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Modified Cross-Validation for Penalized
High-Dimensional Linear Regression Models

Yi YU and Yang FENG

In this article, for Lasso penalized linear regression models in high-dimensional
settings, we propose a modified cross-validation (CV) method for selecting the penalty
parameter. The methodology is extended to other penalties, such as Elastic Net. We
conduct extensive simulation studies and real data analysis to compare the performance
of the modified CV method with other methods. It is shown that the popular K-fold
CV method includes many noise variables in the selected model, while the modified
CV works well in a wide range of coefficient and correlation settings. Supplementary
materials containing the computer code are available online.
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1. INTRODUCTION

Variable selection is a popular tool for analyzing high-dimensional data. Tibshirani
(1996) proposed Lasso, which is the ℓ1 penalty, or equivalently Chen and Donoho (1994)
proposed basis pursuit. Later, elastic net variants (Zou and Hastie 2005) and nonconvex
penalties such as smoothly clipped absolute deviation (SCAD; Fan and Li 2001) and
minimax concavity penalty (MCP; Zhang 2010) were proposed and widely used over the
years. All of these variable-selection procedures proved to have good theoretical properties.

Besides, developing efficient algorithms for calculating the solution path of the coeffi-
cient vector as tuning parameter varies is of great importance. A vast literature on calculating
the path for penalized linear regression is available. Among these, least angle regression
(LARS; Efron et al. 2004), or homotopy (Osborne, Presnell, and Turlach 2000), Local
Quadratic Approximation (LQA; Fan and Li 2001), Local Linear Approximation (LLA;
Zou and Li 2008), Penalized Linear Unbiased Selection (PLUS; Zhang 2010), and coordi-
nate descent methods (Fu 1998; Friedman, Hastie, and Tibshirani 2007) gained popularity
these days.

After getting a path of solutions from the foregoing mentioned methods, users still need
to pick one estimator from the path with different penalty levels controlled by the tuning
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1010 Y. YU AND Y. FENG

parameter. As it turns out, selecting the optimal tuning parameter is both important and
difficult. There has been a line of research on using information-type criteria to select
the tuning parameter. Tibshirani (1996) used generalized cross-validation (GCV) style
statistics, and Efron et al. (2004) used Cp style statistics. Zou, Hastie, and Tibshirani (2007)
derived a consistent estimator for the degree of freedom of Lasso, and plugged it into the Cp,
AIC, and BIC criteria. But for Lasso estimators in high-dimensional setting, from simulation
experience, all these traditional methods tend to overselect, due to the bias introduced
by shrinkage. Chen and Chen (2008) proposed extended-Bayesian information criterion
(EBIC), by adding an extra term with respect to p to the information criterion. Motivated
by generalized information criterion (GIC) proposed by Nishii (1984), Zhang, Li, and Tsai
(2010) extended GIC to a more general scenario, which can handle nonconvex penalized
likelihood estimation. Wang, Li, and Leng (2009) conjectured that the traditional BIC-
type criterion tends to overselect in high-dimensional scenarios and proposed a modified
BIC-type criterion.

Another popular family of methods for selecting the tuning parameter is CV, which is a
data-driven approach. A majority of theoretical work has been done for CV in the classical
linear regression models. For example, leave-one-out cross-validation (CV(1)) is shown to
be asymptotically equivalent to Akaike information criterion (AIC), the Cp, the jackknife,
and the bootstrap (Stone 1977; Efron 1983, 1986). Shao (1993) gave rigorous proof of the
inconsistency of CV(1) for linear regression model, meanwhile he provided the proper sizes
of construction and validation set in leave-nv-out cross-validation (CV(nv)), under which
CV achieves the model selection consistency. Zhang (1993) studied multifold CV and r-fold
CV in linear regression models. It turned out both methods tend to select more variables
than the truth under certain technical conditions. For several popular packages in R for
Lasso, for example, lars (Efron et al. 2004), glmnet (Friedman, Hastie, and Tibshirani
2010), glmpath (Park and Hastie 2007), K-fold CV is still the default option. Researchers
have realized that the regular CV in high-dimensional settings tends to be too conservative
in the sense that it selects a majority of false positives (FPs). As mentioned in Zhang and
Huang (2008), the theoretical justification of CV-based penalty parameter choice is unclear
for model selection purposes. CV was also mentioned by Meinshausen (2007), where
relaxed Lasso was proposed, which includes least angle regression-ordinary least squares
(LARS-OLS; Efron et al. 2004) as a special case. In that article, the author conjectured that
by using K-fold CV, the relaxed Lasso estimator is model selection consistent. The tuning
parameter selection problem also exists for other types of variable selection methods, for
example, the adding-noise approach in Luo, Stefanski, and Boos (2006) and Wu, Boos, and
Stefanski (2007).

In this article, we aim to develop a new CV approach for selecting tuning parameter
for high-dimensional penalized linear regression problems. It is noteworthy that we are not
proposing a new variable selection technique, rather, the goal is to study and improve the
variable selection performance for the existing tuning parameter selection methods. The
contribution of the article is two-fold. (i) A thorough investigation on several popular CV
methods is conducted, and they are shown to be inconsistent via simulation. (ii) A modified
CV criterion is provided, which is shown to have better performance in terms of model
selection and prediction under high-dimensional settings.

The rest of the article is organized as follows. We introduce the model setup and fix
notations in Section 2, and propose the modified CV criterion in Section 3. Extensive
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MODIFIED CV FOR PENALIZED HIGH-DIMENSIONAL LINEAR REGRESSION MODELS 1011

simulation studies, including various simulation settings and comparisons to the existing
methods, and real data analysis are conducted in Sections 4 and 5, respectively. A short
discussion is presented in Section 6.

2. MODEL SETUP

Given n observation pairs (xi , yi), i = 1, . . . , n, we consider the linear regression model

yi = x′
iβ + εi ,

where xi’s and β are p-dimensional vectors, with p ≫ n. εi’s are iid random variables with
mean 0 and variance σ 2.

Denote X = (x1, . . . , xn)′ as the n × p-dimensional design matrix and y =
(y1, . . . , yn)′ as the response vector. We employ notations ∥ · ∥ and ∥ · ∥1 as the ℓ2 and
ℓ1 norms of a vector, respectively; ∥ · ∥0 as the number of nonzero entries of a vector; and
β as the true β, satisfying ∥β∥0 = d0 < n. The oracle set {j : βj ̸= 0} is denoted as O. To
analyze this high-dimensional problem, we adopt the popular Lasso estimator (Tibshirani
1996), that is,

β̂(λ) ≡ arg min
β

1
2n

∥ y − Xβ∥2 + λ∥β∥1.

Using any path algorithm, we can get a solution path β̂(λ) when λ changes. Notice, the
starting point of this article is that we have a collection of estimators on hand with the goal
of choosing the optimal one among them. For the Lasso estimators, it is equivalent to study
how to choose the optimal tuning parameter λ. Both λ and β̂ are functions of n, but to keep
the notations simple, we omit the subscript n throughout the article.

Following the notation system developed in Shao (1993), we denote the model corre-
sponding to tuning parameter λ asMλ and divide the collection of models {Mλ, λ > 0} into
two disjoint categories. Category I includes the models that miss at least one important vari-
able, that is, false negative number is greater than 0 (FN > 0). Category II includes the
models with all the important variables, that is, FN = 0. The optimal model Mλ∗ is defined
to be the model of the smallest size among Category II models, that is, the most parsimo-
nious candidate model that contains all the important variables. If there are more than one
models satisfying these two properties, we define the one with the smallest λ as the optimal
one, considering the shrinkage brought in by λ. Here, λ∗ is the tuning parameter of the
optimal model. Now the goal is to find Mλ∗ and the corresponding λ∗.

By exploiting the CV approach, the main idea is to repeatedly split the data into construc-
tion and validation sets, fit the model for the construction data, and evaluate the performance
of the fitted model on the validation set. The prediction performance over different splits
is averaged and the average can represent the predictability of the model. One can then
choose the best model according to the predictability measure of different models. In Shao
(1993), the average is taken over the same models estimated from different splits. However,
for the case of CV in Lasso estimators, it is not always possible to perform the same aver-
aging because one will generally get different models from different splits even if the same
λ values are used. Instead of averaging the performance for the same model, we measure
the performance of the models corresponding to the specific λ value.
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1012 Y. YU AND Y. FENG

For CV, denote s as a subset of {1, . . . , n} containing nv integers for validation, and
(−s) as its complement containing nc integers, where nv + nc = n. Considering the sub-
samples and their associated submodels will appear later, we denote M(−s),λ as the model
constructed from sample (−s) given λ. The following notations are used throughout the
article. The subscripts are based on the submatrices for the corresponding construction sets
and the tuning parameter λ:

X s,λ = (xij ), i ∈ s, j ∈ M(−s),λ; X (−s),λ = (xij ), i ∈ (−s), j ∈ M(−s),λ;

X ·,λ = (xij ), i = 1, . . . , n, j ∈ Mλ; X ·,λ(s) = (xij ), i = 1, . . . , n, j ∈ M(−s),λ;

H s,λ = X s,λ(X ′
·,λ(s) X ·,λ(s))−1 X ′

s,λ;

ys = (yi, i ∈ s)′; denote β̂(−s),λ as the Lasso estimator of β under M(−s),λ.

3. MODIFIED CROSS-VALIDATION

To deal with the overselection issue of the traditional CV in Lasso penalized high-
dimensional variable selection, a new CV method is proposed. Instead of developing a new
variable selection technique, we would rather say the goal here is to investigate and improve
the existing CV methods.

3.1 ALGORITHM

First, we describe a generic cross-validation algorithm for the Lasso estimators in the
linear regression.

S1. Compute the Lasso solution path with the whole dataset. A sequence of solutions
β̂(λ) is generated with corresponding penalty level λ’s.

S2. Randomly split the whole dataset into construction dataset (size nc) and validation
dataset (size nv) b times, compute the Lasso solution path for each construction
dataset with the λ sequence in S1.

S3. For each split, use the corresponding validation dataset to calculate the values of
the criterion function (to be specified) for each path, and average over the paths
with the same λ.

S4. Find the λ̂ with the smallest average criterion value, then fit a linear regression for
the model Mλ̂. This linear regression estimator is the final estimator.

The sequence of solutions β̂(λ) mentioned in S1 is generated from certain Lasso path
algorithm, such as glmnet used in subsequent simulations. Since the goal is to choose
the optimal model from a collection of candidate models, the path generation method is
not specified in the algorithm description. In S4, considering the bias caused by Lasso
procedure, a further linear regression on the selected variable set is conducted after variable
selection. The algorithm involves several parameters nc, nv , b, and the criterion function
used in S3. We are interested in how these parameters and the criterion function affect the
final estimator and which are the best ones.
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MODIFIED CV FOR PENALIZED HIGH-DIMENSIONAL LINEAR REGRESSION MODELS 1013

3.2 CRITERION FUNCTION

In this subsection, we study the choice of criterion function used in S3. In the traditional
CV, the criterion function to be minimized is

&0(λ) = 1
nv

∥ ys − ŷ(−s),λ∥2,

where ŷ(−s),λ = X s,λβ̂ (−s),λ represents the predicted value on the subset s using the Lasso
estimate based on the data (−s) when the penalty level is λ.

Via numerical experience, researchers realized that traditional CV based on &0 tends
to select many FPs. This is mainly caused by the bias issue of the Lasso penalty. For
convenience, we assume that all the matrix inversions appearing in the article are well
defined. This is to say, that for any subset A ⊂ {1, . . . , p} with small enough size appearing
in this article, X ′

A,A XA,A is of full rank (Zhang 2010). Now, we introduce the new CV
criterion exactly modified cross-validation criterion (EMCC), which is defined as

&1(λ) = 1
nv

∥ ys − ŷ(−s),λ∥2 − λ2n2
c

nv

M ′
s,λ Ms,λ, (1)

where Ms,λ = X s,λ(X ′
(−s),λ X (−s),λ)−1(sgn(β̂ (−s),λ)), and sgn(·) represents the sign function.

Let d(−s),λ be the model size of the current Lasso estimator β̂ (−s),λ. If the covariates are
standardized and independent, we have E(X ′

(−s),λ X (−s),λ) = nc Id(−s),λ and E(X ′
s,λ X s,λ) =

nv Id(−s),λ . Now, if we replace the sample covariance matrices by their population versions,
EMCC can be approximately reduced to the following simple form:

&2(λ) = 1
nv

∥ ys − ŷ(−s),λ∥2 − λ2d(−s),λ, (2)

which is called modified cross-validation criterion (MCC). It is clear that MCC can be
easily calculated by the knowledge of the current penalty level λ and the current model size
d(−s),λ.

Briefly, the EMCC criterion is designed to remove the systematic bias introduced by the
shrinkage. Now, we give the detailed rationale behind it. Define β̂ ·,λ as the subvector of
β̂(λ) restricted on Mλ; to make notationally consistent, we put · in the subscript to indicate
the estimator is derived using the whole dataset. Define β̃ ·,λ as the least-square estimator
(LSE) for the model Mλ, that is,

β̃ ·,λ = argmin
β∈Rd·,λ

1
2n

∥ y − X ·,λβ∥2,

where d·,λ represents the model size for penalty level λ using all the sample. Corre-
spondingly, ỹ(−s),λ = X s,λβ̃(−s),λ. Recall the solution to the Karush–Kuhn–Tucker (KKT)
conditions is the unique minimizer of the original optimization problem,

⎧
⎪⎪⎨

⎪⎪⎩

1
n

x′
j ( y − Xβ̂) = λsgn(β̂j ), β̂j ̸= 0;

1
n
|x′

j ( y − Xβ̂)| ≤ λ, β̂j = 0.

(3)

Rearranging the terms in (3), we have the implicit expression, β̂ ·,λ = (X ′
·,λ X ·,λ)−1(X ′

·,λ y −
nλsgn(β̂ ·,λ)).
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1014 Y. YU AND Y. FENG

The Lasso prediction error (PE) based on the construction dataset (−s) and validation
dataset s can be analyzed via inserting the prediction based on corresponding LSE, that is,
ỹ(−s),λ. We have,

∥ ys − ŷ(−s),λ∥2 = ∥ ys − ỹ(−s),λ∥2 + ∥ ŷ(−s),λ− ỹ(−s),λ∥2 + ( ys − ỹ(−s),λ)′( ŷ(−s),λ− ỹ(−s),λ)

≡ ∥ ys − ỹ(−s),λ∥2 + (I ) + (II ).

The expectation of (II ) equals 0, and (I ) can be simplified as λ2n2
c/nv M ′

s,λ Ms,λ via
straightforward matrix operations. So to get rid of the systematic bias, EMCC is derived
from subtracting (I ) on both sides.

We call the CV methods using (1) and (2) exactly modified CV and modified CV ,
respectively. It is expected that there is a tradeoff between the accuracy and computational
efficiency. These two criteria will be compared with the traditional CV and other methods
in Section 4.

3.3 DATA SPLITTING STRATEGY

In this subsection, we study the choices of nc, nv , and b. CV(nv) with nv/n → 1, and
nc → ∞ as n → ∞ works well in model selection for fixed dimensional linear regression
model (Shao 1993). For notational simplicity, if without extra explanation, by CV(nv) we
mean CV(nv) with nv/n → 1, and nc → ∞ as n → ∞. The simplification is also applied
to other CV methods to be introduced later.

Here, to improve computational efficiency in high-dimensional settings, instead of car-
rying out the calculation for all different splits when nv > 1 (which is of the order ( p

nv
)),

we apply Monte Carlo method to split the dataset, by randomly drawing (with or without
replacement) a collection of b subsets of {1, . . . , n} with size nv and selecting the model
with minimum average criterion function value over all splits. The Monte Carlo CV was
also considered in Picard and Cook (1984) and Shao (1993).

We would like to point out that the EMCC calculation is equivalent to the LSE of the
model sequence on the solution path, which is closely related to the LARS-OLS (Efron et al.
2004). As suggested by an anonymous referee, a brief theoretical comparison is conducted
below, with more emphasis on the computational issues in sequel.

In the Lasso penalized estimation problem, the essential goal is model selection. How-
ever, this is usually substituted by tuning parameter selection, with the rationale that the
tuning parameters and models have one-to-one relationship given the data and algorithm.
In reality, this is easily violated. For instance, in the CV procedure, different splits lead
to different model sequences even under the same tuning parameter sequence. To exam-
ine the disagreement, suppose the sequence of tuning parameters of the whole dataset is
λ = (λ1, . . . , λN ). Denote α

(j )
ℓ as the active set of the ℓth estimate on the path constructed

by the jth subsample sj using the same tuning parameter sequence λ, where ℓ = 1, . . . , N ;
j = 0, 1, . . . , b, and s0 represents the whole dataset. Feng and Yu (2013) defined the coher-
ent rate (CR) as a sequence representing the degree of agreement of the active sets across
different splits for each tuning parameter location,

CR(ℓ) =
#
{
j : α

(j )
ℓ = α

(0)
ℓ

}

b
, where ℓ = 1, . . . , N.
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MODIFIED CV FOR PENALIZED HIGH-DIMENSIONAL LINEAR REGRESSION MODELS 1015

Figure 1. Coherent rate along the path for Lasso penalized linear regression estimators. The solid line “——”
is where 10-fold CV chooses, and the dashed line “– –” is where noise variables start to get involved. The x-axis
represents the step indices along the path, and the y-axis is the coherent rate.

In the ideal case when CR(·) equals 1 for all ℓ’s, the conventional CV method for choosing
the tuning parameter serves as an excellent surrogate for selecting the optimal model.
However, this is rarely true in practice, especially when the noise variables are activated in
the estimators. We demonstrate the behavior of the CR as follows.

We set (n, p) = (500, 1000) and β ∈ Rp with the first five coordinates (2.0, 1.6, 1.2,

0.8, 0.4) and 0 elsewhere. For i = 1, . . . , n, we generate the response yi as yi = x′
iβ + εi ,

where xi
iid∼ N (0p,#) with 0p the length-p vector with 0 entries and εi

iid∼ N (0, 1). (j,k =
ρ|j−k| with ρ = 0.5. The random splits are carried out 100 times with nc = 0.9n.

It is obvious from Figure 1 that the CR is much smaller than 1 in a majority of locations,
especially after the noise variables are selected. If one wants to hold the estimators (or at
least the models) the same, very stringent conditions need to be imposed on the design
matrix, which are usually not satisfied even for the simple simulation setting we have
shown.

Considering this, we would like to compare the proposed methods with LARS-OLS
regarding data splitting strategy under an ideal scenario—the induced model sequence under
the same tuning parameter sequence is the same for different splits as that for the whole
dataset. For this ideal setting, Shao (1993) proved that under mild conditions, CV based on
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1016 Y. YU AND Y. FENG

LSEs are consistent when nc/n → 0; otherwise, the CV procedure fails to be consistent.
Noteworthy, this holds for our proposed algorithms, while nc/n = (K − 1)/K > 0 in the
LARS-OLS algorithm.

3.4 EXTENSIONS

Before concluding this section, it is worthwhile to highlight the main idea of (E)MCC
for Lasso penalized linear regression. Motivated by the overselection phenomenon in CV
procedure caused by shrinkage, (E)MCC is developed via removing the shrinkage. Based
on the linear regression on the subset of covariates, leave-nv-out data splitting strategy is
used. Back to the comparison to LARS-OLS, due to the simplicity of the Lasso penalty,
we have the approximated version MCC that does not require any matrix operations when
the solution path is available. By calculating the LSE for the model sequence of a given
solution path, the EMCC idea can be easily extended to other popular penalties, such as
SCAD (Fan and Li 2001), elastic net (Zou and Hastie 2005), MCP (Zhang 2010), among
others. The algorithm can be extended to a general penalty by replacing all the solution
path calculations in S1 and S2 by the ones using a general penalty, and use the following
new criteria function in S3

&3(λ) = 1
nv

∥ ys − ỹ(−s),λ∥2. (4)

A simulation example for elastic net is available in Section 4.

4. SIMULATION

In this section, we study the performance of EMCC/MCC-based CV(nv). In Example 1,
we introduce the basic setup of the simulation with various correlation settings, including
an extension to elastic net. In Example 2, we decrease the signal strength and compare
different methods for the case where the position of the signals are randomly assigned. In
Examples 3 and 4, performances of different nc’s and b’s are reported, respectively.

Example 1 (Different Correlation Settings). We set (n, p) = (300, 1000) and β ∈
Rp with the first eight coordinates (4, 3, 2, 0, 0,−4, 3,−2) and 0 elsewhere. For i =
1, . . . , n, we generate the response yi as follows:

yi = x′
iβ + εi ,

where xi
iid∼ N (0p,#) with 0p the length-p vector with 0 entries and εi

iid∼ N (0, 1). The
following three different correlation settings are considered.

(a) (Independent) (j,k = 1{j = k}.
(b) (Exponential decay) (j,k = ρ|j−k|, with ρ = 0.2, 0.5, and 0.7.

(c) (Equal correlation) (j,k = ρ + (1 − ρ)1{j = k}, with ρ = 0.2, 0.5, and 0.7.

We repeat the simulation for 100 times.
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MODIFIED CV FOR PENALIZED HIGH-DIMENSIONAL LINEAR REGRESSION MODELS 1017

Table 1. Comparison of the performance for different methods, for the setting of Example 1(a). Results are
reported in the form of mean (standard deviation). For (e)m-MCCV(nv), nc = ⌈n3/4⌉ and b = 50. For m-K-fold
and K-fold, K = 10

Independent

Methods FN FP PE

m-MCCV(nv) 0.00(0.00) 0.01(0.10) 0.93(0.02)
em-MCCV(nv) 0.00(0.00) 0.00(0.00) 0.93(0.01)
m-K-fold 0.00(0.00) 38.22(16.19) 1.34(0.18)
em-K-fold 0.00(0.00) 0.38(1.45) 0.94(0.05)
K-fold 0.00(0.00) 34.99(22.06) 1.11(0.06)
AIC 0.00(0.00) 35.32(18.90) 1.11(0.06)
BIC 0.00(0.00) 4.47(3.10) 1.17(0.08)
EBIC 0.00(0.00) 1.37(1.40) 1.22(0.09)
LARS-OLS 0.00(0.00) 0.26(0.80) 0.94(0.04)
Relaxed Lasso 0.00(0.00) 0.34(1.44) 0.94(0.04)
AdaLasso 0.00(0.00) 0.00(0.00) 0.94(0.02)

Elastic Net
em-MCCV (nv) 0.00(0.00) 0.87(1.45) 0.95(0.05)
K-fold 0.00(0.00) 54.78(25.23) 1.21(0.08)

The results for Example 1 are reported in Table 1 for case (a) and Figure 2 for cases (b)
and (c). The detailed results for cases (b) and (c) are available in Table A.1 in the Appendix.
We use the glmnet package to generate the Lasso solution paths for the whole dataset and
every subsample. For modified Monte Carlo CV(nv) (m-MCCV(nv)) and exactly modified
Monte Carlo CV(nv) (em-MCCV(nv)), we set nc = ⌈n3/4⌉ = 73, nv = n − nc = 227, and
b = 50, which gives robust results, with reasonable computation cost. The model selection
performances of m-MCCV(nv), em-MCCV(nv), modified K-fold CV (m-K-fold, K = 10),
exactly modified K-fold CV (em-K-fold, K = 10), and K-fold CV (K = 10) in glmnet
package are presented, along with those of AIC, BIC, EBIC, LARS-OLS, relaxed Lasso,
adaptive Lasso (Zou 2006), and Elastic Net. Both LARS-OLS and relaxed Lasso are
computed by R package relaxo, adaptive Lasso solutions are obtained by parcor, with
10-fold CV as the default tuning parameter selection method. In Figure 2, Tables 1 and
A.1, results for em-MCCV(nv) applied to Elastic Net estimators are also included, whose
paths are generated by R package glmnet with the default parameters, and nc = ⌈n2/3⌉.
To compare the performance of different methods, we report FN, FP, and PE. Here, PE is
defined as the average squared PE calculated on an independent test dataset of size n.

For the independent design case, the two CV(nv) methods have no FN and almost no
FP, which indicates that they nearly achieve the model selection consistency. On the other
hand, all the other cross-validation methods have a significantly large number of FPs. It
is interesting to note that em-K-fold has similar behavior as LARS-OLS, as expected. But
still, they have larger FP than that of em-MCCV(nv). And the PEs of the m-MCCV and
em-MCCV are smaller than those of the other methods.

The results for AIC, BIC, and EBIC are also reported. Notice that EBIC has the best
performance among the three information criterion-based methods, although it is still
worse than the em-MCCV. One advantage of the information criterion-based methods is
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Example 1: Equal Correlation

= 0.2

0
10

30
50

F
N

 a
nd

 F
P

2
4

6
8

10
14

P
E

m em mK emK K A B EB LO RL AL ENe ENK

= 0.5

0
10

30
50

Methods

F
N

 a
nd

 F
P

2
4

6
8

10
P

E

m em mK emK K A B EB LO RL AL ENe ENK

= 0.7

Figure 2. Comparisons of different methods and scenarios in Example 1(b) and 1(c), which are presented in
the left and right columns, respectively. Along the x-axis, from left to right, the methods are m-MCCV(nv),
em-MCCV(nv), m-K-fold, em-K-fold, K-fold, AIC, BIC, EBIC, LARS-OLS, relaxed Lasso, elastic net with
em-MCCV(nv) and elastic net with K-fold. Means of FN, FP, and PE over 100 repetitions are labeled by symbols
•, △, and ◦, respectively.

that they are more efficient to compute without the need of cross-validation. As suggested
by one referee, we also include the comparison with adaptive Lasso, which turns out to
have a comparable performance with the EMCC-based Lasso. We would like to point out
that the main goal here is to find a better tuning parameter selection method for the Lasso
estimator, while adaptive Lasso has different solutions from Lasso. We refer the interested
readers to Zou (2006) for a detailed treatment of adaptive Lasso with the advantages over
the ordinary Lasso.

For the exponential decay cases, m-MCCV and em-MCCV still perform very well with
the smallest FP and FN among all the different methods, especially compared with more
than 40 FPs on average in K-fold CV (K = 10). Due to the correlation in design matrices,
compared to uncorrelated cases, the m-K-fold method misses some important variables
while the em-K-fold can pick them up.

To make the case more extreme, and to see the difference between two modified criteria,
we report the results for the equal correlation cases, which are not common in real appli-
cations. From the results, we can see as an approximation, the m-MCCV method is too
aggressive and selects too few variables (it misses some important variables) when there is
strong correlation among variables. In the presence of strong correlation, we recommend
using the em-MCCV, which has superior performance.
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MODIFIED CV FOR PENALIZED HIGH-DIMENSIONAL LINEAR REGRESSION MODELS 1019

Table 2. Computation cost comparison for the tuning parameter selection. Here, K is the number of folds, b is
the number of splits in (e)m-MCCV, and L is the number of different φ’s considered in the relaxed Lasso

(e)m-K-fold LARS-OLS (e)m-MCCV Relaxed Lasso

O(Knp min{n, p}) O(Knp min{n, p}) O(bnp min{n, p}) O(KLnp min{n, p})

Now, we study the computation cost of different methods. It is well known that the
cost for calculating the solution path of Lasso is O(np min{n, p}) (Efron et al. 2004;
Meinshausen 2007). The information-type methods, including AIC, BIC, and EBIC, have
the best performance, since they only need one-time calculation for each model on the
solution path, which leads to the computation cost O(np min{n, p}). In Table 2, we show
the computing cost comparison for other methods for the purpose of choosing the tuning
parameter. We see that the (e)m-K-fold and LARS-OLS have computation cost of the
same order. Since relaxed Lasso involves cross-validation on a two-dimensional parameter
grid, the computation cost is O(KLnp min{n, p}), where L is the number of different φ’s,
representing different level of penalty on the specific variable. Depending on the values of
b and L, we expect (e)m-MCCV and relaxed Lasso have similar computation cost.

As mentioned in Section 3, the idea of removing the systematic bias can be easily
extended to other popular penalties. As expected, em-MCCV(nv) leads to much smaller
FPs than those of K-fold CV for elastic net, and it also leads to a smaller PE.

Example 2 (Random Position with Small Signals). We use exactly the same setting
as Example 1 except to reduce the signal strength by setting the β to have the nonzero
coordinates (1.2, 0.8, 0.4). In this example, we use independent design and exponential
decay design with ρ = 0.5. In the exponential decay design case, aside from the case where
the signals lie in the first three coordinates, we also consider the case when the signals are
randomly positioned.

The results of Example 2 are reported in Figure A.1, which is left in the Appendix.
The purpose of this example is to investigate the performances of different methods when
the signals are of small strength, also to show the results when the signals are randomly
positioned. In general, we have similar conclusions as Example 1. It is interesting to
notice that when the signals are randomly positioned, the methods have similar behavior
as independent case, which is because exponential decay correlation implies that the signal
variables are approximately independent since their positions can be very different.

Example 3 (Different nc). In this example, we would like to study the influence of
different splitting rates for the construction and validation dataset (i.e., different values of
nc). We report the results for independent and exponential decay settings in Example 1 with
ρ = 0.5.

Figure 3 summarizes the results of m-MCCV(nv) and em-MCCV(nv) with nc varying
from ⌈n10/16⌉ to ⌈n15/16⌉. For both methods, nc = ⌈n12/16⌉ leads to the best performance,
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Figure 3. FN and FP of m-MCCV(nv) for independent and exponential decay designs.

in terms of FN, FP, and PE. But if nc is smaller than ⌈n12/16⌉ (e.g., when nc = ⌈n10/16⌉), m-
MCCV misses some important variables. The possible reason is that when nc is too small in
this fixed sample simulation example, the penalty imposed on selecting one more variable
exceeds the loss of missing one important variable. For c = 14/16 and c = 15/16 cases, the
approximation results in substantial number of FN, which the em-MCCV(nv) can remedy.
If computation cost is an issue, m-MCCV(nv) is preferred as long as nc is properly chosen
and the correlation is not too extreme.

It is also interesting to see the trend in FP. When nc increases, the FP also increases. This
is consistent with our intuition, that if the validation dataset is small, detection of different
models becomes more difficult. It is clear to see, along with the increasing of nc rate, that
is, the ratio of constructing sample size to the whole sample size, there will be more FPs
and less FNs. This also gives us a rough guideline how to choose the proper nc rate. From
the figures we can see, if c = 3/4, both FPs and FNs attain a relatively low value. Larger
or smaller c value will cause one side uneven.

Example 4 (Different Number of Splits b). For the setting used in Example 1, we vary
b from 10 to 300, which is equivalent to the order n3/8 to n. In Table 3, we show that
results for modified-reversed-K-fold (m-r-K-fold) strategy, that is, instead of using one fold
to validate and K − 1 folds to construct, we use K − 1 folds to validate and one fold to
construct.

The simulation results for different b are almost the same in our experiments, which
indicates that FN, FP, and PE are not sensitive to the choice of b in both correlation settings.
The detailed results can be found in Table A.2. In real applications, a conservative way
is to set b slightly larger if enough computational resource is available. In all the other
simulations and the following real data analysis, we use b = 50, which exceeds n1/2 and
produces stable results.
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MODIFIED CV FOR PENALIZED HIGH-DIMENSIONAL LINEAR REGRESSION MODELS 1021

Table 3. Reversed K-fold splitting strategy, with K = 10. Results are reported in the form of mean(standard
deviation). (e)m-r-K-fold CV is short for (exactly) modified reversed K-fold cross-validation

Independent

Methods FN FP PE

m-r-K-fold CV 0.00(0.00) 1.04(0.06) 1.33(0.38)
em-r-K-fold CV 0.00(0.00) 0.10(0.10) 1.06(0.02)
K-fold CV 0.00(0.00) 34.99(22.06) 1.11(0.06)

Exponential decay (ρ = 0.5)
m-r-K-fold CV 0.00(0.00) 0.98(0.04) 0.17(0.38)
em-r-K-fold CV 0.00(0.00) 0.06(0.03) 0.95(0.05)
K-fold CV 0.00(0.00) 40.21(18.18) 1.17(0.07)

Equal correlation (ρ = 0.5)
m-r-K-fold CV 0.00(0.00) 1.02(0.05) 0.98(0.02)
em-r-K-fold CV 0.21(0.40) 4.27(5.37) 0.99(0.05)
K-fold CV 0.00(0.00) 42.52(22.59) 1.11(0.06)

In Table 3, it is surprising to see, by using a small number of splits (e.g., K = 10), the
modified-reversed-K-fold strategy can achieve very good results. This strategy guarantees
each sample appears in the construction/validation set for the same number of times. It
is worth to point out that although the results are very good when using the modified-
reversed-K-fold, this splitting strategy does not belong to the block incomplete design or
BICV (Shao 1993), since it does not balance the frequency of the pairs. In addition, the
modified-reversed-K-fold takes less time to compute and has the same order of computation
cost as the regular K-fold CV.

5. DATA ANALYSIS

We now illustrate one application of the proposed m-MCCV(nv) method via the dataset
reported by Scheetz et al. (2006) and analyzed by Huang, Horowitz, and Wei (2010) and
Fan, Feng, and Song (2011). In this dataset, for harvesting of tissue from the eyes and
subsequent microarray analysis, 120 12-week-old male rats were selected. The microarrays
used to analyze the RNA from the eyes of these animals contain more than 31,042 different
probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array). The intensity values were
normalized using the robust multichip averaging method (Irizarry et al. 2003) to obtain
summary expression values for each probe set. Gene expression levels were analyzed on a
logarithmic scale.

Following Huang, Horowitz, and Wei (2010) and Fan, Feng, and Song (2011), we are
interested in finding the genes that are related to the TRIM32 gene, which was recently found
to cause Bardet–Biedl syndrome (Chiang et al. 2006) and is a genetically heterogenous
disease of multiple organ systems, including the retina. Although more than 30,000 probe
sets are represented on the Rat Genome 230 2.0 Array, many of these are not expressed
in the eye tissue. We only focus on the 18,975 probes that are expressed in the eye
tissue.
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Table 4. Comparison results of m-MCCV(nv) and 10-fold-CV for real dataset, model size, and PE are presented
in the form of mean(standard deviation), 100 repetitions are conducted

m-MCCV(nv) 10-fold CV

Size PE Size PE

17.90(2.99) 0.01(0.01) 60.30(17.07) 0.01(0.00)

We use R package glmnet to compute the Lasso solution paths, and compare our
proposed modified CV criterion with the 10-fold CV. The results are presented in Table 4,
with nc = ⌈n3/4⌉ and b = 50. We can achieve the same PE with only 17 variables on
average, compared with 60 in 10-fold CV case. This shows that the m-MCCV(nv) can
generate more a parsimonious model while keeping the same prediction power, which
could be potentially helpful in guiding the biologists to focus on the fewer selected genes.

In Figure 4, we show the histograms of the proportion of the gene being selected in 100
splits. In the stability selection theory developed in Meinshausen and Bühlmann (2010),
the selection proportion of a certain variable can represent the degree of “stability” for the
Lasso estimator. As a result, the variables with larger values of proportion are more likely
to be “important.” We reproduce the histogram in the right two subfigures of Figure 4 for
genes with selected proportion larger than 0.4. It is worth noting that the histogram of
proposed m-MCCV has a big gap between 0.5 and 0.7, while no similar pattern is observed
for that of K-fold CV. This particular gap may serve as a natural threshold as whether the
gene is important.
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Figure 4. Histograms of gene appearance proportions using m-MCCV(nv) and K-fold CV. The two left figures
are the histograms of all the genes appeared in 100 repetitions and two right ones are genes with proportion greater
than 0.4 only.
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In Table A.3, we list the symbols of the genes selected by each method along with the
selection proportion up to the median number of selected variables in 100 splits. Note that
“—” represents there is no known symbol for the corresponding gene. In general, genes
with symbols have been shown to carry certain biological functions. It is observed that
70.6% of the genes selected by m-MCCV(nv) have gene symbols, compared with 59.3%
for 10-fold CV. In addition, if we adopt 0.6 as a selection cut-point (this corresponds to
the gap mentioned in (b)), all the four genes m-MCCV(nv) selected have gene symbols,
compared with only 50% for the 10-fold CV.

6. DISCUSSION

In this article, we systematically investigated the behavior of different types of CV, with
different criterion functions, applied to the tuning parameter selection problem in Lasso
penalized linear regression models. By removing the bias caused by the Lasso penalty,
we proposed a new CV method em-MCCV with an approximated version m-MCCV. Both
methods work well in simulations and real applications.

Some interesting future work includes the theoretical investigation of the inconsistency
of the traditional K-fold CV. Also, we conjecture that the newly proposed em-MCCV(nv)
is model selection consistent under certain technical conditions. Other work includes ex-
tensions to generalized linear models, Cox models, and semiparametric models.

APPENDIX: TABLES AND FIGURES

We include the detailed tables and figures of Sections 4 and 5 in the Appendix.
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Table A.2. Comparison of m-MCCV(nv) with different b, using the settings in Example 1, with nc = ⌈n3/4⌉.
Results are reported in the form of mean(standard deviation)

Methods b FN FP PE

Independent
m-MCCV(nv) 10 0.00(0.00) 0.01(0.10) 0.92(0.02)

50 0.00(0.00) 0.01(0.10) 0.92(0.02)
150 0.00(0.00) 0.01(0.10) 0.92(0.02)
300 0.00(0.00) 0.01(0.10) 0.92(0.02)

K-fold CV 0.00(0.00) 34.99(22.06) 1.33(0.16)

Exponential decay (ρ = 0.5)
m-MCCV(nv) 10 0.00(0.00) 0.01(0.10) 0.93(0.02)

50 0.00(0.00) 0.01(0.10) 0.93(0.02)
150 0.00(0.00) 0.01(0.10) 0.93(0.02)
300 0.00(0.00) 0.01(0.10) 0.93(0.02)

K-fold CV 0.00(0.00) 40.21(18.18) 1.17(0.07)

Table A.3. Proportions of gene being selected in 100 splits for m-MCCV(nv) and K-fold CV

m-MCCV(nv) 10-fold CV

Gene symbol Prop. Gene symbol Prop. Gene symbol Prop. Gene symbol Prop.

TRIM41 0.95 TRIM41 0.87 CTDSPL 0.50 FRAS1 0.30
CCBL1 0.89 TNFSF13 0.87 RASL12 0.48 RGD1307201 0.30
ES1 0.80 — 0.87 GJB2 0.47 — 0.29
TRAK2 0.71 — 0.87 HERC3 0.46 RGD1566403 0.29
— 0.42 — 0.75 ASMT 0.46 WSB2 0.29
— 0.41 — 0.74 — 0.45 RGD1308031 0.28
LOC678910 0.29 — 0.71 ADRB2 0.42 — 0.28
RGD1305680 0.29 ACAT1 0.70 — 0.40 — 0.28
— 0.27 — 0.68 — 0.39 LOC296637 0.28
HDAC11 0.26 ZFP367 0.68 — 0.38 CPNE9 0.28
— 0.25 ANO10 0.62 — 0.37 — 0.27
TNFSF13 0.24 FAM118B 0.60 — 0.36 HINT1 0.27
— 0.19 RGD1561792 0.58 — 0.35 RGD1309888 0.27
HEATR6 0.16 PURB 0.57 — 0.35 — 0.26
ACAT1 0.13 — 0.56 — 0.35 BGLAP 0.25
CABP1 0.13 ACLY 0.55 — 0.34 GFAP 0.24
MARVELD1 0.13 HDAC11 0.55 PRR12 0.34 STK11 0.24

— 0.55 YTHDF3 0.33 CYP4A3 0.24
JAK2 0.53 KLRD1 0.32 ES1 0.24
ATP6V1A 0.52 — 0.32
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SUPPLEMENTARY MATERIALS

R Code: The supplemental files for this article include R programs that can be used to
replicate the simulation study and the real data analysis. The real data are available upon
request. Please read file README contained in the zip file for more details. (MCC.zip)
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