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Importance of Cochran’s Theorem

Cochran’s theorem tells us about the distributions of partitioned sums
of squares of normally distributed random variables.

Traditional linear regression analysis relies upon making statistical
claims about the distribution of sums of squares of normally
distributed random variables (and ratios between them)
In the simple normal regression model:

SSE

σ2
=


(Yi − Ŷi )

2

σ2
∼ χ2(n − 2)

Where does this come from?
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Outline

Establish the fact that the multivariate Gaussian sum of squares is
χ2(n) distributed

Provide intuition for Cochran’s theorem

Prove a lemma in support of Cochran’s theorem

Prove Cochran’s theorem

Connect Cochran’s theorem back to linear regression
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χ2 distribution

Theorem 1: Suppose Zi are i .i .d . N(0, 1), we have

n

i=1

Z 2
i ∼ χ2(n)
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Proof:

Z 2
i ∼ χ2(1)

If Y1, · · · ,Yn are i.i.d. random variables with moment generating
functions (MGF) mY1(t), · · · ,mYn(t). Then the moment generating
function for U = Y1 + · · ·+ Yn is

mU(t) = mY1(t)×mY2(t) · · ·×mYn(t)

MGF fully characterizes the distribution

The MGF for χ2(n) is (1− 2t)−n/2
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Quadratic Forms and Cochran’s Theorem

Quadratic forms of normal random variables are of great importance
in many branches of statistics

Least Squares
ANOVA
Regression Analysis

General idea: Split the sum of the squares of observations into a
number of quadratic forms where each corresponds to some cause of
variation
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Quadratic Forms and Cochrans Theorem

The conclusion of Cochran’s theorem is that, under the assumption of
normality, the various quadratic forms are independent and χ2

distributed.

This fact is the foundation upon which many statistical tests rest.
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Preliminaries: A Common Quadratic Form

Let
X ∼ N(µ,Λ)

Consider the quadratic form that appears in the exponent of the
normal density

(X− µ)′Λ−1(X− µ)

In the special case of µ = 0 and Λ = I, this reduces to X′X which by
what we just proved we know is χ2(n) distributed

Let’s prove it holds in the general case
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Lemma 1

Let
X ∼ N(µ,Λ)

with |Λ| > 0 and n is the dimension of X, then

(X− µ)′Λ−1(X− µ) ∼ χ2(n)

Proof

Let Y = Λ−1/2(X− µ), then we have Y ∼ N(0, I). Then,

(X− µ)′Λ−1(X− µ) = Y′Y ∼ χ2(n)
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Cochran’s Theorem

Let X1,X2, · · · ,Xn be i.i.d. N(0,σ2)- distributed random variables, and
suppose that

n

i=1

X 2
i = Q1 + Q2 + · · ·+ Qk ,

where Q1,Q2, · · · ,Qk are positive semi-definite quadratic forms in
X1,X2, · · · ,Xn, i.e.,

Qi = X′AiX, i = 1, 2, · · · , k

Set ri = rank(Ai ). If r1 + r2 + · · ·+ rk = n, then

Q1,Q2, · · · ,Qk are independent.

Qi ∼ σ2χ2(ri )
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Several linear algebra results

Let X be a normal random vector. The components of X are
independent if and only if they are uncorrelated.

Let X ∼ N(µ,Λ), then Y = C′X ∼ N(C′µ,C′ΛC).
We can find an orthogonal matrix C such that D = C′ΛC is a diagonal
matrix. (Eigen Value Decomposition for Semi Positive Definite Matrix)
The components of Y will be independent and var(Yk) = λk , where
λ1, · · · ,λn are the eigenvalues of Λ
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Lemma 2

Let X1,X2, · · · ,Xn be real numbers. Suppose that


X 2
i can be split into

a sum of positive semi-definite quadratic forms, that is


X 2
i = Q1 + Q2 + · · ·+ Qk

where Qi = X′AiX with rank(Ai ) = ri . If


ri = n, then there exists an
orthogonal matrix C such that, with X = CY, we have

Q1 = Y 2
1 + Y 2

2 + · · ·+ Y 2
r1

Q2 = Y 2
r1+1 + Y 2

r1+2 + · · ·+ Y 2
r1+r2

...

Qk = Y 2
n−rk+1 + Y 2

n−rk+2 + · · ·+ Y 2
n
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Remark

Different quadratic forms contain different Y -variables and that the
number of terms in each Qi equals that rank, ri , of Qi

The Y 2
i end up in different sums, we’ll use this to prove the

independence of the different quadratic forms.

Just prove for k = 2 case, the general case can be obtained by
induction.
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Proof

For k = 2, we have Q = X′A1X+ X′A2X

There exists an orthogonal matrix C such that C′A1C = D, where D
is a diagonal matrix with eigenvalues of A1.

Since rank(A1) = r1, r1 eigenvalues are positive and n − r1
eigenvalues are 0.

Suppose without loss of generality, the first r1 eigenvalues are positive.

Set X = CY, then we have X′X = Y′C′CY = Y′Y.
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Proof

Therefore, Q =
n

i=1 Y
2
i =

r1
i=1 λiY

2
i + Y′C′A2CY

Then, rearranging the terms we have

r1

i=1

(1− λi )Y
2
i +

n

i=r1+1

Y 2
i = Y′C′A2CY

Since rank(A2) = r2 = n − r1, we conclude that

λ1 = λ2 = · · · = λr1 = 1

Q1 =

r1

i=1

Y 2
i ,Q2 =

n

i=r1+1

Y 2
i
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From this Lemma

This lemma is about real numbers, not random variables

It says that


X 2
i can be split into a sum of positive semi-definite

quadratic forms, then there is an orthogonal transformation X = CY
such that each of the quadratic forms has nice properties: Each Yi

appears in only one resulting sum of squares, which leads to the
independence of the sum of squares.
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Proof of Cochran’s Theorem

Using the Lemma, Q1, · · · ,Qk can be written using different Yi s,
therefore, they are independent.

Furthermore, Q1 =
r1

i=1 Y
2
i ∼ σ2χ2(r1). Other Qi s are the same.
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Applications

Sample variance is independent of the sample mean.
Recall SSTO = (n − 1)s2(Y ),

SSTO =


(Yi − Ȳ )2 =


Y 2
i − (


Yi )

2

n
Rearrange the term and express it in matrix format


Y 2
i =


(Yi − Ȳ )2 +

(


Yi )
2

n

Y′IY = Y′(I− 1

n
J)Y + Y′(

1

n
J)Y

We know Y′IY ∼ σ2χ2(n), rank(I− 1
nJ) = n − 1 (next slide) and

rank( 1nJ) = 1.
As a result, 

(Yi − Ȳ )2 ∼ σ2χ2(n − 1)

(


Yi )
2

n
∼ σ2χ2(1)
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Rank of I− 1
nJ

Calculate rank(I− 1
nJ). First of all, we have

rank(I− 1

n
J) ≥ rank(I)− rank(

1

n
J) = n − 1

On the other hand, since (I− 1
nJ)1 = 0, we have

rank(I− 1

n
J) ≤ n − 1

Therefore, we have

rank(I− 1

n
J) = n − 1

Another proof, noticing I− 1
nJ is also idempotent and symmetric,

therefore, rank(I− 1
nJ) = trace(I)− trace( 1nJ) = n − 1
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ANOVA

SSTO = Y′[I− 1

n
J]Y

SSE = Y′[I−H]Y

SSR = Y′[H− 1

n
J]Y

Under the null hypothesis, when β = 0, we know
SSTO ∼ σ2χ2(n − 1).

From linear algebra: rank(I−H) = n − p (next slide) and
rank(H− 1

nJ) = p − 1.

Then we have
SSE ∼ σ2χ2(n − p)

SSR ∼ σ2χ2(p − 1)

As a byproduct, MSE = SSE/(n − p) is an unbiased estimator of σ2,
since the mean of χ2(n − p) is n − p.
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Rank of I−H

We have

trace(H) = trace(X(X′X)−1X′)

= trace((X′X)(X′X)−1)

= trace(Ip)

= p

Then,

rank(I−H) = trace(I−H)

= trace(I)− trace(H)

= n − p
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Rank of H− 1
nJ

First, since we have H1 = 1 (This amounts to a multiple linear
regression with the response always equal to 1, and therefore, the
fitted value is still 1 because we can just use the constant to perfectly
fit the model), then it is straightforward to check that H− 1

nJ is an
idempotent and symmetric matrix.

Then, we have rank(H− 1
nJ) = trace(H)− trace( 1nJ) = p − 1
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