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§1.1: Why, when, and where
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Transfer learning in computer vision

Torralba, A., & Efros, A. A. (2011, June). Unbiased look at dataset bias. In CVPR 2011 (pp. 1521-1528). IEEE.
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Transfer learning in computer vision
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Transfer learning in disease diagnosis

◦ AD: Alzheimer's Disease
◦ MCI: mild cognitive impairment

⊲ pMCI: progressive MCI
⊲ sMCI: stable MCI

◦ NC: normal controls
Cheng, B., Liu, M., Shen, D., Li, Z., Zhang, D., & Alzheimer's Disease Neuroimaging Initiative. (2017). Multi-domain transfer
learning for early diagnosis of Alzheimer’s disease. Neuroinformatics, 15, 115-132.
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Transfer learning in autonomous driving

Image source:
https://nbviewer.org/github/vistalab-technion/cs236605-tutorials/blob/master/tutorial6/tutorial6-TL_DA.ipyn
Akhauri, S., Zheng, L. Y., & Lin, M. C. (2020, October). Enhanced transfer learning for autonomous driving with systematic
accident simulation. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5986-5993).
IEEE.
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Transfer learning in ChatGPT
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Why, when, and where

◦ Why: Improve the performance on the target dataset of limited (or zero)
sample size

◦ When: There is some similarity between the target and source to transfer
◦ Where: Various applications in many areas

⊲ Computer vision
⊲ Healthcare
⊲ Natural Language Processing
⊲ Finance
⊲ Autonomous Driving
⊲ ......

See Pan and Yang (2009); Weiss et al. (2016); Zhuang et al. (2020) for more
comprehensive surveys of transfer learning.

[1] Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10),
1345-1359.
[2] Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big data, 3, 1-40.
[3] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & He, Q. (2020). A comprehensive survey on transfer learning.
Proceedings of the IEEE, 109(1), 43-76.
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§1.2: Concepts
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Terminologies do not matter

The word cloud is generated based on ``Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & He, Q. (2020). A
comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43-76."
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Concepts: domain and task

Most definitions are quoted from Redko et al. (2019, 2020).
◦ Domain: We may call (S(0),P(0)) as the target domain and (S(1),P(1)) as

the source domain, where P(0) and P(1) are the distributions defined on
corresponding spaces S(0) and S(1). 1

◦ Task: There is a learning task associated with each domain, which can be
classification, clustering, regression, on S(k). For supervised learning problems,
S(k) consists a feature space X and an output space Y. The task usually is to
learn a predictor from X to Y. We can denote the task for target and source as
t(0) and t(1)

◦ Transfer learning: How to improve the performance on target domain for t(0)
by the knowledge of the source domain for t(1).

1There can be more than one sources.
[1] Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). Advances in domain adaptation theory. Elsevier.
[2] Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2020). A survey on domain adaptation theory: learning
bounds and theoretical guarantees. arXiv preprint arXiv:2004.11829.
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Categories of TL by goals

◦ Transfer learning: Using the information from the source domain to
improve the performance on target domain.

◦ Multi-task learning: Each domain is called a task and we want to
simultaneously learn well on all domains by borrowing information from each
other.
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Categories of TL by tasks

Picture source: Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2020). A survey on domain adaptation theory:
learning bounds and theoretical guarantees. arXiv preprint arXiv:2004.11829.
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Categories of TL by shift types
Consider the supervised learning setting, and we have the same feature space X
and output space Y for target and source 2. P(k) is the joint distribution of
(X,Y ) on target (k = 0) or source (k = 1) domains.
◦ Covariate shift: P(0)

X ∕= P(1)
X , P(0)

Y |X = P(1)
Y |X (in the sense of P(0)

X -a.e.)
◦ Posterior drift: P(0)

X = P(1)
X , P(0)

Y |X ∕= P(1)
Y |X

◦ Concept drift: P(0)
X ∕= P(1)

X , P(0)
Y |X ∕= P(1)

Y |X

``Covariate shift"
2We will also discuss distribution shift where the space X × Y can be different for target and source, in Lecture 3.
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Categories of TL by shift types

``Posterior drift"

``Concept drift"
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§1.3: Overview of the short course
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Overview of the short course
A (Selective) Introduction to the Statistical Foundations of Transfer

Learning
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