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No target data
In some cases, it is hard to collect any data in target domain, for example,
self-driving test data.

Then we can only rely on the source data to build the model, and we want to
understand its performance on the target domain.
Pictures are generated by Gemini Advanced.
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Problem setup: No target data

Consider a noiseless classification problem.
◦ Target domain: X ∼ P(0), Y = f (0)(X) : X → {0, 1}

Source domain: X ∼ P(1), Y = f (1)(X) : X → {0, 1}
where f (0), f (1) are deterministic, and X ⊆ Rd

◦ Concept drift: P(0) ∕= P(1), f (0) ∕= f (1)

◦ 0-1 loss function: ℓ(y, y′) = 1(y ∕= y′), classification error (risk function):
R(k)(h) = EX∼P(k) [ℓ(h(X), f (k)(X))]

◦ What we observed: only source data {x(1)
i , y

(1)
i }n1

i=1, no target data
◦ Goal: Learn a classifier ĥ from a hypothesis class H with a small target error
R(0)(ĥ)

Question: How?
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Learning from the source solution
◦ The most intuitive way: use the source solution ĥ(1) = arg minh∈H R̂(1)(h),

where the empirical risk R̂(1)(h) = n−1
1

󰁓n1

i=1 ℓ(h(x
(1)
i ), f (1)(x

(1)
i ))

◦ Question: How does it perform on the target?

Denote R(k)(h1, h2) = EX∼P(k) [ℓ(h1(X), h2(X))], and φ(k) is the density of P(k).

R(0)(ĥ) = R(1)(ĥ) +R(0)(ĥ)−R(1)(ĥ)

= R(1)(ĥ) +R(0)(ĥ, f (0))−R(1)(ĥ, f (1))

≤ R(1)(ĥ) + |R(0)(ĥ, f (0))−R(1)(ĥ, f (0))|+ |R(1)(ĥ, f (0))−R(1)(ĥ, f (1))|

≤ R(1)(ĥ) +

󰀏󰀏󰀏󰀏
󰁝
[φ(1)(x)− φ(0)(x)]1(ĥ(x) ∕= f (0)(x))dx

󰀏󰀏󰀏󰀏
󰁿 󰁾󰁽 󰂀

≤supA |
󰁕
[φ(1)(x)−φ(0)(x)]1(A)dx|

+ EX∼P(1) |f (1)(X)− f (0)(X)|
≤ R(1)(ĥ) + EX∼P(1) |f (1)(X)− f (0)(X)|+ dTV(P(1),P(0)).
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Learning from the source solution

Theorem 2.1.1 (Ben-David et al., 2006, 2010a)

R(0)(ĥ) ≤ R(1)(ĥ) + EX∼P(1) |f (1)(X)− f (0)(X)|+ dTV(P(1),P(0))

◦ Total variation dTV(P(1),P(0)) = supA |P(1)(A)− P(0)(A)|.
◦ If H is not too large, e.g., H is a VC-class, then we can further bound the first

term as

R(1)(ĥ) ≤ R̂(1)(ĥ) + C

󰁶
VC(H)

n1
,

≤ R̂(1)(h) + C

󰁶
VC(H)

n1

≤ R(1)(h) + 2C

󰁶
VC(H)

n1
w.h.p.

for any h. Plugging in h = arg minh∈H R(1)(h), we have the following result.
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Learning from the source solution
Theorem 2.1.2 (Ben-David et al., 2006, 2010a)

If H is a VC-class, then w.h.p.,

R(0)(ĥ) ≤ min
h∈H

R(1)(h) + 2C

󰁶
VC(H)

n1
+ EX∼P(1) |f (1)(X)− f (0)(X)|

+ dTV(P(1),P(0)).

In fact, we can play the same trick used before on minh∈H R(1)(h) and get the
following more interpretable result:

R(0)(ĥ) ≤ min
h∈H

R(0)(h) + 2C

󰁶
VC(H)

n1
+ 2EX∼P(1) |f (1)(X)− f (0)(X)|

+ 2dTV(P(1),P(0)).

[1] Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations for domain adaptation. Advances in
neural information processing systems, 19.
[2] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from
different domains. Machine learning, 79, 151-175.
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No target data: the first bound

Theorem 2.1.3 (The first bound)
If H is a VC-class, then w.h.p.,

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁶
VC(H)

n1
󰁿 󰁾󰁽 󰂀

cost of learning from samples

+ 2EX∼P(1) |f (1)(X)− f (0)(X)|
󰁿 󰁾󰁽 󰂀

posterior drift

+ 2dTV(P(1),P(0))󰁿 󰁾󰁽 󰂀
covariate shift

.

A few comments:
◦ Error decomposition: there is a ``bias-variance'' trade-off (no free lunch)
◦ A drawback of this bound: the posterior drift and covariate shift terms do not

depend on H =⇒ might be too loose
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No target data: an improvement
Let's go back the proof to see where we might lose something.

Denote R(k)(h1, h2) = EX∼P(k) [ℓ(h1(X), h2(X))], and φ(k) is the density of P(k).

R(0)(ĥ) = R(1)(ĥ) +R(0)(ĥ)−R(1)(ĥ)

= R(1)(ĥ) +R(0)(ĥ, f (0))−R(1)(ĥ, f (1))

≤ R(1)(ĥ) + |R(0)(ĥ, f (0))−R(1)(ĥ, f (0))|+ |R(1)(ĥ, f (0))−R(1)(ĥ, f (1))|

≤ R(1)(ĥ) +

󰀏󰀏󰀏󰀏
󰁝
[φ(1)(x)− φ(0)(x)]1(ĥ(x) ∕= f (0)(x))dx

󰀏󰀏󰀏󰀏
󰁿 󰁾󰁽 󰂀

≤supA |
󰁕
[φ(1)(x)−φ(0)(x)]1(A)dx|

+ EX∼P(1) |f (1)(X)− f (0)(X)|

≤ R(1)(ĥ) + EX∼P(1) |f (1)(X)− f (0)(X)|+ dTV(P(1)
X ,P(0)

X ).

◦ supA |
󰁕
[φ(1)(x)− φ(0)(x)]1(A)dx| is loose: no need to consider all

measurable sets A

◦ EX∼P(1) |f (1)(X)− f (0)(X)| is also loose: now it is unrelated to the loss ℓ
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No target data: an improvement

For any classifier h∗:

R(0)(ĥ) = R(0)(h∗) +R(0)(ĥ, h∗)

= R(0)(h∗) +R(1)(ĥ, h∗) +R(0)(ĥ, h∗)−R(1)(ĥ, h∗)

≤ R(0)(h∗) +R(1)(h∗) +R(1)(ĥ)

+ |EX∼P(0)1(ĥ(X) ∕= h∗(X))− EX∼P(1)1(ĥ(X) ∕= h∗(X))|.

Definition 2.1.1 (Kifer et al., 2004)
◦ The function class H△H = {1(h(x) ∕= h′(x)) : h, h′ ∈ H}
◦ The set collection I(H△H) = {{x : 1(g(x) = 1)} : g ∈ H△H}
◦ The H△H-divergence dH△H(P,P′) = supA∈I(H△H) |P(0)(A)− P(1)(A)|

Note that
|EX∼P(0)1(ĥ(X) ∕= h∗(X))− EX∼P(1)1(ĥ(X) ∕= h∗(X))| ≤ dH△H(P(0),P(1)).

[1] Kifer, D., Ben-David, S., & Gehrke, J. (2004, August). Detecting change in data streams. In VLDB (Vol. 4, pp. 180-191).
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No target data: an improvement

R(0)(ĥ) ≤ R(1)(ĥ) +R(0)(h∗) +R(1)(h∗) + dH△H(P(0),P(1)).

Let's pick h∗ = arg minh∈H[R(0)(h) +R(1)(h)] and denote
λ∗ = R(0)(h∗) +R(1)(h∗). Then

R(0)(ĥ) ≤ R(1)(ĥ) + λ∗ + dH△H(P(0),P(1)).

Similar to before, if H is a VC-class, then w.h.p.

R(0)(ĥ) ≤ R̂(1)(ĥ) + C

󰁶
VC(H)

n1
+ λ∗ + dH△H(P(0),P(1))

≤ min
h∈H

R(1)(h) + 2C

󰁶
VC(H)

n1
+ λ∗ + dH△H(P(0),P(1)).
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No target data: an improvement

Theorem 2.1.2 (Ben-David et al., 2010a)

If H is a VC-class, then
R(0)(ĥ) ≤ min

h∈H
R(1)(h) + 2C

󰁶
VC(H)

n1
+ λ∗ + dH△H(P(0),P(1)).

Compared to our previous result in Theorem 2.1.2:
◦ dH△H(P(0),P(1)) only involves sets in I(H△H), not all measurable ones
◦ λ∗ = R(0)(h∗) +R(1)(h∗) depends on the loss ℓ in a more explicit way

In fact, we can derive other forms of bounds that are more interpretable.
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No target data: an improvement

Recall that
R(0)(ĥ) ≤ R(1)(ĥ) +R(0)(h∗) +R(1)(h∗) + dH△H(P(0),P(1)).

Instead of setting h∗ = arg minh∈H[R(0)(h) +R(1)(h)], we set

h∗ = arg min
h∈H

R(0)(h)

Therefore,

R(0)(ĥ) ≤ R̂(1)(ĥ) + C

󰁵
VC(H)

n1
+R(0)(h∗) +R(1)(h∗) + dH△H(P(0),P(1))

≤ R̂(1)(h∗) + C

󰁵
VC(H)

n1
+R(0)(h∗) +R(1)(h∗) + dH△H(P(0),P(1))

≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift + covariate shift

+ dH△H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

.
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No target data: an improvement

Theorem 2.1.3 (The second bound)

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift + covariate shift

+dH△H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

.

◦ Compared to the result in Theorem 2.1.2:

R(0)(ĥ) ≤ min
h∈H

R(1)(h)+2C

󰁵
VC(H)

n1
+min

h∈H
{R(0)(h) +R(1)(h)}+ dH△H(P(0),P(1)),

this bound in Theorem 2.1.3 looks more like an oracle inequality and it is easier
to interpret

◦ This is an improvement over the previous bound in Theorem 2.1.2 because:
⊲ dH△H(P(0),P(1)) only involves sets in I(H△H), not all measurable ones
⊲ R(1)(h∗) depends on the loss ℓ in a more explicit way
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Further generalization: go beyond classification

◦ Target domain: X ∼ P(0), Y = f (0)(X) : X → Y
Source domain: X ∼ P(1), Y = f (1)(X) : X → Y
where f (0), f (1) are deterministic, and X ⊆ Rd, Y ⊆ R

◦ Concept drift: P(0) ∕= P(1), f (0) ∕= f (1)

◦ General loss function: ℓ(y, y′), risk R(k)(h) = EX∼P(k) [ℓ(h(X), f (k)(X))]

⊲ ℓ is symmetric, bounded, and satisfies triangle inequality
⊲ Examples:

• Binary classification: Y = {0, 1}, 0-1 loss ℓ01(y, y
′) = 1(y ∕= y′)

• Regression: Y = a bounded set in R, ℓq-loss ℓq(y, y
′) = |y − y′|q,

q ≥ 1

◦ What we observed: only source data {x(1)
i , y

(1)
i }n1

i=1, no target data
◦ Goal: Obtain a learner ĥ from a hypothesis class H with a small target error
R(0)(ĥ)
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Further generalization: go beyond classification

Let's go back to the derivation of the ``improved" bound. For any classifier h∗:

R(0)(ĥ) = R(0)(h∗) +R(0)(ĥ, h∗)

= R(0)(h∗) +R(1)(ĥ, h∗) +R(0)(ĥ, h∗)−R(1)(ĥ, h∗)

≤ R(0)(h∗) +R(1)(h∗) +R(1)(ĥ) + |R(0)(ĥ, h∗)−R(1)(ĥ, h∗)|󰁿 󰁾󰁽 󰂀
(󰂏)

.

Previously, we bound (󰂏) by dH△H(P(0),P(1)) when ℓ is 0-1 loss.

Definition 2.1.1 (Mansour et al., 2009)

The discrepency distance discℓ,H(P(0),P(1)) = sup
h,h′∈H

|R(0)(h, h′)−R(1)(h, h′)|.

When ℓ is 0-1 loss, discℓ,H(P(0),P(1)) = dH△H(P(0),P(1)).

Therefore, R(0)(ĥ) ≤ R(0)(h∗) +R(1)(h∗) +R(1)(ĥ) + discℓ,H(P(0),P(1)).

[1] Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. In 22nd
Conference on Learning Theory, COLT 2009.
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Further generalization: go beyond classification
Define the Rademacher complexity of H as

R(1)
n1

(H) =
1

n1
E
󰀗

sup
h∈H

n1󰁛

i=1

σih(x
(1)
i )

󰀘
, {σi}n1

i=1
i.i.d.∼ Unif({±1}).

Then by setting h∗ = arg minh∈H R(0)(h),

R(1)(ĥ) ≤ R̂(1)(ĥ) + sup
h∈H

|R(1)(h)− R̂(1)(h)|

≤ R̂(1)(h∗) + sup
h∈H

|R(1)(h)− R̂(1)(h)|

≤ R(1)(h∗) + 2 sup
h∈H

|R(1)(h)− R̂(1)(h)|.

By bounded difference inequality and symmetrization, w.h.p.,

sup
h∈H

|R(1)(h)− R̂(1)(ĥ)| ≤ C

󰁵
1

n1
+R(1)

n1
(ℓ(f (0),H)),

where ℓ(f (0),H) := {ℓ(f (0), h) : h ∈ H}.
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Further generalization: go beyond classification

Combining all pieces together, we have

R(0)(ĥ) ≤ R(0)(h∗) +R(1)(h∗) +R(1)(ĥ) + discℓ,H(P(0),P(1))

≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+C

󰁵
1

n1
+R(1)

n1
(ℓ(f (0),H))

󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)

󰁿 󰁾󰁽 󰂀
posterior drift+covariate shift

+ discℓ,H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

This result is adapted from Mansour et al. (2009). Their original results are of a
similar flavor as the results in Theorem 2.1.2. The version presented here might
be easier to interpret and understand.

[1] Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. In 22nd
Conference on Learning Theory, COLT 2009.
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Further generalization: go beyond classification
Theorem 2.1.2 (The third bound)

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+C

󰁵
1

n1
+R(1)

n1
(ℓ(f (0),H))

󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)

󰁿 󰁾󰁽 󰂀
posterior drift+covariate shift

+ discℓ,H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

A few comments:
◦ This bound is more general than the VC bound
◦ If loss function ℓ(y, y′) is Lipschitz over y and y′, through Rademacher

contraction inequalities (e.g., Vershynin, 2018; Wainwright, 2019),
R(1)

n1 (ℓ(f
(0),H)) can be further bounded by

R(1)
n1

(ℓ(f (0),H)) ≤ R(1)
n1

(H) + C

󰁵
1

n1
, w.h.p.

[1] Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science (Vol. 47). Cambridge
university press.
[2] Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48). Cambridge university press.
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No target data: summary
◦ The first bound:

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2EX∼P(1) |f
(1)(X)− f (0)(X)|

󰁿 󰁾󰁽 󰂀
posterior drift

+ 2dTV(P(1),P(0))󰁿 󰁾󰁽 󰂀
covariate shift

.

◦ The second bound: h∗ = arg minh∈H R(0)(h)

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift+covariate shift

+dH△H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

◦ The third bound: h∗ = arg minh∈H R(0)(h), bounded Lipschitz ℓ

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+2C

󰁵
1

n1
+R(1)

n1
(H)

󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift+covariate shift

+discℓ,H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

Key message: We can derive various different bounds, but the trade-off
phenomenon (error decomposition) always stands.
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No target data: Do (2), (3) really improve (1)?
(1) R(0)(ĥ) ≤ min

h∈H
R(0)(h)

󰁿 󰁾󰁽 󰂀
oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2EX∼P(1) |f
(1)(X)− f (0)(X)|

󰁿 󰁾󰁽 󰂀
posterior drift

+2dTV(P(1),P(0))󰁿 󰁾󰁽 󰂀
covariate shift

.

(2)

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift+covariate shift

+ dH△H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

(3)

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+2C

󰁵
1

n1
+R(1)

n1
(H)

󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift+covariate shift

+ discℓ,H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

◦ (2), (3) have sharper (pure) covariate shift terms, but have a ``mixed" term
and lose some interpretation

◦ When f (1) = f (0) and P(1) = P(0), i.e. no distribution shift, (2) and (3) have a
worse constant 3 in the oracle rate, compared to the constant 1 in (1)

◦ ``All theories are imperfect, but some are useful!"
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Few target data + many source data

In some cases, it is possible to collect data from both target and source domains,
but the data from target domain are few since they are hard/expensive to get.
◦ Medical research:

⊲ a specific target population (target) and general population cohorts
(source)

⊲ a rare medical condition (target) and more common medical conditions
(source)

◦ Educational research:
⊲ underrepresented communities (target) and well-represented communities

(source)
⊲ urban schools (target) and affluent schools in the city (sources)

In these cases, we might want to aggregate the data to enhance the performance
on target domain.
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Problem setup: Few target data + many source data

Consider a noiseless classification problem.
◦ Target domain: X ∼ P(0), Y = f (0)(X) : X 󰀁→ {0, 1}

Source domain: X ∼ P(1), Y = f (1)(X) : X 󰀁→ {0, 1}
where f (0), f (1) are deterministic

◦ Concept drift: P(0) ∕= P(1), f (0) ∕= f (1)

◦ 0-1 loss function: ℓ(y, y′) = 1(y ∕= y′), classification error (risk function):
R(k)(h) = EX∼P(k) [ℓ(h(X), f (k)(X))]

◦ What we observed: source data {x(1)
i , y

(1)
i }n1

i=1, target data {x(0)
i , y

(0)
i }n0

i=1

◦ Usually, n0 ≪ n1

◦ Goal: Learn a classifier ĥ from a hypothesis class H with a small target error
R(0)(ĥ)

Question: How?
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Few target data + many source data

Instead of doing empirical risk minimization on source data alone, we will consider
a weighted combination of target and source risks:

ĥ ∈ arg min
h∈H

[αR̂(0)(h) + (1− α)R̂(1)(h)], α ∈ [0, 1],

where R̂(k)(h) = n−1
k

󰁓nk

i=1 ℓ(h(x
(k)
i ), y

(k)
i ), k = 0, 1.

Question: How does ĥ perform on the target problem? i.e. R(0)(ĥ) ≤ ?

Copyright © 2024 Yang Feng & Ye Tian §2.2.1: Weighted ERM 30 / 70



Few target data + many source data

Denote R̂α(h) = αR̂(0)(h) + (1− α)R̂(1)(h),
Rα(h) = αR(0)(h) + (1− α)R(1)(h).

Note that
R(0)(ĥ) ≤ Rα(ĥ) + (1− α)[R(0)(ĥ)−R(1)(ĥ)].

Recall our H△H-divergence:

R(0)(ĥ)−R(1)(ĥ) ≤ R(0)(ĥ, h∗)−R(1)(ĥ, h∗) + [R(0)(f (0), h∗) +R(1)(f (1), h∗)]

≤ dH△H(P(0),P(1)) + [R(0)(f (0), h∗) +R(1)(f (1), h∗)].

Take h∗ = arg minh∈H[R(0)(f (0), h∗) +R(1)(f (1), h∗)]:

R(0)(ĥ)−R(1)(ĥ) ≤ dH△H(P(0),P(1)) + λ∗,

where λ∗ = R(0)(f (0), h∗) +R(1)(f (1), h∗).
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Few target data + many source data

With h(0) = arg minh∈H R(0)(h),

R̂(0)(ĥ) ≤ Rα(ĥ) + (1− α)[dH△H(P(0),P(1)) + λ∗]

≤ R̂α(ĥ) + C

󰁶󰀗
α2

n0
+

(1− α)2

n1

󰀘
VC(H) + (1− α)[dH△H(P(0),P(1)) + λ∗]

≤ Rα(h(0)) + 2C

󰁶󰀗
α2

n0
+

(1− α)2

n1

󰀘
VC(H) + (1− α)[dH△H(P(0),P(1)) + λ∗]

≤ R(0)(h(0)) + 2C

󰁶󰀗
α2

n0
+

(1− α)2

n1

󰀘
VC(H) + 2(1− α)[dH△H(P(0),P(1)) + λ∗].

where R(0)(h(0)) = minh∈H R(0)(h), and λ∗ = R(0)(f (0), h∗) +R(1)(f (1), h∗).
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Few target data + many source data: choose α

Theorem 2.2.1 (Blitzer et al., 2007)

R̂(0)(ĥ) ≤ R(0)(h(0)) + 2C

󰁶󰀗
α2

n0
+ (1−α)2

n1

󰀘
VC(H) + 2(1− α)[dH△H(P(0),P(1)) + λ∗],

w.h.p.

Question: Can we optimize the bound over α?
◦ Theoretically: Yes.
◦ Practically:

⊲ dH△H(P(0),P(1)) + λ∗ needs to be estimated from the data
⊲ Estimating dH△H(P(0),P(1)) only requires unlabeled data, which is

usually cheap to get
⊲ Estimating λ∗ requires labeled data

◦ If we believe the last term is small, then α = n0

n0+n1
minimizes the 2nd term

=⇒ weighting risk functions by sample size! This implies a non-adaptive rate:

R̂(0)(ĥ) ≤ min
h∈H

R(0)(h) + 2C

󰁵
VC(H)

n0 + n1
+ 2

n1

n0 + n1󰁿 󰁾󰁽 󰂀
≈1

[dH△H(P(0),P(1)) + λ∗].

[1] Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Wortman, J. (2007). Learning bounds for domain adaptation. Advances
in neural information processing systems, 20.
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Few target data + many source data: choose α

The non-adaptive rate: w.h.p.,

R̂(0)(ĥ)− min
h∈H

R(0)(h) ≤ 2C

󰁵
VC(H)

n0 + n1
+ 2

n1

n0 + n1󰁿 󰁾󰁽 󰂀
≈1

[dH△H(P(0),P(1)) + λ∗].

◦ The ``target-only" rate: Doing ERM on the target data leads to

R̂(0)(ĥ)− min
h∈H

R(0)(h) ≤ 2C

󰁵
VC(H)

n0
, w.h.p.

◦ When the 3rd term is large (i.e., severe covariate shift or posterior drift), our
non-adaptive rate is worse than the target-only rate

Remedy: We can use the same training data to estimate the 3rd term, i.e.,
◦ d̂H△H(P(0),P(1)) = supA∈I(H△H) |n−1

0

󰁓n0
i=1 1(x

(0)
i ∈ A)− n−1

1

󰁓n1
i=1 1(x

(1)
i ∈ A)|

◦ λ̂ = arg minh∈H[R̂(0)(h) + R̂(1)(h)]

◦ It can be shown that |d̂H△H(P(0),P(1))− dH△H(P(0),P(1))|, |λ̂− λ∗|
≲

󰁴
VC(H)
n0∧n1

≍
󰁴

VC(H)
n0
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Few target data + many source data: choose α

Then we get an adaptive choice of α:

α =

󰀻
󰀿

󰀽

n0

n0+n1
, if d̂H△H(P(0),P(1)) + λ̂ ≤ C ′

󰁴
VC(H)
n0

,

1, if d̂H△H(P(0),P(1)) + λ̂ > C ′
󰁴

VC(H)
n0

,

where C ′ > 0 is a large constant.
This leads to an adaptive rate: w.h.p.

R̂(0)(ĥ)− min
h∈H

R(0)(h) ≲
󰁵

VC(H)

n0 + n1
+ [dH△H(P(0),P(1)) + λ∗] ∧

󰁵
VC(H)

n0
.

◦ Adaptivity: Even when dH△H(P(0),P(1)) + λ∗ is large, ĥ performs no worse
than the target-only ERM classifier

◦ This rate is already sharp in many cases, but we can further improve it by using

α̂ = arg min
α∈[0,1]

󰀫
2C

󰁶󰀗
α2

n0
+

(1− α)2

n1

󰀘
VC(H) + 2(1− α)[d̂H△H(P(0),P(1)) + λ̂]

󰀬
,

where we estimate the RHS of Theorem 2.2.1 then choose α to minimize it.

Copyright © 2024 Yang Feng & Ye Tian §2.2.1: Weighted ERM 35 / 70



Few target data + many source data: choose α

R(0)(ĥ) = A

󰁶
α2

n0
+

(1− α)2

n1
+B(1− α), A,B are some constants.

This seems to verify that our first adaptive choice of α = n0

n0+n1
or 1 is nearly

optimal.
Picture source: Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning
from different domains. Machine learning, 79, 151-175.
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§2.2: Few target data + many source data
◦ §2.2.1 Weighted ERM
◦ §2.2.2 Extension to multiple sources
◦ §2.2.3 Summary
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Extension to multiple sources

Consider a noiseless classification problem.
◦ Target domain: X ∼ P(0), Y = f (0)(X) : X 󰀁→ {0, 1}

Source domains: X ∼ P(k), Y = f (k)(X) : X 󰀁→ {0, 1}, k = 1 : K
where {f (k)}Kk=0 are deterministic

◦ 0-1 loss function: ℓ(y, y′) = 1(y ∕= y′), classification error (risk function):
R(k)(h) = EX∼P(k) [ℓ(h(X), f (k)(X))]

◦ What we observed:
⊲ Source data {x(k)

i , y
(k)
i }nk

i=1 for k = 1 : K;
⊲ Target data {x(0)

i , y
(0)
i }n0

i=1.
◦ Goal: Learn a classifier ĥ from a hypothesis class H with a small target error
R(0)(ĥ)
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Extension to multiple sources

Given a weight vector α = {αk}Kk=0 ∈ SK (i.e. αk ≥ 0 and
󰁓

k αk = 1), we set

ĥ = arg min
h∈H

󰀫
K󰁛

k=0

αkR̂
(k)(h)

󰀬
.

Ben-David et al. (2010a) proves two different bounds of R(0)(ĥ).
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Extension to multiple sources

Theorem 2.2.1 (Pairwise divergence, Ben-David et al., 2010a)

R(0)(ĥ) ≤ min
h∈H

R(0)(h)+C
󰁴󰁓K

k=0
α2

k

nk
VC(H)+

󰁓K
k=1 αk[2λ

∗
k+dH△H(P(k),P(0))],

w.h.p., where λ∗
k = minh∈H{R(0)(h) +R(k)(h)}.

Theorem 2.2.2 (Combined divergence, Ben-David et al., 2010a)

R(0)(ĥ) ≤ min
h∈H

R(0)(h) +C ′
󰁴󰁓K

k=0
α2

k

nk
VC(H) + 2λ∗

α + dH△H(Pα, (1− α0)P(0)),

w.h.p., where λ∗
α = minh∈H{(1− α0)R

(0)(h) +
󰁓K

k=1 αkR
(k)(h)},

Pα =
󰁓K

k=1 αkP(k).

◦ Theorem 2.2.1 reduces to one of the previous single-source results when K = 1.
◦ Similar to our previous discussions, we can find the optimal α by estimating the

RHS then minimize it.

[1] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from
different domains. Machine learning, 79, 151-175.
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Weighting risk functions or weighting hypotheses?

◦ We have studied the ERM hypothesis derived from weighted risk functions:
ĥ = arg min

h∈H

󰀝 K󰁛

k=0

αkR̂
(k)(h)

󰀞
.

◦ What about the ERM hypothesis derived from weighted hypotheses?
ĥ(x) =

K󰁛

k=0

αkĥ
(k)(x),

where ĥ(k) = arg minh∈H R̂(k)(h). 1

◦ Facts:
⊲ For some specific hypothesis classes H and loss functions ℓ (e.g., linear

regressions with square loss), weighting hypotheses can deliver a similar
rate.

⊲ But in general, two weighting strategies can be quite different.

1For classification, a post-processing step is needed to ensure that ĥ is a classifier.
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Weighting risk functions or weighting hypotheses?
◦ For weighted hypotheses, the proof used in Ben-David et al. (2010a) usually

leads to an extra term ∼
󰁴
(K + 1)/

󰁓K
k=0 nk due to the simultaneous control

of (K + 1) hypotheses h ∈ H, which is sub-optimal in many cases
◦ Mansour et al. (2008) creates the following example where any convex

combination of source hypotheses fails on the target domain

A regression example of K = 2 sources with no target data: X = {a, b},
P(1)
X = δa, P(2)

Y |X = δ0, P(1)
X = δb, P(2)

Y |X = δ1. Consider absolute loss ℓ and
zero-error hypotheses h(1)(x) ≡ 0, h(2)(x) ≡ 1 on two source domains. On target
domain, P(0)

X,Y = 1
2P

(1)
X,Y + 1

2P
(2)
X,Y .

◦ For any λ ∈ [0, 1], hλ := λh(0) + (1− λ)h(1) has target risk 1/2

◦ Instead, for any λ ∈ (0, 1), h̃λ := arg min
h:{a,b}→{0,1}

{λR(0)(h) + (1− λ)R(1)(h)} has

target risk 0

Why this happens: Learning single source hypotheses might be unstable!
[1] Mansour, Y., Mohri, M., & Rostamizadeh, A. (2008). Domain adaptation with multiple sources. Advances in neural
information processing systems, 21.
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Weighting risk functions or weighting hypotheses?

◦ Mansour et al. (2008) shows that the weighted hypotheses may generalize well
to the target domain, but the weight depends on the P(k)

X and differs for
different test points

◦ Moreover, if we fix a hypothesis class H to learn source hypotheses, the
weighted average of them may not belong to H

Overall, weighting the risk functions might be easier to analyze and more reliable
in some cases.

[1] Mansour, Y., Mohri, M., & Rostamizadeh, A. (2008). Domain adaptation with multiple sources. Advances in neural
information processing systems, 21.
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Few target data + many source data: a summary

Weighted estimator: ĥ ∈ arg minh∈H[αR̂(0)(h) + (1− α)R̂(1)(h)], α ∈ [0, 1].

◦ A general bound: w.h.p.

R̂(0)(ĥ) ≤ R(0)(h(0))+2C

󰁶󰀗
α2

n0
+ (1−α)2

n1

󰀘
VC(H)+2(1−α)[dH△H(P(0),P(1))+λ∗],

where λ∗ = minh∈H{R(0)(h) +R(1)(h)}.
◦ Some choices of α:

⊲ α = n0/(n0 + n1): good choice for weak distribution shift, potential
negative transfer ⇒ non-adaptive rate

⊲ Estimate α from the data ⇒ non-adaptive rate
◦ Extension to the multi-source situation
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§2.3: Posterior drift
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Posterior drift

Examples:
◦ Social science: The population of a county does not change a lot, but the social

policy changes over time, which leads to changes of the response
◦ Movie/Book rating: The underlying rating mechanisms for different genres of

movies/books might be different.
◦ ...

In this section, we will focus on posterior drift in a general set-up, and we will see
that the generalization error under posterior drift is simpler than the previous
result under concept drift.

In the Lecture 4, we will come back to posterior drift and discuss it under more
specific models.
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Posterior drift: problem setup

◦ Target domain: X ∼ P(0), Y = f (0)(X) : X → Y}
Source domains: X ∼ P(k), Y = f (k)(X) : X → Y, k = 1 : K
where {f (k)}Kk=0 are deterministic, and X ⊆ Rd, Y ⊆ R

◦ Posterior drift: P(k) all equal := P, f (k) are not equal
◦ General loss function: ℓ(y, y′), risk R(k)(h) = EX∼P[ℓ(h(X), f (k)(X))]

⊲ ℓ is symmetric, bounded, and satisfies triangle inequality
⊲ Examples:

• Binary classification: Y = {0, 1}, 0-1 loss ℓ01(y, y
′) = 1(y ∕= y′)

• Regression: Y = a bounded set in R, ℓq-loss ℓq(y, y
′) = |y − y′|q,

q ≥ 1

◦ What we observed:
⊲ Source data {x(k)

i , y
(k)
i }nk

i=1 for k = 1 : K;
⊲ Target data {x(0)

i , y
(0)
i }n0

i=1.
◦ Goal: Obtain a learner ĥ from a hypothesis class H with a small target error
R(0)(ĥ)
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Posterior drift: problem setup

◦ Target domain: X ∼ P(0), Y = f (0)(X) : X → Y}
Source domains: X ∼ P(k), Y = f (k)(X) : X → Y, k = 1 : K
where {f (k)}Kk=0 are deterministic, and X ⊆ Rd, bounded Y ⊆ R

◦ We will characterize the similarity between target and the k-th source by
R(f (0), f (k)) := EX∼P[ℓ(f

(0)(X), f (k)(X))].
◦ WLOG, assume R(f (0), f (1)) ≤ R(f (0), f (2)) . . . ≤ R(f (0), f (K)).
◦ For ℓ, we assume:

⊲ It is symmetric;
⊲ It satisfies β-triangle inequality with β ≥ 1:

ℓ(h1, h2) ≤ β[ℓ(h1, h3) + ℓ(h3, h2)].

Examples: 0-1 loss ℓ01, ℓq-loss (q ≥ 1), square-root loss (
√
x− x′)
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Posterior drift: problem setup

◦ Consider the weighted ERM ĥ = arg minh∈H
󰀋󰁓K

k=0 αkR̂
(k)(h)

󰀌
, where󰁓K

k=0 αk = 1.
◦ Assume that the following uniform concentration holds:

|R̂α(h)−Rα(h)| ≤ rate(n,α,H, ℓ), ∀h ∈ H, w.h.p.

where R̂α(h) =
󰁓K

k=0 αkR̂
(k)(h), Rα(h) =

󰁓K
k=0 αkR

(k)(h), n = {nk}Kk=0.

⊲ In general: rate(n,α,H, ℓ) ≤ 2R(n,α,H, ℓ) + C
󰁴󰁓K

k=0(α
2
k/nk),

where the Rademacher complexity
R(n,α,H, ℓ) := E

󰀅
suph∈H

󰁓K
k=0

αk

nk

󰁓nk

i=1 σ
(k)
i ℓ(h(x

(k)
i ), f (k)(x

(k)
i ))

󰀆

⊲ For ℓ01 loss and a VC-class H, similar to before:
rate(n,α,H, ℓ) ≲

󰁴
VC(H)

󰁓K
k=0(α

2
k/nk)

⊲ For ℓq loss and many d-dimensional parametric classes H:
rate(n,α,H, ℓ) ≲

󰁴
d
󰁓K

k=0(α
2
k/nk)
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Posterior drift: target excess risk
The analysis is quite similar to our previous one. Let h(0) = arg minh∈H R(0)(h).

R(ĥ, f (0)) ≤
K󰁛

k=0

αkβ[R(ĥ, f (k)) +R(f (k), f (0))]

= βRα(ĥ) + β

K󰁛

k=1

αkR(f (k), f (0))

≤ βR̂α(ĥ) + β · rate(n,α,H, ℓ) + β

K󰁛

k=1

αkR(f (k), f (0))

≤ βRα(h
(0)) + 2β · rate(n,α,H, ℓ) + β

K󰁛

k=1

αkR(f (k), f (0))

≤ β2R(0)(h(0)) + 2β · rate(n,α,H, ℓ) + (β + β2)

K󰁛

k=1

αkR(f (k), f (0))
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Posterior drift: target excess risk
Theorem 2.3.1 (An extension of the result in Crammer et al., 2008)
w.h.p.
R(ĥ, f (0)) ≤ β2 min

h∈H
R(0)(h)

󰁿 󰁾󰁽 󰂀
oracle

+2β · rate(n,α,H, ℓ)

󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ (β + β2)

K󰁛

k=1

αkR(f (k), f (0))

󰁿 󰁾󰁽 󰂀
posterior drift

.

◦ For ℓ01 loss and a VC-class H of dimension d, or for ℓq loss and many
d-dimensional parametric classes H: rate(n,α,H, ℓ) ≲

󰁴
d
󰁓K

k=0(αk/nk)2

◦ If we pick αk = nk/N with N =
󰁓K

k=0 nk: rate(n,α,H, ℓ) ≲
󰁳
d/N

◦ Crammer et al. (2008) considered a progressive source inclusion with K α-
choices:

[1] Crammer, K., Kearns, M., & Wortman, J. (2008). Learning from Multiple Sources. Journal of Machine Learning Research,
9(8).
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Posterior drift: target excess risk

Theorem 2.3.2 (Crammer et al., 2008)

Consider ĥ0:k = arg minh∈H{
󰁓k

j=0
nj

n0:k
R̂(k)(h)}. Then w.h.p., for all k = 0 : K,

R(ĥ1:k, f
(0)) ≤ β2 min

h∈H
R(0)(h)

󰁿 󰁾󰁽 󰂀
oracle

+2βrate({nj}kj=0,H, ℓ)

󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ (β + β2)

k󰁛

j=1

nj

n0:k
R(f (j), f (0))

󰁿 󰁾󰁽 󰂀
posterior drift

.

◦ For ℓ01 loss and a VC-class H of dimension d, or for ℓq loss and many
d-dimensional parametric classes H:
rate({nj}kj=0,H, ℓ) ≲

󰁴
d+log K

n0:k
, n0:k =

󰁓k
j=0 nj

◦ We can choose the optimal hypothesis from {ĥ0:k}Kk=0 based on the in-sample
or hold-out evaluation on the RHS, and analyze its excess risk

[1] Crammer, K., Kearns, M., & Wortman, J. (2008). Learning from Multiple Sources. Journal of Machine Learning Research,
9(8).
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§2.4: Hardness results
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Recall the general upper bound

In this section, we will understand where the hardness comes from in domain
adaptation.

Let's recall our generalization bound in §2.1 on target domain when a single
source data set of size n1 is present and no target data is available.

The second bound of target risk in §2.1: If H is a VC-class, then

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift + covariate shift

+dH△H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

,

where h∗ = arg minh∈H R(0)(h).

Question: Are the last two terms necessary?

Answering this question can help me understand the fundamental difficulty of
domain adaptation.
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Hardness results: covariate shift

Consider the noiseless classification setting with covariate shift:
◦ Target domain: X ∼ P(0), Y = f(X) : X → {0, 1}
◦ Source domain: X ∼ P(1), Y = f(X) : X → {0, 1}
◦ Covariate drift: P(0) ∕= P(1)

◦ 0-1 loss function: ℓ(y, y′) = 1(y ∕= y′), classification error (risk function):
R(k)(h) = EX∼P(k) [ℓ(h(X), f(X))]

◦ What we observed: source data S = {x(1)
i , y

(1)
i }n1

i=1, unlabeled target data
T = {x(0)

i }n0
i=1

◦ Hypothesis class H is a VC-class, h∗ = arg minh∈H R(0)(h)
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Hardness results: covariate shift
Theorem 2.4.1 (Necessity of a small dH△H(P(0),P(1)), Ben-David et al.,
2010b)

For any 󰂃 > 0 and learner ĥ = ĥ(·;S) : X → {0, 1}, ∃ a labeling function f , s.t.
(1) R(1)(h∗) ≤ 󰂃;
(2) PS,T [R

(0)(ĥ) ≥ 1/2] ≥ 1/2.

H = {f1, f2}, dH△H(P(0),P(1)) = 1. No algorithm can distinguish f1, f2!
[1] David, S. B., Lu, T., Luu, T., & Pál, D. (2010, March). Impossibility theorems for domain adaptation. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 129-136). JMLR Workshop and Conference
Proceedings.
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Hardness results: covariate shift

Theorem 2.4.2 (Necessity of a small R(1)(h∗), Ben-David et al., 2010b)

For any 󰂃 > 0 and learner ĥ = ĥ(·;S) : X → {0, 1}, ∃ a labeling function f , s.t.
(1) dH△H(P(0),P(1)) ≤ 󰂃;
(2) PS,T [R

(0)(ĥ) ≥ 1/2] ≥ 1/2.

A handy example:

◦ The true f(x) =

󰀫
0, if 0 ≤ x ≤ 1/2;

1, if 1/2 < x ≤ 1.
H = {constant function 1},

P(0) = P(1).
◦ In fact, in this example, f is not learnable by H (i.e. minh∈H R(0) = 1/2)

Question: Is there a more ``beautiful" example, where transferring from the
source fails but minh∈H R(0) is small?
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Hardness results: covariate shift
Consider the following example in Ben-David et al. (2010b).

◦ P(0) = Unif({0, 2󰂃, 4󰂃, . . . , 1}), P(1) = Unif({󰂃, 3󰂃, . . . , 1− 󰂃}),
H = {h(x) = 1(x ≤ t) : t ∈ [0, 1]}, P(0) = P(1).

The true f1(x) =

󰀫
0, if x = 󰂃, 3󰂃, . . . , 1− 󰂃;

1, if x = 0, 2󰂃, 4󰂃, . . . , 1.
or f2(x) ≡ 0

◦ Check:
⊲ H△H = {(a, b] : 0 ≤ a ≤ b ≤ 1}, dH△H(P(0),P(1)) = 󰂃
⊲ minh∈H R(0)(h) = minh∈H R(1)(h) = 0
⊲ R(1)(h∗) ≥ 1− 󰂃, ∀h∗ ∈ arg minh∈H R(0)(h)
⊲ No algorithm can distinguish f1 and f2!

[1] David, S. B., Lu, T., Luu, T., & Pál, D. (2010, March). Impossibility theorems for domain adaptation. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 129-136). JMLR Workshop and Conference
Proceedings.
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Hardness results: summary

The second bound of target risk in §2.1: If H is a VC-class, then

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift + covariate shift

+dH△H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

,

where h∗ = arg minh∈H R(0)(h).

Question: Are the last two terms necessary?

Answer:
◦ Yes, they are, if no labeled target data is provided.
◦ In our constructed hard cases, there is no posterior drift. =⇒ Even the

covariate shift itself can cause lots of trouble.
◦ Similarly, in the case of posterior drift , it is easy to show that a small R(1)(h∗)

is necessary.
◦ Access to labeled target data is helpful. E.g., with some labeled target data,

the target problem is at least learnable, despite of a potential slow rate.
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Hardness results: summary

◦ Ben-David and Urner (2012) has more discussions on the hardness of domain
adaptation

[1] Ben-David, S., & Urner, R. (2012). On the hardness of domain adaptation and the utility of unlabeled target samples. In
Algorithmic Learning Theory: 23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings 23 (pp.
139-153). Springer Berlin Heidelberg.
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§2.5: Other similarity notions: go beyond divergence
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Problems of previous divergence notions

We have seen that how different divergence notions can be used to bound the
target risk.

The second bound of target risk in §2.1: If H is a VC-class, then w.h.p.

R(0)(ĥ) ≤ min
h∈H

R(0)(h)
󰁿 󰁾󰁽 󰂀

oracle

+ 2C

󰁵
VC(H)

n1󰁿 󰁾󰁽 󰂀
cost of learning from samples

+ 2R(1)(h∗)
󰁿 󰁾󰁽 󰂀

posterior drift + covariate shift

+dH△H(P(0),P(1))
󰁿 󰁾󰁽 󰂀

covariate shift

,

where h∗ = arg minh∈H R(0)(h).

There are some issues with the divergence notions we discussed before.
◦ They might be over-pessimistic, i.e. ∃ cases where dH△H(P(0),P(1)) = Ω(1)

while the target excess risk is OP(1)

◦ dH△H(P(0),P(1)) is symmetric, while transfer learning is asymmetric.

Question: Are there other notions to characterize how much information can be
transferred from source to target?
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Go beyond divergence

Hanneke and Kpotufe (2019) proposes a notion called transfer exponent under
the non-parametric classification setting (with 0-1 loss).

Definition 2.5.1 (Hanneke and Kpotufe, 2019)

We call ρ > 0 a transfer exponent from P(1) to P(0) w.r.t. H, if

Eρ
P(0)(h) ≤ CρEP(1)(h), ∀h ∈ H,

where Cρ is a universal constant and Eρ
P(k) is the excess risk under distribution

P(k).

◦ Smaller ρ ⇒ more information to transfer
◦ This notion is asymmetric
◦ Hanneke and Kpotufe (2019) derives minimax rate for the target excess risk

using ρ

[1] Hanneke, S., & Kpotufe, S. (2019). On the value of target data in transfer learning. Advances in Neural Information
Processing Systems, 32.
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Go beyond divergence
Let's see an example where dH△H(P(0),P(1)) = Ω(1) while ρ > 0 (hence leads to
a shrinking target excess risk).

P(0)
X = Unif(0, 1), P(1)

X = Unif(0, 2), H is the class of one-sided thresholds on the
line. Suppose Y is deterministic given X. The optimal classifier
h∗(x) = 1(x ≤ 1/2).

◦ dH△H(P(0),P(1)) = suph,h′∈H |P(0)(h ∕= h′)− P(1)(h ∕= h′)| = 1/2

◦ EP(0)(h) = P(0)(h ∕= h∗) ≤ 2P(1)(h ∕= h∗) = 2EP(1)(h) ⇒ ρ = 1

Picture adapted from: Hanneke, S., & Kpotufe, S. (2019). On the value of target data in transfer learning. Advances in Neural
Information Processing Systems, 32.
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Go beyond divergence

Cai and Wei (2021) also considers the setting of non-parametric classification, and
proposes a notion called reltative signal exponent γ to describe the relation
between source and target:

(ηP(1)(x)− 1/2)(ηP(0)(x)− 1/2) ≥ 0,

|ηP(1)(x)− 1/2| ≥ Cγ |ηP(0)(x)− 1/2|γ ,

where ηP(k)(x) = P(k)(Y = 1|X = x), k = 0, 1.
◦ This notion is mainly used to characterize the impact of posterior drift, because

Cai and Wei (2021) imposes some conditions on P(0)
X and P(1)

X (e.g. share the
same support, have bounded Lebesgue densities etc.) and does not focus on the
distributions of covariate

◦ Smaller γ ⇒ more information to transfer
◦ Target and source Bayes classifiers align with each other
◦ This notion is unrelated to the hypothesis class, which might be a drawback

[1] Cai, T. T., & Wei, H. (2021). Transfer learning for nonparametric classification: Minimax rate and adaptive classifier. The
Annals of Statistics, 49(1).
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Go beyond divergence

◦ At the end of the next lecture, we will introduce more ``metrics" beyond the
symmetric divergence notions to characterize the covariate shift, which allows
for the unbounded density ratio.

◦ For more about this line of research, see Redko et al. (2019, 2020).
◦ We have seen in some hardness results in §2.4 that terms in the bound we

derived with symmetric divergences are necessary.

Question: Is this contradicted with the discussion in this section?

No! In general, the bound we derived with symmetric divergences might be
tight, under the minimax sense, which is quite conservative. The development
in Hanneke and Kpotufe (2019) and Cai and Wei (2021) shows that the
symmetric divergence notions might be loose in some situations.

[1] Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). Advances in domain adaptation theory. Elsevier.
[2] Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2020). A survey on domain adaptation theory: learning
bounds and theoretical guarantees. arXiv preprint arXiv:2004.11829.
[3] Hanneke, S., & Kpotufe, S. (2019). On the value of target data in transfer learning. Advances in Neural Information
Processing Systems, 32.
[4] Cai, T. T., & Wei, H. (2021). Transfer learning for nonparametric classification: Minimax rate and adaptive classifier. The
Annals of Statistics, 49(1).
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