dimensions: Benefits and Perils of
Block ℓ1/ℓ∞-Regularization. IEEE Transactions on Information Theory, 57(6), 3841-3863.
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ℓ1/ℓ∞-penalty with multi-task learning

◦ The phase transition of ℓ1/ℓ∞ regularization happens at
n

s log(d− (2− α)s)
= 4− 3α.

◦ Lasso has similar phase transition phenomenon (Wainwright, 2009) which
happens at

n

s log(d− s)
= 2.

When d ≫ s, the LHS are almost the same. Then we can make the following
conclusion:
◦ When α < 2/3 (less sharing), Lasso performs better in the sense that its

transition is at a smaller sample size
◦ When α ∈ (2/3, 1] (more sharing), ℓ1/ℓ∞ regularization performs better in the

sense that its transition is at a smaller sample size

[1] Wainwright, M. J. (2009). Sharp thresholds for High-Dimensional and noisy sparsity recovery using ℓ1-Constrained Quadratic
Programming (Lasso). IEEE transactions on information theory, 55(5), 2183-2202.
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ℓ1/ℓ∞-penalty with multi-task learning

To further fix the inferiority of ℓ1/ℓ∞ regularization in Negahban and Wainwright
(2011) compared to Lasso when there are not a lot of support overlaps across
tasks, Jalali et al. (2010, 2013) propose the following variant of ℓ1/ℓ∞
regularization in the same MTL setting.

󰁥S, 󰁥B = arg min
S,B∈Rd×K

1

K

K󰁛

k=1

1

n

n󰁛

i=1

[(x
(k)
i )⊤θ(k) − y

(k)
i ]2 + λS󰀂S󰀂1,1 + λB󰀂B󰀂1,∞,

󰁥Θ = 󰁥S + 󰁥B.

This can be seen as a combination of Lasso and the ℓ1/ℓ∞ regularization in
Negahban and Wainwright (2011).
◦ Push λB → ∞: we will force B = 0 and obtain K Lassos.
◦ Push λS → ∞: we will force S = 0 and recover the ℓ1/ℓ∞ regularization in

Negahban and Wainwright (2011).
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ℓ1/ℓ∞-penalty with multi-task learning

Under similar conditions as before, we have the following results.

Theorem 4.3.5 (Jalali et al., 2010, 2013)

Let λS ≍
󰁴

log d
n and λB ≍

󰁴
r(r+log d)

n , then under Gaussian design, when
n ≳ s log(dK) + sK(K + log d):
◦ supp( 󰁥Θ) = supp(Θ∗) w.h.p.

◦ 󰀂 󰁥Θ−Θ∗󰀂max ≲P

󰁴
log(dK)

n

The max-estimation error rate is better than the rate
󰁴

K2+K log d
n by ℓ1/ℓ∞

regularization in Negahban and Wainwright (2011).

Next, let's look at the phase transition.

[1] Jalali, A., Sanghavi, S., Ruan, C., & Ravikumar, P. (2010). A dirty model for multi-task learning. Advances in neural
information processing systems, 23.
[2] Jalali, A., Ravikumar, P., & Sanghavi, S. (2013). A dirty model for multiple sparse regression. IEEE Transactions on
Information Theory, 59(12), 7947-7968.
[3] Negahban, S. N., & Wainwright, M. J. (2011). Simultaneous Support Recovery in High Dimensions: Benefits and Perils of
Block ℓ1/ℓ∞-Regularization. IEEE Transactions on Information Theory, 57(6), 3841-3863.
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ℓ1/ℓ∞-penalty with multi-task learning

Consider the case K = 2, |supp(θ(1)∗)| = |supp(θ(2)∗)| = s, and the ``overlap
proportion" α = |supp(θ(1)∗) ∩ supp(θ(2)∗)|/s.

Theorem 4.3.6 (Jalali et al., 2010, 2013)

We have the following phase transition when max
j∈supp(θ(1)∗)∩supp(θ(2)∗)

|θ(1)∗j − θ
(2)∗
j |

≪ λS :
◦ (Success) When n

s log(d−(2−α)s) > 2− α, results in Theorem 4.3.5 hold.

◦ (Failure) When n
s log(d−(2−α)s) < 2− α, no λ can make supp( 󰁥Θ) = supp(Θ∗).

The transition point 2− α is better than 4− 3α by ℓ1/ℓ∞ regularization in
Negahban and Wainwright (2011).

Let us make a more comprehensive summary.
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ℓ1/ℓ∞-penalty with multi-task learning

◦ The phase transition of ℓ1/ℓ∞ regularization in Negahban and Wainwright
(2011) happens at

n

s log(d− (2− α)s)
= 4− 3α.

◦ Lasso has similar phase transition phenomenon (Wainwright, 2009) which
happens at

n

s log(d− s)
= 2.

◦ The phase transition of ℓ1/ℓ∞ regularization variant in Jalali et al. (2010, 2013)
happens at

n

s log(d− (2− α)s)
= 2− α.

[1] Jalali, A., Sanghavi, S., Ruan, C., & Ravikumar, P. (2010). A dirty model for multi-task learning. Advances in neural
information processing systems, 23.
[2] Jalali, A., Ravikumar, P., & Sanghavi, S. (2013). A dirty model for multiple sparse regression. IEEE Transactions on
Information Theory, 59(12), 7947-7968.
[3] Negahban, S. N., & Wainwright, M. J. (2011). Simultaneous Support Recovery in High Dimensions: Benefits and Perils of
Block ℓ1/ℓ∞-Regularization. IEEE Transactions on Information Theory, 57(6), 3841-3863.
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ℓ1/ℓ∞-penalty with multi-task learning

When d ≫ s, the LHS are almost the same. Then we can conclude as follows:
◦ When α ∈ (0, 1), the ℓ1/ℓ∞ regularization variant in Jalali et al. (2010, 2013)

performs the best
◦ When α = 0 (zero sharing), the ℓ1/ℓ∞ regularization variant in Jalali et al.

(2010, 2013) performs similarly as Lasso
◦ When α = 1 (full sharing), the ℓ1/ℓ∞ regularization variant in Jalali et al.

(2010, 2013) performs similarly as ℓ1/ℓ∞ regularization in Negahban and
Wainwright (2011)

[1] Jalali, A., Sanghavi, S., Ruan, C., & Ravikumar, P. (2010). A dirty model for multi-task learning. Advances in neural
information processing systems, 23.
[2] Jalali, A., Ravikumar, P., & Sanghavi, S. (2013). A dirty model for multiple sparse regression. IEEE Transactions on
Information Theory, 59(12), 7947-7968.
[3] Negahban, S. N., & Wainwright, M. J. (2011). Simultaneous Support Recovery in High Dimensions: Benefits and Perils of
Block ℓ1/ℓ∞-Regularization. IEEE Transactions on Information Theory, 57(6), 3841-3863.
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