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§3.1: Covariate shift
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Covariate shift
For simplicity, we consider the target and one single source in this section.
◦ Target distribution (X(0), Y (0)) ∼ P(0)

◦ Source distribution (X(1), Y (1)) ∼ P(1)

◦ Covariate shift: P(0)
X ∕= P(1)

X , P(0)
Y |X = P(1)

Y |X (in the P(0)
X -a.s. sense)

◦ Goal: learn E[Y |X = x] or make prediction on target domain
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§3.2: Adaptivity to covariate shift for free?
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What we need

◦ What do we need to resolve this covariate shift issue?
⊲ Full and enough (X,Y ) data from both the source and the target?

✓ (just learn from the target)
⊲ Full (X,Y ) data from the source, only X from the target?

✓ (in many cases)
⊲ Full (X,Y ) data from the source, no data from the target?

✗ (in general)
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A second example

◦ It seems that in this case, fitting a linear regression model on source data only
is enough

◦ How it works: (Suppose Y = X⊤θ∗ +N(0,σ2) for both domains)
(1) OLS on the full source data of size n ⇒ 󰁥θ with 󰀂󰁥θ − θ∗󰀂2 ≲P n−1/2;
(2) Prediction error on the target domain:

E(X,Y )∼P(0) [(X⊤󰁥θ − Y )2] ≤ σ2 + E(X,Y )∼P(0) [(X⊤󰁥θ −X⊤θ∗)2]

≲ σ2 + 󰀂󰁥θ − θ∗󰀂22
≲P σ2

󰁿󰁾󰁽󰂀
irreducible

+n−1.
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Understand this phenomenon from MLE

Consider Y |X = x ∼ density pθ∗(y|x) and negative log-likelihood as the loss
ℓθ(x, y) = − log pθ(y|x)

and the population-level risk
R(k)(θ) = −E(X,Y )∼P(k) [log pθ(Y |X)] = −EX∼P(k)EY |X∼pθ∗ [log pθ(Y |X)].

It is easy to see that

EY |X=x∼pθ∗ [log pθ∗(Y |x)]− EY |X=x∼pθ∗ [log pθ(Y |x)] = dKL
󰀃
pθ∗(·|x)||pθ(·|x)

󰀄

≥ 0,

for any x. Hence
R(k)(θ) ≥ R(k)(θ∗), k = 0, 1.

The initial analysis of this phenomenon was conducted in Shimodaira (2000).

[1] Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal
of statistical planning and inference, 90(2), 227-244.
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Intuition
Recall our previous example:

How it works: (Suppose Y = X⊤θ∗ +N(0,σ2) for both domains)
(1) OLS on the full source data of size n ⇒ 󰁥θ with 󰀂󰁥θ − θ∗󰀂2 ≲P n−1/2;
(2) Prediction error on target domain: E(X,Y )∼P(0) [(X⊤󰁥θ − Y )2] ≲P σ2 + n−1.

Necessary ingredients:
◦ Well-specified parametric models for Y |X = x: p(y|x) = pθ∗(y|x) for some θ∗

◦ Good ``curvature" for source risk around θ∗ (to guarantee recovery of θ∗)
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Adaptivity to covariate shift for free
◦ Consider an ERM problem:

⊲ Negative log-likelihood as loss ℓ(θ;x, y) = − log pθ(y|x) and
population-level risk R(k)(θ) = E(X,Y )∼P(k) [ℓ(θ;X,Y )]

⊲ Y |X = x ∼ pθ∗(·|x) for both domains
⊲ Data {(x(1)

i , y
(1)
i )}n1

i=1 from the source domain
⊲ Empirical risk R̂(1)(θ) = 1

n1

󰁓n1

i=1 ℓ(θ;x
(1)
i , y

(1)
i )

⊲ Source ERM estimator: 󰁥θ = arg minθ∈Θ R̂(1)(θ)

Theorem 3.2.1 (Ge et al. (2024))

Under certain conditions, R(0)(󰁥θ)−R(0)(θ∗) ≲P
Tr
󰀃
I(0)(I(1))−1

󰀄

n1
, where Fisher

information I(k) = E(X,Y )∼P(k) [∇2ℓ(θ∗;X,Y )].

Recall our previous intuitions:
◦ Well-specified models for Y |X = x: ✓
◦ Good ``curvature" for source risk around θ∗ (to guarantee recovery of θ∗):

✓, see (I(1))−1 term
``MLE is all you need for well-specified covariate shift." -- Ge et al. (2024)

[1] Ge, J., Tang, S., Fan, J., Ma, C., & Jin, C. (2024). Maximum Likelihood Estimation is All You Need for Well-Specified
Covariate Shift. In The Twelfth International Conference on Learning Representations.
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Adaptivity to covariate shift for free
◦ The idea can be extended from MLE with well-specified models to ERM with

general parametric models

Necessary ingredients:
◦ Good ``curvature" for source risk around optimal ``parameter" θ∗: guarantees

a good estimation error of θ∗, e.g. 󰀂󰁥θ − θ∗󰀂2 ≲P ...

◦ The target excess risk can be bounded by the estimation error of θ∗, e.g.
󰀂󰁥θ − θ∗󰀂2
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Beyond parametric models
There are some recent works on kernel ridge regression (KRR) where similar
phenomenons are found. With Mercer kernels, the induced RKHS H admits a
countable orthonormal basis of L2(X ;P(0)).
◦ Ma et al. (2023) showed that if the regression function f∗ ∈ H and the density

ratio dP(0)
X

dP(1)
X

is bounded, EX∼P(0) |f̂KRR(X)− f∗(X)|2 can be well controlled

◦ Wang (2023) showed that if the regression function f∗ ∈ H, even when the
density ratio dP(0)

X

dP(1)
X

is unbounded, a strategy called ``pseudo-labeling" can lead

to a well-controlled EX∼P(0) |f̂(X)− f∗(X)|2

Surprising?
◦ Yes: The same phenomenon extends to non-parametric models in the
∞-dimensional space

◦ No: With Mercer kernels, RKHS H can be embedded into ℓ2(N), hence our
previous intuitions (estimation error → prediction error) can still work

[1] Ma, C., Pathak, R., & Wainwright, M. J. (2023). Optimally tackling covariate shift in RKHS-based nonparametric regression.
The Annals of Statistics, 51(2), 738-761.
[2] Wang, K. (2023). Pseudo-labeling for kernel ridge regression under covariate shift. arXiv preprint arXiv:2302.10160.
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§3.3: The reweighting method
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Motivation

Consider an ERM setup:
◦ Target domain: (X,Y ) ∼ P(0), source domain: (X,Y ) ∼ P(1)

◦ Covariate shift: P(0)
X ∕= P(1)

X , P(0)
Y |X = P(1)

Y |X with P(0)
X -a.s. X

◦ Loss function: ℓ(y, y′), risk R(k)(h) = E(X,Y )∼P(k) [ℓ(h(X), Y )]

◦ Goal: find an h ∈ H that minimizes target risk R(0)(h)

With labeled source data {(x(1)
i , y

(1)
i )}n1

i=1, we are able to conduct ERM:
ĥ ∈ arg min

h∈H
R̂(1)(h),

with R̂(1)(h) = n1
−1

󰁓n1

i=1 ℓ(h(x
(1)
i ), y

(1)
i ).

Warning: Source ERM could suffer from severe biases because R(1)(h) ∕= R(0)(h)
in general.
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Motivation

The density ratio plays a critical rule here.

E(X,Y )∼P(0) [ℓ(h(X), Y )] = E(X,Y )∼P(1)

󰀗
dP(0)

dP(1)
(X,Y ) · ℓ(h(X), Y )

󰀘

= E(X,Y )∼P(1)

󰀗
dP(0)

X

dP(1)
X

·
󰂸
󰂸
󰂸
󰂸dP(0)

Y |X

dP(1)
Y |X

· ℓ(h(X), Y )

󰀘

= E(X,Y )∼P(1)

󰀗
dP(0)

X

dP(1)
X

(X)

󰁿 󰁾󰁽 󰂀
:=w(X)

· ℓ(h(X), Y )

󰀘
.
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Solution: reweighting the loss by density ratio

E(X,Y )∼P(0) [ℓ(h(X), Y )] = E(X,Y )∼P(1)

󰀗
dP(0)

X

dP(1)
X

(X)

󰁿 󰁾󰁽 󰂀
w(X)

· ℓ(h(X), Y )

󰀘
.

Reweighted ERM: ERM on source data with reweighted loss function

ĥ ∈ arg min
h∈H

󰀫
1

n1

n1󰁛

i=1

w(x
(1)
i )ℓ(h(x

(1)
i ), y

(1)
i )

󰀬
.
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Solution: reweighting the loss by density ratio
Problems:
◦ The weight function (i.e. density ratio) w is usually unknown in practice

⊲ Solution: estimate it
⊲ We only need some unlabeled target data, which is usually easier to get

◦ Unbounded/+∞ density ratio

⊲ Not fixable in general, especially the +∞ case
⊲ We will assume the existence of prob. measure σ (e.g., Lebesgue) s.t.
P(0),P(1) ≪ σ and the density ratio w(X) = dP(0)/dσ

dP(1)/dσ is bounded
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Why reweighting works: a simple theoretical justification

Consider the reweighted ERM on the source data

ĥ ∈ arg min
h∈H

󰀫
1

n1

n1󰁛

i=1

ŵ(x
(1)
i )ℓ(h(x

(1)
i ), y

(1)
i )

󰀬
.

Then if the loss function ℓ is bounded:

E(X,Y )∼P(0) [ℓ(ĥ(X), Y )]

= E(X,Y )∼P(1) [w(X) · ℓ(ĥ(X), Y )]

≤ [E(X,Y )∼P(1) − E(X,Y )∼󰁥P(1) ][w(X) · ℓ(ĥ(X), Y )] + E(X,Y )∼󰁥P(1) [w(X) · ℓ(ĥ(X), Y )]

≤ OP(1) + E(X,Y )∼󰁥P(1) [ŵ(X) · ℓ(ĥ(X), Y )] + CE(X,Y )∼󰁥P(1) |ŵ(X)− w(X)|

≤ E(X,Y )∼󰁥P(1) [ŵ(X)ℓ(h∗(X), Y )] + OP(1) + CE(X,Y )∼󰁥P(1) |ŵ(X)− w(X)|

≤ min
h∈H

E(X,Y )∼P(1) [w(X)ℓ(h∗(X), Y )]
󰁿 󰁾󰁽 󰂀

oracle

+ OP(1)
󰁿 󰁾󰁽 󰂀

uniform convergence

+ 2CE
X∼󰁥P(1)

X

|ŵ(X)− w(X)|
󰁿 󰁾󰁽 󰂀

cost of estimating the weight

.

This bound might be loose but it is good enough to justify the reweighted ERM here.
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§3.4: Density ratio estimation
◦ §3.4.1 A naive method: separate density estimation
◦ §3.4.2 Histogram-based method
◦ §3.4.3 Kernel mean matching
◦ §3.4.4 Discriminative learning
◦ §3.4.5 Kullback-Leibler method
◦ §3.4.6 Semi-parametric method
◦ §3.4.7 Least square method

Note: In this section, depending on the context, P(k) can be either the joint distribution
of (X,Y ) or the marginal distribution of X
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§3.4: Density ratio estimation
◦ §3.4.1 A naive method: separate density estimation
◦ §3.4.2 Histogram-based method
◦ §3.4.3 Kernel mean matching
◦ §3.4.4 Discriminative learning
◦ §3.4.5 Kullback-Leibler method
◦ §3.4.6 Semi-parametric method
◦ §3.4.7 Least square method
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A naive method: separate density estimation
Recall that the density ratio w(x) = dP(0)/dσ

dP(1)/dσ (x) :=
f(0)

f(1) (x).
We can estimate two densities f (0), f (1) separately by f̂ (0), f̂ (1), then plug in
ŵ(x) = f̂(0)

f̂(1)
(x). Let us review some commonly used density estimation methods.

Common density estimation methods:
◦ Histogram

⊲ Divide the space into bins B1, · · · , Bm

⊲ Estimate the density as f̂(x) =
󰁓m

j=1
#{i:xi∈Bj}
n·Vol(Bj)

1(x ∈ Bj)

◦ Kernel density estimation (KDE)
⊲ Choose a kernel function K : Rp → R+

⊲ Estimate the density as f̂(x) =
󰁓n

i=1
1
nhK(x−xi

h )
⊲ Examples of kernels (p = 1):

• Box kernel: K(x) = 1(|x| ≤ 1)
• Gaussian kernel: K(x) = (2π)−1 exp{−x2/2}
• Epanechnikov kernel: K(x) = 3

4 (1− x2)1(|x| ≤ 1)

See Wasserman (2006) for more details.
[1] Wasserman, L. (2006). All of nonparametric statistics. Springer Science & Business Media.
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A naive method: separate density estimation

Image URL: https://www.statsmodels.org/stable/examples/notebooks/generated/kernel_density.html
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A naive method: separate density estimation

Common density estimation methods: (continued)
◦ Parametric method: MLE

⊲ Assume the density f belongs to a parametric family p(·|θ)
⊲ 󰁥θ ← MLE (equivalent to minimize the KL divergence or cross-entropy)
⊲ Use p(·|󰁥θ) as the density
⊲ Can be combined with information criterion like AIC and BIC for model

selection → model mis-specification is allowed

Other methods:
◦ Nearest neighbors
◦ Bayesian method
◦ ...
See Sugiyama et al. (2012) for more details.

[1] Sugiyama, M., Suzuki, T., & Kanamori, T. (2012). Density ratio estimation in machine learning. Cambridge University Press.
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A naive method: separate density estimation
Issues:
◦ Dividing by a density could inflate the estimation error on the numarator
◦ Two densities might be very rough themselves but the ratio could be smooth

We know that smoother functions are usually easier to estimate. But the
density ratio estimation error can depend on the worse smoothness between
f
(0)
X and f

(1)
X .

Heuristics: If f (1)
X is bounded away from 0 and ∞, and f

(0)
X is bounded away

from ∞, then by triangle inequalities:
󰀏󰀏󰀏
f̂
(0)
X

f̂
(1)
X

(X)− f
(0)
X

f
(1)
X

(X)
󰀏󰀏󰀏 ≲ |f̂ (0)

X (X)− f
(0)
X (X)|+ |f̂ (1)

X (X)− f
(1)
X (X)|
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A naive method: separate density estimation

Issues: (continued)
◦ Estimation error of each density depends on the full dimension, while the

density ratio could live in a much smaller subspace with a smaller intrinsic
dimension
Heuristics: f (k)(x) =

󰁔d
j=1 f

(k)
j (xj), with f

(1)
j − f

(0)
j ≡ 0 for j = 2 : d. Then

f (0)/f (1)(x) = f
(0)
1 /f

(1)
1 (x1), where the intrinsic dimension = 1.

Solution:
◦ In practice, for non-parametric methods like KDE, we may choose different

kernels and different bandwidth h for f̂ (0)
X and f̂

(1)
X , which usually depend on

the smoothness of f̂ (0)
X and f̂

(1)
X

◦ Can we estimate the density ratio as a whole with the same tuning parameters
shared by the numerator and denominator?
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§3.4: Density ratio estimation
◦ §3.4.1 A naive method: separate density estimation
◦ §3.4.2 Histogram-based method
◦ §3.4.3 Kernel mean matching
◦ §3.4.4 Discriminative learning
◦ §3.4.5 Kullback-Leibler method
◦ §3.4.6 Semi-parametric method
◦ §3.4.7 Least square method
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Histogram-based method
Recall KDE f̂(x) =

󰁓n
i=1

1
nh1(󰀂x− xi󰀂2 ≤ h) with kernel K(x) = 1(󰀂x󰀂2 ≤ 1).

Goal: estimating w = f (0)/f (1) from {x(k)
i }nk

i=1
i.i.d.∼ f (k).

Estimator (Kpotufe, 2017): w̃(x) =
󰁥P(0)(B(x,r))
󰁥P(1)(B(x,r))

=
n−1
0

󰁓n0
i=1 1(󰀂x−x

(0)
i 󰀂2≤r)

n−1
1

󰁓n1
i=1 1(󰀂x−x

(1)
i 󰀂2≤r)

, and

ŵ(x) = w̃(x)1
󰀃󰁥P(1)(B(x, r)) ≥ α

󰀄

The estimator w̃ is analyzed in Cortes et al. (2008) with discrete P(0)
X and P(1)

X .
Here we present the results in Kpotufe (2017) as it allows general P(0)

X and P(1)
X

with smoothness conditions.

Assumptions:
◦ Compact support: supp(P(1)) is compact in Rd 1

◦ Bounded density ratio: 󰀂f󰀂∞ ≤ B < ∞
◦ β-Hölder class: |w(x)− w(x′)| ≤ L󰀂x− x′󰀂β2 with β ∈ (0, 1].

1d can be relaxed to a covering number which adapts to the ``intrinsic dimension" of supp(P(1))
[1] Kpotufe, S. (2017, April). Lipschitz density-ratios, structured data, and data-driven tuning. In Artificial Intelligence and
Statistics (pp. 1320-1328). PMLR.
[2] Cortes, C., Mohri, M., Riley, M., & Rostamizadeh, A. (2008, October). Sample selection bias correction theory. In
International conference on algorithmic learning theory (pp. 38-53). Berlin, Heidelberg: Springer Berlin Heidelberg.
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Histogram-based method
Theorem 3.4.1 (Kpotufe, 2017)

With r ≍
󰀅 log(n0∧n1)

n0∧n1

󰀆β/(2β+d), α ≍ log(n0)/n0, we have

EX∼P(1) |ŵ(X)− w(X)| ≲P

󰀗
log(n0 ∧ n1)

n0 ∧ n1

󰀘 β
2β+d

.

◦ The rate depends on the choice r ≍
󰀅 log(n0∧n1)

n0∧n1

󰀆β/(2β+d)

◦ When β is unknown, a validation-based model selection procedure (akin to the
Lepski's method, e.g. Lepski and Spokoiny, 1997) can be used to pick r. See
Section 4.2 of Kpotufe (2017). Such a validation-based model selection is
commonly used in non-parametrics. See more discussions in Section 5.3 of
Wasserman (2006).

◦ For w with higher-order Hölder conditions, current kernel K(x) = 1(󰀂x󰀂2 ≤ 1) is
too simple. Local polynomial estimates can be considered.

◦ Do we have other methods that do not suffer from curse of dimensionality?
[1] Lepski, O. V., & Spokoiny, V. G. (1997). Optimal pointwise adaptive methods in nonparametric estimation. The Annals of
Statistics, 25(6), 2512-2546.
[2] Kpotufe, S. (2017, April). Lipschitz density-ratios, structured data, and data-driven tuning. In Artificial Intelligence and
Statistics (pp. 1320-1328). PMLR.
[3] Wasserman, L. (2006). All of nonparametric statistics. Springer Science & Business Media.
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§3.4: Density ratio estimation
◦ §3.4.1 A naive method: separate density estimation
◦ §3.4.2 Histogram-based method
◦ §3.4.3 Kernel mean matching
◦ §3.4.4 Discriminative learning
◦ §3.4.5 Kullback-Leibler method
◦ §3.4.6 Semi-parametric method
◦ §3.4.7 Least square method
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Kernel mean matching
Moment matching (Methods of moments):
◦ Goal: estimating the distribution law µ ∈ P 2 from the sample xi

i.i.d.∼ µ

◦ Method: Let EX∼µX
r = EX∼µ̂X

r = n−1
󰁓n

i=1 x
r
i , r = 1, 2, · · ·

◦ Requirement: µ ∈ P can be uniquely identified by the moments

For our density ratio estimation problem: {x(k)
i }nk

i=1
i.i.d.∼ P(k)

◦ EX∼P(0) [Φ(X)] = EX∼P(1) [Φ(X)w(X)] for any appropriate Φ

◦ Maybe we can let EX∼󰁥P(0)X
r = EX∼󰁥P(1) [w(X)Xr] then solve w?

◦ Issues:
⊲ Consider finite r = 1 : R: Computable but not able to uniquely identify w
⊲ Consider r = 1, 2, . . .: Not computable, still cannot uniquely identify w
⊲ In fact, there exist counter-examples where two different distributions share

all the moments (e.g., Chapter 3.15 of Siegel, 2017, Chapter 11 of
Stoyanov (2013))

2µ ∈ P is usually indexed by a finite-dimensional parameter.
[1] Siegel, A. F. (2017). Counterexamples in probability and statistics. Routledge.
[2] Stoyanov, J. M. (2013). Counterexamples in probability. Courier Corporation.
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Kernel mean matching

Goal: Find an ``anchor" functional Φ such that µ : P 󰀁→ EX∼PΦ(X) is injective,
i.e. P ∕= Q ⇒ µ(P) ∕= µ(Q)

◦ Intuitively, such a Φ has to be ∞-dimensional
◦ This can be used to estimate w

Consequence of the injection: If w̃ : X → R+ satisfies EX∼P(1)w̃(X) = 1 and
EX∼P(1) [w̃(X)Φ(X)] = EX∼P(0) [Φ(X)], then w̃ = w.

In practice, we can replace P(k) with 󰁥P(k) for k = 0, 1 and estimate w.

Proof: EX∼w̃P(1) [Φ(X)] = EX∼P(0) [Φ(X)]

⇒ w̃P(1) = P(0) = wP(1)

⇒ w̃ = w □

Question: What ``anchor" functional Φ can we use?
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Kernel mean matching

Before we talk about the choice of Φ, let us review some basics of Reproducing
Kernel Hilbert Space (RKHS).

Definition 3.4.1
◦ A kernel 3 K : X × X → R is a symmetric and PSD, where PSD means
Kn×n = {K(xi,xj)}ni,j=1 is positive semidefinite for any {xi}ni=1 ⊆ X .

◦ For a Hilbert space H containing functions mapping from X to R, if
K(·,x) ∈ H and H satisfies the following kernel reproducing property:

〈h,K(·,x)〉H = h(x), ∀h ∈ H and ∀x ∈ X ,

then we call H as an RKHS induced by K.
◦ Φ(x) = K(·,x) is often called a feature map (X → R)
◦ Such an RKHS H is unique and H = span({Φ(x) : x ∈ X})

3This is different from the "kernel" in KDE we discussed before.
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Kernel mean matching

Definition 3.4.2 (Steinwart, 2001)
A kernel K is called universal if both of the followings hold:
◦ X is compact
◦ The associated RKHS H is dense in the space of continuous functions on X ,

i.e., for any f : X → R continuous and 󰂃 > 0, ∃h ∈ H s.t.
supx∈X |f(x)− h(x)| ≤ 󰂃.

It turns out that a universal kernel leads to a valid ``anchor" functional Φ.

Theorem 3.4.3 (Huang et al., 2006; Gretton et al., 2008)
When Φ(x) = K(·,x) is a feature map of the RKHS induced by a universal kernel
K, µ : P 󰀁→ EX∼PΦ(X) is injective, i.e. P ∕= Q ⇒ µ(P) ∕= µ(Q).

[1] Steinwart, I. (2001). On the influence of the kernel on the consistency of support vector machines. Journal of machine
learning research, 2(Nov), 67-93.
[2] Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., & Smola, A. (2006). Correcting sample selection bias by unlabeled
data. Advances in neural information processing systems, 19.
[3] Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., & Schölkopf, B. (2008). Covariate shift by kernel mean
matching.
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Kernel mean matching

Main conclusion: The feature map Φ associated with universal kernels is a good
``anchor" functional.

Examples of universal kernels: X compact ⊂ Rd

◦ Gaussian kernel: K(x,x′) = exp
󰀋
− 󰀂x−x′󰀂2

2

2σ2

󰀌

◦ Exponential (Laplace) kernel: K(x,x′) = exp
󰀋
− 󰀂x−x′󰀂2

σ

󰀌

◦ K(x,x′) = exp{〈x,x′〉}
◦ ...... (see Steinwart (2001))

Remark: Universal kernels are defined on compact X . There are relaxations of the
current universality definition which allow non-compact X . E.g., see
Sriperumbudur et al. (2011).

[1] Steinwart, I. (2001). On the influence of the kernel on the consistency of support vector machines. Journal of machine
learning research, 2(Nov), 67-93.
[2] Sriperumbudur, B. K., Fukumizu, K., & Lanckriet, G. R. (2011). Universality, Characteristic Kernels and RKHS Embedding of
Measures. Journal of Machine Learning Research, 12(7).
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Kernel mean matching

We will use the fact that EX∼P(1) [w̃(X)Φ(X)] = EX∼P(0) [Φ(X)] and
EX∼P(1)w̃(X) = 1 ⇒ w̃ = w to estimate w in practice. We call this procedure
kernel mean matching (KMM).

Practical algorithm: Requires {x(k)
i }nk

i=1
i.i.d.∼ P(k), 󰂃, B > 0 as input. Solve

min
w

󰀐󰀐󰀐󰀐
1

n1

n1󰁛

i=1

wiΦ(x
(1)
i )− 1

n0

n0󰁛

i=1

Φ(x
(0)
i )

󰀐󰀐󰀐󰀐
2

H

s.t. wi ∈ [0, B],

󰀏󰀏󰀏󰀏
1

n1

n1󰁛

i=1

wi − 1

󰀏󰀏󰀏󰀏 ≤ 󰂃.

◦ By reproducing property, 󰀂 1
n1

󰁓n1

i=1 wiΦ(x
(1)
i )− 1

n0

󰁓n0

i=1 Φ(x
(0)
i )󰀂2H =

1
n2
1
w⊤Kw − 2

n1
κ⊤w + constant, where κi =

1
n0

󰁓n0

j=1 K(x
(0)
j ,x

(1)
i ). Hence it

is a quadratic programming (QP) problem.
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Kernel mean matching: theory

Recall that our goal is to use {ŵi}n1
i=1 to do ERM on source data

ĥ = arg min
h∈H′

1

n1

n1󰁛

i=1

ŵiℓ(h(x
(1)
i ), y

(1)
i ),

and then bound the excess risk
E(X,Y )∼P(0)ℓ(ĥ(X), Y )− min

h∈H′
E(X,Y )∼P(0)ℓ(h(X), Y ),

where H′ is some hypothesis class.

Gap: However, the initial theoretical study of KMM either tries to bound
󰀂 1
n1

󰁓n1

i=1 ŵiΦ(x
(1)
i )− 1

n0

󰁓n0

i=1 Φ(x
(0)
i )󰀂H (Gretton et al., 2008) or bound

| 1
n1

󰁓n1

i=1 ŵiy
(1)
i − EY (0)| (Yu and Szepesvári, 2012).

[1] Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., & Schölkopf, B. (2008). Covariate shift by kernel mean
matching.
[2] Yu, Y., & Szepesvári, C. (2012). Analysis of kernel mean matching under covariate shift. arXiv preprint arXiv:1206.4650.
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Kernel mean matching: theory
Li et al. (2020) provides a study on the excess risk, but uses a variant of KMM
and requires a bit more conditions on the loss function ℓ. However, we can follow
their analysis to obtain the following result for KMM.

Goal: Do ERM on source data

ĥ = arg min
h∈H′

1

n1

n1󰁛

i=1

ŵiℓ(h(x
(1)
i ), y

(1)
i ),

and then bound the excess risk
E(X,Y )∼P(0)ℓ(ĥ(X), Y )− min

h∈H′
E(X,Y )∼P(0)ℓ(h(X), Y ).

Assumptions:
◦ Any h ∈ H′ is indexed by θ ∈ Θ with Θ a bounded subset of H (the RKHS we

used to estimate w)
◦ ℓ(h(x), y) := ℓ(x, y, θ) = 〈Υ(x, y),Λ〉H with 󰀂Λ󰀂H ≤ C < ∞, for any θ ∈ Θ

◦ EY |X=x[ℓ(x, y, θ)] = 〈Φ(x), θ〉H for any θ ∈ Θ

[1] Li, F., Lam, H., & Prusty, S. (2020, June). Robust importance weighting for covariate shift. In International conference on
artificial intelligence and statistics (pp. 352-362). PMLR.

Copyright © 2024 Yang Feng & Ye Tian §3.4.3 Kernel mean matching 36 / 74



Kernel mean matching: theory

Theorem 3.4.4 (Adapted from Theorem 2 in Li et al., 2020)

E(X,Y )∼P(0)ℓ(ĥ(X), Y )− min
h∈H′

E(X,Y )∼P(0)ℓ(h(X), Y ) ≲P n
−1/2
0 + n

−1/2
1 .

◦ Relaxations on the condition that ℓ(x, y, θ) = 〈Υ(x, y),Λ〉H and
EY |X=x[ℓ(x, y, θ)] = 〈Φ(x), θ〉H are possible. Then we would introduce an
additional approximation error on the RHS. This phenomenon is common in
kernel ridge regression. E.g., see Yu and Szepesvári (2012) and Smale and Zhou
(2007).

◦ Cortes et al. (2008) also analyzes how KMM affects the target excess risk,
under a penalized kernel regression setting. Their analysis depends on the
so-called stability of the regression algorithm and some stringent conditions on
the kernel (strictly definite positive etc.)

[1] Li, F., Lam, H., & Prusty, S. (2020, June). Robust importance weighting for covariate shift. In International conference on
artificial intelligence and statistics (pp. 352-362). PMLR.
[2] Yu, Y., & Szepesvári, C. (2012). Analysis of kernel mean matching under covariate shift. arXiv preprint arXiv:1206.4650.
[3] Smale, S., & Zhou, D. X. (2007). Learning theory estimates via integral operators and their approximations. Constructive
approximation, 26(2), 153-172.
[4] Cortes, C., Mohri, M., Riley, M., & Rostamizadeh, A. (2008, October). Sample selection bias correction theory. In
International conference on algorithmic learning theory (pp. 38-53). Berlin, Heidelberg: Springer Berlin Heidelberg.
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Kernel mean matching: connection to SVM
KMM is connected to kernelized SVM and this connection motivates our next
density ratio estimation method. Let's review some basics of SVM first.

Support vector machine (SVM)
◦ Goal: Use a linear classifier to classify {x(0)

i , y
(0)
i }n0

i=1 and {x(1)
i , y

(1)
i }n1

i=1 with
y
(0)
i ≡ −1 and y

(0)
i ≡ 1, where x

(k)
i ∈ Rd

◦ Linear classifier (separating hyperplane):

ha,b(x) =

󰀫
1, if a⊤x+ b ≥ 0;

−1, if a⊤x+ b < 0.
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Kernel mean matching: connection to SVM

◦ Soft-margin SVM: C > 0 is a constant chosen by users.

min
a,b,u,v

1

2
󰀂a󰀂22 + C(1⊤u+ 1⊤v)

s.t. a⊤x
(1)
i + b ≥ 1− ui, i = 1 : n1

a⊤x
(0)
i + b ≤ −1 + vi, i = 1 : n0

u ≥ 0,v ≥ 0, a ∈ Rd, b ∈ R
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Kernel mean matching: connection to SVM
◦ Kernelized soft-margin SVM: Consider an RKHS H with kernel K and

feature embedding Φ : X → H.

min
a,b,u,v

1

2
󰀂a󰀂2H + C(1⊤u+ 1⊤v)

s.t. 〈a,Φ(x(1)
i )〉H + b ≥ 1− ui, i = 1 : n1

〈a,Φ(x(0)
i )〉H + b ≤ −1 + vi, i = 1 : n0

u ≥ 0,v ≥ 0, a ∈ H, b ∈ R

Dual form: Kkk = {K(x
(k)
i ,x

(k)
j )}nk

i,j=1, K10 = {K(x
(1)
i ,x

(0)
j )}i=1:n1,j=1:n0

min
µ,λ

−1⊤µ− 1⊤λ+
1

2
µ⊤K11µ+

1

2
λ⊤K00λ− µ⊤K10λ

s.t. 0n1 ≤ µ ≤ C1n1

0n0 ≤ λ ≤ C1n0 ,

1⊤µ = 1⊤λ.

Let us connect the dual form to the KMM.
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Kernel mean matching: connection to SVM

KMM: min
w

1
n2
1
w⊤K11w − 2

n0n1
1⊤
n0
K01w

s.t. wi ∈ [0, B], 1
n1

󰁓n1

i=1 wi = 1

SVM: min
µ,λ

−1⊤
n1
µ− 1⊤

n0
λ+ 1

2µ
⊤K11µ+ 1

2λ
⊤K00λ− µ⊤K10λ

s.t. 0n1 ≤ µ ≤ C1n1 ;
0n0 ≤ λ ≤ C1n0 ;
1⊤
n1
µ = 1⊤

n0
λ.

◦ Let λ = 1
n0

1n0
, µ = 1

n1
w, C → +∞: two problems are equivalent

◦ This implies that KMM tends to distinguish the target and source domains by
minimizing the violation of linear constraints in the embedding space

◦ More discussions can be found in Gretton et al. (2008) and Bickel et al. (2009).
◦ Question: Can we generalize this idea of ``discriminatve learning"?

[1] Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., & Schölkopf, B. (2008). Covariate shift by kernel mean
matching.
[2] Bickel, S., Brückner, M., & Scheffer, T. (2009). Discriminative learning under covariate shift. Journal of Machine Learning
Research, 10(9).
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§3.4: Density ratio estimation
◦ §3.4.1 A naive method: separate density estimation
◦ §3.4.2 Histogram-based method
◦ §3.4.3 Kernel mean matching
◦ §3.4.4 Discriminative learning
◦ §3.4.5 Kullback-Leibler method
◦ §3.4.6 Semi-parametric method
◦ §3.4.7 Least square method
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Discriminative learning: a Bayes view
Suppose the data we observe is from a mixture model π0P(0)

X,Y + π1P(1)
X,Y , with

πk = P(Z = k) and Z ∈ {0, 1} as a latent label of each observation.
◦ Since P(0)

Y |X = P(1)
Y |X : we can view X ∼ π0P(0)

X + π1P(1)
X

◦ By Bayes rule:
dP(0)

X

dP(1)
X

(x) =
π∗
1

π∗
0

dP(0)
Z,X

dP(1)
Z,X

(x) =
π∗
1

π∗
0

· P(Z = 0|X = x)

P(Z = 1|X = x)
.

◦ With data {x(k)
i }nk

i=1, we can approximate π∗
k with π̂k = nk/(n0 + n1),

k = 0, 1. It suffices to estimate the propensity score P(Z = 1|X = x).
◦ This idea generalizes the intuition we saw before from the connection between

KMM and SVM: ``Classifying the target and source domains"
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Discriminative learning

In practice, we can follow a two-step discriminative learning method (Bickel
et al., 2007, 2009):
◦ Step 1: Learn the propensity score P(Z = k|X = x) by your favorite model
⇒ 󰁥P(Z = k|X = x)

◦ Step 2: Use the weight ŵ(x) = π̂1

π̂0
· 󰁥P(Z=0|X=x)
󰁥P(Z=1|X=x)

to reweight the source data
then solve the ERM problem

Remarks:
◦ A similar connection between learning the weight and classifying target/source

domains has been studied before in literature for sample selection bias
correction (Zadrozny, 2004; Cortes et al., 2008)

[1] Bickel, S., Brückner, M., & Scheffer, T. (2007, June). Discriminative learning for differing training and test distributions. In
Proceedings of the 24th international conference on Machine learning (pp. 81-88).
[2] Bickel, S., Brückner, M., & Scheffer, T. (2009). Discriminative learning under covariate shift. Journal of Machine Learning
Research, 10(9).
[3] Zadrozny, B. (2004, July). Learning and evaluating classifiers under sample selection bias. In Proceedings of the twenty-first
international conference on Machine learning (p. 114).
[4] Cortes, C., Mohri, M., Riley, M., & Rostamizadeh, A. (2008, October). Sample selection bias correction theory. In
International conference on algorithmic learning theory (pp. 38-53). Berlin, Heidelberg: Springer Berlin Heidelberg.
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Discriminative learning

Remarks: (continued)
◦ This connects to the inverse propensity score weighting (IPW) estimator for

ATE in causal inference (Horvitz and Thompson, 1952; Ding, 2023):
1
n1

󰁓n1

i=1
y
(1)
i

󰁥P(Z=1|X=x
(1)
i )

− 1
n0

󰁓n0

i=1
y
(0)
i

󰁥P(Z=0|X=x
(0)
i )

.

⊲ IPW estimator corrects the selection bias for both treatment and control
groups.

⊲ Discriminative learning corrects the bias in the source and the target serves
as the reference

◦ The region of x where 󰁥P(Z = 1|X = x) is close to 1 is dangerous.
◦ Overfitting might be an issue due to the reason above. We can use a separate

sample to estimate the propensity score, but then we need to
``interpolate"/``extrapolate" (originally we only need the propensity scores at
those source observations)

[1] Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal
of the American statistical Association, 47(260), 663-685.
[2] Ding, P. (2023). A first course in causal inference. arXiv preprint arXiv:2305.18793.
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Discriminative learning

Integrated model: Bickel et al. (2007, 2009) also propose to estimate the
Y |X = x model and propensity score in one shot (instead of the previous
two-step procedure ``weight estimating - reweighted ERM")
◦ They consider the Bayes model

p(y, z,θ,v|x) = p(y|z,x;θ,v)󰁿 󰁾󰁽 󰂀
main model

× p(z|x,v)󰁿 󰁾󰁽 󰂀
propensity score model

× p(θ)p(v)󰁿 󰁾󰁽 󰂀
priors

,

where θ,v are parameters and p represents densities. Then they find the
maximum a posteriori (MAP) estimator for θ,v.

◦ Two-step method is easier to use in practice.

[1] Bickel, S., Brückner, M., & Scheffer, T. (2007, June). Discriminative learning for differing training and test distributions. In
Proceedings of the 24th international conference on Machine learning (pp. 81-88).
[2] Bickel, S., Brückner, M., & Scheffer, T. (2009). Discriminative learning under covariate shift. Journal of Machine Learning
Research, 10(9).

Copyright © 2024 Yang Feng & Ye Tian §3.4.4 Discriminative learning 46 / 74



Discriminative learning: theory

There are very few discussions on the generalization error of discriminative
learning. But we can have the following intuition.
Recall our previous analysis: consider the reweighted ERM on the source data

ĥ ∈ arg minh∈H
󰀋
n−1

󰁓n
i=1 ŵ(x

(1)
i )ℓ(h(x

(1)
i ), y

(1)
i )

󰀌
.

Then if the loss function ℓ is bounded:

E(X,Y )∼P(0)ℓ(ĥ(X), Y ) ≤ min
h∈H

E(X,Y )∼P(1) [w(X)ℓ(h(X), Y )]
󰁿 󰁾󰁽 󰂀

oracle

+ OP(1)
󰁿 󰁾󰁽 󰂀

uniform convergence

+ 2CE
X∼󰁥P(1)

X

|ŵ(X)− w(X)|
󰁿 󰁾󰁽 󰂀

cost of estimating the weight

.

When the propensity score is well estimated, E
X∼󰁥P(1)

X

|ŵ(X)− w(X)| can also be
well bounded. But additional work might be necessary (e.g. how to translate the
estimation error of propensity score to the estimation error of w)
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§3.4: Density ratio estimation
◦ §3.4.1 A naive method: separate density estimation
◦ §3.4.2 Histogram-based method
◦ §3.4.3 Kernel mean matching
◦ §3.4.4 Discriminative learning
◦ §3.4.5 Kullback-Leibler method
◦ §3.4.6 Semi-parametric method
◦ §3.4.7 Least square method
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Kullback-Leibler method

◦ It is known that MLE is equivalent to minimizing the KL divergence or
cross-entropy between the empirical and underlying true distribution.

◦ Here we borrow this idea to estimate the weight w. Consider P̃(0) = ŵP(1).

KL(P(0)󰀂P̃(0)) = EX∼P(0)

󰁫
log

󰀓 dP(0)

ŵdP(1)

󰀔󰁬

= EX∼P(0)

󰁫
log

󰀓dP(0)

dP(1)
(X)

󰀔󰁬

󰁿 󰁾󰁽 󰂀
constant

−EX∼P(0) [log ŵ(X)].

Hence we can estimate w by finding ŵ maximizing

EX∼󰁥P(0) [log ŵ(X)] = n−1
0

n0󰁛

i=1

log ŵ(x(0)
i ).

◦ We can consider the estimators of form ŵ(x) =
󰁓b

r=1 αrϕr(x), where
{ϕr(x)}br=1 are the basis functions with ϕr(x) ≥ 0 for all x ∈ X and r = 1 : b.
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Kullback-Leibler method

KL importance estimation procedure: (Sugiyama et al., 2007, 2008)

max
{αr}b

r=1

n0󰁛

i=1

log
󰀕 b󰁛

r=1

αrϕr(x
(0)
i )

󰀖

s.t.
n1󰁛

i=1

b󰁛

r=1

αrϕr(x
(1)
i ) = n1, αr ≥ 0, r = 1 : b.

◦ Source data {x(1)
i }n1

i=1 is only used in the constraint.
◦ The optimization problem is convex.
◦ The basis functions {ϕr(x)}br=1 and hyperparameter b can be chosen by

cross-validation.
◦ Sugiyama et al. (2008) considers b = n0 and ϕi(x) = Φ(x

(0)
i )(x) = K(x,x

(0)
i )

with K and Φ being the Gaussian kernel and the associated feature map.

[1] Sugiyama, M., Nakajima, S., Kashima, H., Bünau, P., & Kawanabe, M. (2007). Direct importance estimation with model
selection and its application to covariate shift adaptation. Advances in neural information processing systems, 20.
[1] Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., Von Bünau, P., & Kawanabe, M. (2008). Direct importance estimation
for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60, 699-746.
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Kullback-Leibler method: theory

Suppose n0 = n1 = n and denote the entire function class as

G = {
󰁓b

r=1 αrϕθr ,ϕθr ∈ F ,αr ≥ 0, b ≥ 1}.

Assumptions:
◦ w = dP(0)

dP(1) is bounded away from 0 and +∞
◦ EX∼P(1)ϕθr (X) is away from 0 and ϕθr is bounded a.e., ∀ϕθr ∈ F
◦ The complexity of G is not too large. (measured by the metric entropy)

Theorem 3.4.1 (Sugiyama et al., 2008)
The generalized Hellinger distance between ŵ and w can be bounded as

HP(1)(ŵ, w) := [EX∼P(1)(
󰁳
ŵ(X)−

󰁳
w(X))2]1/2 ≲P n− 1

2+γ + approx. error,

where γ ∈ (0, 2) is related to the complexity of G.

There is an approximation error because we do not assume w ∈ G.
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Kullback-Leibler method: theory

Main result from last slide:

HP(1)(ŵ, w) := [EX∼P(1)(
󰁳
ŵ(X)−

󰁳
w(X))2]1/2 ≲P n− 1

2+γ + approx. error,

where γ ∈ (0, 2) is related to the complexity of G.

◦ Sugiyama et al. (2008) also presents a bound for a parametric function class G.
◦ It is unclear how the bound of HP(1)(ŵ, w) can be translated to the

generalization error on the target domain. E.g., as we showed before, an upper
bound of the L1(󰁥P(1))-estimation error of w, i.e. EX∼󰁥P(1) |ŵ(X)− w(X)| can
be useful. But

H2
P(1)(ŵ, w) ≲ EX∼P(1) |ŵ(X)− w(X)|,

which seems to say the current result is not strong enough.
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Kullback-Leibler method: a different perspective
Nguyen et al. (2010) developed a similar KL-based estimator by the variational
form of f -divergence:

Df (P,Q) := EX∼Q

󰀗
f

󰀕
dP
dQ

󰀖󰀘
= sup

g:X→R

󰀝
EX∼P[g(X)]− EX∼Q[f

∗(g(X))]

󰀞
,

where f∗(x) = supy∈R{xy − f(y)} is the conjugate function of f , the supremum
is taken at g ∈ ∂f(dP/dQ), and ∂f∗(x) is the subdifferential of f∗ at x.

Consequence for KL-divergence: set
f(x) = (x logx) · 1(x > 0) + (+∞) · 1(x ≤ 0),

then
DKL(P(0)󰀂P(1)) = sup

g:X→R
{EX∼P(0) [g(X)]− EX∼P(1) [eg(X)−1]}

= sup
h:X→R+

{EX∼P(0) [logh(X)]− EX∼P(1) [h(X)] + 1},

where the supremum is attained at h = dP(0)/dP(1).

[1] Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information Theory, 56(11), 5847-5861.
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Kullback-Leibler method: a different perspective

Theorem 3.4.2 (Nguyen et al. (2010))

DKL(P(0)󰀂P(1)) = sup
h:X→R+

{EX∼P(0) [logh(X)]− EX∼P(1) [h(X)] + 1}

where the supremum is attained at h = dP(0)/dP(1).

This motivates the following KL-based estimator.

A second KL-based estimator of the density ratio: (Nguyen et al., 2010)
ŵ = arg max

h:X→R+

{EX∼󰁥P(0) [logh(X)]− EX∼󰁥P(1) [h(X)]}.

In practice, we use a specific function class G (e.g. RKHS with a universal kernel)
to estimate h : X → R+.

[1] Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information Theory, 56(11), 5847-5861.
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Kullback-Leibler method: a different perspective

A second KL-based estimator of the density ratio: (Nguyen et al., 2010)
ŵ = arg max

h:X→R+

{EX∼󰁥P(0) [logh(X)]− EX∼󰁥P(1) [h(X)]}. (󰂏)

Recall the previous KL-based estimator (Sugiyama et al., 2007, 2008):

max
h:X→R+

EX∼󰁥P(0) [logh(X)]

s.t. EX∼󰁥P(1)h(X) = 1.

The second one can be viewed as a Lagrangian form of the previous one by
moving the constraint to the objective function.

[1] Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information Theory, 56(11), 5847-5861.
[2] Sugiyama, M., Nakajima, S., Kashima, H., Bünau, P., & Kawanabe, M. (2007). Direct importance estimation with model
selection and its application to covariate shift adaptation. Advances in neural information processing systems, 20.
[3] Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., Von Bünau, P., & Kawanabe, M. (2008). Direct importance estimation
for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60, 699-746.

Copyright © 2024 Yang Feng & Ye Tian §3.4.5 Kullback-Leibler method 55 / 74



Kullback-Leibler method: a different perspective
A second KL-based estimator of the density ratio: (Nguyen et al., 2010)

ŵ = arg max
h∈G

{EX∼󰁥P(0) [logh(X)]− EX∼󰁥P(1) [h(X)]}. (󰂏)

Theorem 3.4.3 (Nguyen et al., 2010)
With similar assumptions as before, and w ∈ G, we have

HP(1)(ŵ, w) := [EX∼P(1)(
󰁳
ŵ(X)−

󰁳
w(X))2]1/2 ≲P n− 1

2+γ ,

where γ ∈ (0, 2) is related to the complexity of G.

◦ They also propose to use the RKHS with Gaussian kernel as G
◦ By plugging ŵ in (󰂏), we also get an estimator for DKL(P(0)󰀂P(1)):

󰁥DKL = EX∼󰁥P(0) [log ŵ(X)]− EX∼󰁥P(1) [ŵ(X)]

Nguyen et al. (2010) show that | 󰁥DKL −DKL| ≲P n−1/2 under slightly stronger
conditions.

[1] Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information Theory, 56(11), 5847-5861.
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§3.4: Density ratio estimation
◦ §3.4.1 A naive method: separate density estimation
◦ §3.4.2 Histogram-based method
◦ §3.4.3 Kernel mean matching
◦ §3.4.4 Discriminative learning
◦ §3.4.5 Kullback-Leibler method
◦ §3.4.6 Semi-parametric method
◦ §3.4.7 Least square method
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Semi-parametric method

When deriving the first KL method (Sugiyama et al., 2008), we did not model
P(0)
X and P(1)

X explicitly. Recall that we considered P̃(0) = ŵP(1), and

KL(P(0)󰀂P̃(0)) = EX∼P(0)

󰁫
log

󰀓 dP(0)

ŵdP(1)

󰀔󰁬

= EX∼P(0)

󰁫
log

󰀓dP(0)

dP(1)
(X)

󰀔󰁬

󰁿 󰁾󰁽 󰂀
constant

−EX∼P(0) [log ŵ(X)].

We treated the first term as constant and threw it away.

Motivation: However, by replacing the ordinary likelihood and KL divergence
with the profile likelihood (Owen, 2001), we are able to model P(k)

X at the same
time and obtain a semi-pamametric estimator.

[1] Owen, A. B. (2001). Empirical likelihood. Chapman and Hall/CRC.
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Semi-parametric method

Consider the semi-parametric setting:

{x(k)
i }nk

i=1
i.i.d.∼ P(k),

dP(0)

dP(1)
(x) = g(x;θ),

with a known link function g.
◦ Profile empirical log-likelihood ratio function (Qin and Lawless, 1994)

l = sup
󰀝 1󰁛

k=0

nk󰁛

i=1

log p(k)i +

n1󰁛

i=1

log g(x(1)
i ;θ) :

1󰁛

k=0

nk󰁛

i=1

p
(k)
i = 1, p

(k)
i ≥ 0,

1󰁛

k=0

nk󰁛

i=1

p
(k)
i g(x

(1)
i ;θ) = 1

󰀞

The supremum is attained at p(k)i = 1
n

1

1+λ[g(x
(k)
i ;θ)+1]

with Lagrangian
multiplier λ ≥ 0. We can plug it into ℓ.

[1] Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. the Annals of Statistics, 22(1), 300-325.
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Semi-parametric method

◦ Profile empirical log-likelihood ratio function (Qin and Lawless, 1994):
(continued)

l(θ,λ) = −
1󰁛

k=0

nk󰁛

i=1

log[1 + λ(g(x
(k)
i ;θ) + 1)] +

n1󰁛

i=1

log g(x(1)
i ;θ).

A semi-parametric estimator: (Qin, 1998)
Step 1: Let ∂l

∂θ = ∂l
∂λ = 0 ⇒ (θ̂, λ̂)

Step 2: Estimate the density ratio as ŵ(x) = g(x; θ̂)

Suppose the true density ratio w(x) = g(x;θ∗) and n0 ≍ n1.

Theorem 3.4.1 (Qin, 1998)
Under some regularity conditions on g (e.g. curvature near θ, smoothness, etc.),
within the region {θ ∈ Rd : 󰀂θ − θ∗󰀂2 ≤ n−1/3}, l admits a local maximizer
(θ̂, λ̂) with

√
n(θ̂, λ̂)⊤

d−→ N(0,W ).

[1] Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. the Annals of Statistics, 22(1), 300-325.
[2] Qin, J. (1998). Inferences for case-control and semiparametric two-sample density ratio models. Biometrika, 85(3), 619-630.
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Semi-parametric method

Main result from last slide: Within the region {θ ∈ Rd : 󰀂θ − θ∗󰀂2 ≤ n−1/3}, l
admits a local maximizer (θ̂, λ̂) with

√
n(θ̂, λ̂)⊤

d−→ N(0,W ).

◦ The asymptotic normality only holds for solutions in the local area around θ∗

(which is reasonable because there is no global shape restrictions on g). A
proper initializer might be needed in practice.

◦ Under certain conditions, we can get

EX∼󰁥P(1) |g(X; θ̂)− g(X;θ∗)| ≲ 󰀂θ̂ − θ∗󰀂2 ≲P n−1/2,

which could be translated to a bound of the generalization error on the target
domain.

◦ Qin (1998) also studies a special choice g(x;θ) = exp{α+ φ(x;β)}
(exponential tilting) and gives similar results.
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§3.4: Density ratio estimation
◦ §3.4.1 A naive method: separate density estimation
◦ §3.4.2 Histogram-based method
◦ §3.4.3 Kernel mean matching
◦ §3.4.4 Discriminative learning
◦ §3.4.5 Kullback-Leibler method
◦ §3.4.6 Semi-parametric method
◦ §3.4.7 Least square method
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Least square method
Recall our previous analysis for bounded loss ℓ:

E(X,Y )∼P(0)ℓ(ĥ(X), Y ) ≤ min
h∈H

E(X,Y )∼P(1) [w(X)ℓ(h(X), Y )]
󰁿 󰁾󰁽 󰂀

oracle

+ OP(1)
󰁿 󰁾󰁽 󰂀

uniform convergence

+ 2CE
X∼󰁥P(1)

X

|ŵ(X)− w(X)|
󰁿 󰁾󰁽 󰂀

cost of estimating the weight

.

Consider
󰀃
E
X∼󰁥P(1)

X

|ŵ(X)− w(X)|
󰀄2 ≤ E

X∼󰁥P(1)
X

|ŵ(X)− w(X)|2. And

E
X∼󰁥P(1)

X

|ŵ(X)− w(X)|2 =
1

2
E
X∼󰁥P(1)

X

[ŵ2(X)]− E
X∼󰁥P(1)

X

[ŵ(X)w(X)]

+
1

2
E
X∼󰁥P(1)

X

[w2(X)]

≈ 1

2
E
X∼󰁥P(1)

X

[ŵ2(X)]− E
X∼󰁥P(0)

X

[ŵ(X)]

+
1

2
E
X∼󰁥P(1)

X

[w2(X)]
󰁿 󰁾󰁽 󰂀

constant
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Least square method
◦ Hence we can search over some function class to find ŵ that minimizes

1
2EX∼󰁥P(1)

X

[ŵ2(X)]− E
X∼󰁥P(0)

X

[ŵ(X)].
◦ Note that

1

2
E
X∼󰁥P(1)

X

[ŵ2(X)]− E
X∼󰁥P(0)

X

[ŵ(X)] ≈ 1

2
E
X∼P(1)

X

[ŵ2(X)]− E
X∼P(0)

X

[ŵ(X)].

We can connect this estimator with the f-divergence estimator (Nguyen et al.,
2010) we discussed before, where

Df (P(0),P(1)) := EX∼P(1)

󰀗
f

󰀕
dP(0)

dP(1)

󰀖󰀘

= sup
g:X→R+

󰀝
− EX∼P(1) [f∗(g(X))] + EX∼P(0) [g(X)]

󰀞
,

and the solution of the supremum is g = dP(0)/dP(1).

Take f∗(x) = 1
2x

2, then two estimators are equivalent. 4

4This choice of f and f∗ does not satisfy the f -divergence definition though.
[1] Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information Theory, 56(11), 5847-5861.
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Least square method

◦ Consider the estimators of form ŵ(x) =
󰁓b

r=1 αrϕr(x), where {ϕr(x)}br=1 are
the basis functions with ϕr(x) ≥ 0 for all x ∈ X and r = 1 : b.

Least square method (the constrained version): (Kanamori et al., 2009)

min
α∈Rb

1

2
α⊤󰁦Hα− ĥ⊤α+ λ1⊤

b α

s.t. α ≥ 0b,

where 󰁥Hrr′ = EX∼󰁥P(1) [ϕr(X)ϕr′(X)], ĥr = EX∼󰁥P(0)ϕr(X), λ ≥ 0.

◦ In many cases, Hessian 󰁦H is strictly postitive-definite, which makes the problem
a convex one with reasonable solutions.

◦ The penalty term λ1⊤
b α might lead to sparse solutions (similar to Lasso

penalty)

[1] Kanamori, T., Hido, S., & Sugiyama, M. (2009). A least-squares approach to direct importance estimation. The Journal of
Machine Learning Research, 10, 1391-1445.
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Least square method

Least square method (the constrained version): (Kanamori et al., 2009)

min
α∈Rb

1

2
α⊤󰁦Hα− ĥ⊤α+ λ1⊤

b α

s.t. α ≥ 0b,

where 󰁥Hrr′ = EX∼󰁥P(1) [ϕr(X)ϕr′(X)], ĥr = EX∼󰁥P(0)ϕr(X), λ ≥ 0.

Theorem 3.4.1 (Kanamori et al., 2009)
Under certain conditions and n0 ≳ n2

1

J(α̂) ≤ J(α∗) + 1/n1

where J(α) := 1
2α

⊤Hα− h⊤α+ λ1⊤
b α, H and h are population-level

counterpart of 󰁦H and ĥ, α∗ = arg minα≥0b
J(α).

◦ This result does not immediately lead to estimation error of w.

[1] Kanamori, T., Hido, S., & Sugiyama, M. (2009). A least-squares approach to direct importance estimation. The Journal of
Machine Learning Research, 10, 1391-1445.
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Least square method

Least square method (the unconstrained version): (Kanamori et al., 2009)
min
α∈Rb

1

2
α⊤󰁦Hα− ĥ⊤α+ λ󰀂α󰀂22.

where 󰁥Hrr′ = EX∼󰁥P(1) [ϕr(X)ϕr′(X)], ĥr = EX∼󰁥P(0)ϕr(X), λ ≥ 0.

◦ Explicit solution α̂ = (󰁦H + λIb×b)
−1ĥ

◦ We can truncate α̂ coordinate-wisely at 0 to guarantee positivity of the
estimated density ratio ŵ(x) =

󰁓b
r=1 α̂rϕb(x)

◦ Some theory are derived in Kanamori et al. (2009). See Section 3 in their paper.
◦ Kanamori et al. (2009) observes that the unconstrained method performed

better than the constrained version in practice.

[1] Kanamori, T., Hido, S., & Sugiyama, M. (2009). A least-squares approach to direct importance estimation. The Journal of
Machine Learning Research, 10, 1391-1445.
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Least square method: a kernelized version
Consider estimating w by functions in an RKHS H with some kernel K.
Recall that in least square method, we want to find ŵ that minimizes1

2
E
X∼󰁥P(1)

X

[ŵ2(X)]− E
X∼󰁥P(0)

X

[ŵ(X)].

We can add a ridge penalty λ󰀂ŵ󰀂2H. By the representation property of RKHS, it
suffices to consider

ŵ(x) =

1󰁛

k=0

nk󰁛

i=1

αiK(x,x
(k)
i ).

Least square method (the kernelized version): (Kanamori et al., 2012)
1

2
E
X∼󰁥P(1)

X

[ŵ2(X)]− E
X∼󰁥P(0)

X

[ŵ(X)] + λ󰀂ŵ󰀂2H,

where λ ≥ 0.

◦ An explicit solution exists. See Theorem 1 of Kanamori et al. (2012).
◦ Upper bound of EX∼P(1)󰀂ŵ − w󰀂2 can be proved. See Section 3.3 of Kanamori

et al. (2012).

[1] Kanamori, T., Suzuki, T., & Sugiyama, M. (2012). Statistical analysis of kernel-based least-squares density-ratio estimation.
Machine Learning, 86, 335-367.
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