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Abstract In high-dimensional data analysis, penalized like-
lihood estimators are shown to provide superior results in
both variable selection and parameter estimation. A new al-
gorithm, APPLE, is proposed for calculating the Approx-
imate Path for Penalized Likelihood Estimators. Both con-
vex penalties (such as LASSO) and folded concave penalties
(such as MCP) are considered. APPLE efficiently computes
the solution path for the penalized likelihood estimator us-
ing a hybrid of the modified predictor-corrector method and
the coordinate-descent algorithm. APPLE is compared with
several well-known packages via simulation and analysis of
two gene expression data sets.

Keywords APPLE · LASSO · MCP · Penalized likelihood
estimator · Solution path

1 Introduction

Variable selection is a vital tool in statistical analysis of
high-dimensional data. Typically, a large number of poten-
tial predictors are included during the first stage of mod-
eling, in order to avoid missing important links between a
predictor and the outcome. This practice has become more
popular in recent years for two primary reasons. First, in
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many recently promising fields, such as bioinformatics, ge-
netics and finance, more and more high-throughput and
high-dimensional data are being generated. Secondly, low
cost and easy implementation for data collection and stor-
age have made problems for which the number of variables
is large, in comparison to the sample size, possible to be
handled.

In order to provide more representative and reasonable
applications of models in a mathematical framework, we of-
ten seek a smaller subset of important variables. The first
attempt to variable selection was the �0-type regulariza-
tion methods, including AIC (Akaike 1973), Cp (Mallows
1973) and BIC (Schwarz 1978), which work well in low-
dimensional cases. In addition, they also exhibit good sam-
pling properties (Barron et al. 1999). However, searching
all the possible subsets can be unstable (Breiman and Gao
1996), and in high-dimensional settings, the combinatorial
problem has NP-complexity, which is computationally pro-
hibitive. As a result, numerous attempts have been made
to modify the �0-type regularization to reduce the com-
putational burden. The most popular penalized regression
method is LASSO (Tibshirani 1996) or equivalently Basis
Pursuit (Chen and Donoho 1994). Being a convex penalty,
it is computationally convenient, but lacks the oracle prop-
erty and shrinks estimators regardless of importance. Hence,
some folded concave penalties have been proposed in or-
der to yield better performance, such as SCAD (Fan and Li
2001) and MCP (Zhang 2010). We refer to Fan et al. (2012)
for the detailed definition of folded concave penalties. Also,
for generalized linear models (GLM), penalized likelihood
methods have been studied for high-dimensional variable se-
lection, for example in Fan and Li (2001) and van de Geer
(2008). We refer to Fan and Lv (2010) for a review of vari-
able selection in high-dimensionality.
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Throughout the paper, we assume we have i.i.d. obser-
vations (xi , yi), i = 1, . . . , n, where xi is a p-dimensional
predictor and yi is the response. We further assume the con-
ditional distribution of y given x belongs to an exponential
family with canonical link, that is, it has the following den-
sity function

f (y;x,β) = c(y) exp

[
yθ − b(θ))

a(φ)

]
, (1)

where θ = x′β and φ ∈ (0,∞) is the dispersion parameter.
In view of (1), the log-likelihood of the sample is given,

up to an affine transformation, by

�(y;β) = n−1
n∑

i=1

[yiθi − b(θi)].

Here, we are interested in estimating the p-dimensional vec-
tor β , and the penalized likelihood estimator is defined as

β̂(λ) = argmin
β

{−�(y;β) + pλ(β)},

where pλ(·) is the LASSO or folded concave penalty func-
tion and λ > 0 is the regularization parameter.

Developing an efficient algorithm for calculating the so-
lution path of the coefficient vector β̂(λ), as λ varies along
a possible set of values, is very desirable. There is a vast
literature on calculating such a path for penalized linear re-
gression. For the convex penalty LASSO, least angle regres-
sion (LARS) (Efron et al. 2004), or homotopy (Osborne
et al. 2000) are efficient methods for computing the en-
tire path of LASSO solutions in the linear regression case.
For folded concave penalties including SCAD and MCP,
Fan and Li (2001) used the local quadratic approximation
(LQA); Zou and Li (2008) proposed the local linear approx-
imation (LLA), which makes a local linear approximation
to the penalty function, thereby yielding an objective func-
tion that can be optimized by using the LARS algorithm.
Zhang (2010) proposed the penalized linear unbiased se-
lection (PLUS), which is designed for the linear regression
penalized by quadratic spline penalties, including LASSO,
SCAD and MCP. More recently, coordinate descent methods
have received considerable attention in high-dimensional
settings, including Fu (1998), Shevade and Keerthi (2003),
Krishnapuram et al. (2005), Genkin et al. (2007), Friedman
et al. (2007), Wu and Lange (2008), among others. Other
work on penalized linear regression includes Hastie et al.
(2004), Daubechies et al. (2004), Kim et al. (2007) and Wei
and Zhu (2012).

Different from linear regression, derivatives of the log-
likelihood in GLM are changing with respect to the regu-
larization parameter λ. There has been major research on
calculating the solution path for penalized likelihood esti-
mators in the GLM setting. Park and Hastie (2007) proposed

the glmpath algorithm. They considered the solution β̂ as a
function of λ, and used a linear approximation of this func-
tion to update the estimator β̂ . They selected the step length
in decreasing λ by using an approximate smallest length
that will change the active set of variables. Yuan and Zou
(2009) approximated the loss function by a quadratic spline
and showed a generalized LARS algorithm is suitable for
solution path computation. It is worth to point out that their
method can also be extended to more general regularization
framework, including a generalization of the elastic net and
a new method that effectively exploits the so-called “sup-
port vectors” in kernel logistic regression. Friedman et al.
(2010) proposed a coordinate descent algorithm for penal-
ized GLM, in which they quadratically approximate the log-
likelihood function and sequentially solve the resulting pe-
nalized weighted least squares problem on a grid of λ values.
Wu (2011) proposed an ordinary differential equation-based
solution path algorithm, which used quasi-likelihood instead
of likelihood models, in order to use LARS more straightfor-
wardly. However, all the numerical results in Wu (2011) are
based on the small p large n setting. Breheny and Huang
(2011) adopted a coordinate descent algorithm for MCP and
SCAD penalized GLM. Like Friedman et al. (2010), they
used a quadratic approximation to the log-likelihood part
and then used coordinate descent to update the regression
parameter estimator. For the MCP penalty (Zhang 2010),
the tuning parameter γ is used to adjust the concavity of the
penalty. The smaller γ is, the more concave the penalty is,
which means finding a global minimizer is more difficult;
but on the other hand, it results in less biased estimators.
The tuning parameter γ can be changed freely from 1+ to
∞. In the GLM case, Breheny and Huang (2011) proposed
the adaptive rescaling, which allows the range of the param-
eter γ to be as wide as it can be for the linear regression
case. Other related papers include Zhu and Hastie (2004),
Lee et al. (2006), Rosset and Zhu (2007) and Meier et al.
(2008).

In this work, we propose a new path algorithm, the ap-
proximate path for penalized likelihood estimators (AP-
PLE), under the setting of high-dimensional GLM. Differ-
ent from linear regression, it is often difficult to get explicit
solutions in GLM. Taking accuracy and feasibility into ac-
count, instead of linear approximation of the corresponding
change in β with the decrease in λ, which is used by most
of the previous work, we use quadratic approximation to
get a warm-start in updating. Then targeting on the KKT
conditions, we perform a correction by optimizing a con-
vex problem. Inspired by the adaptive rescaling in Breheny
and Huang (2011), we develop a modified concavity adap-
tation method for MCP when updating the solution, which
is shown to have better performance when γ is small. In
this paper, not only path algorithms for LASSO penalized
GLM are derived, but also path algorithms for folded con-
cave penalized GLM, which have appeared in few of the
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previous work. Here we mainly focus on MCP as an exam-
ple of folded concave penalty, but it can be easily extended
to other quadratic spline penalty functions.

For LASSO, we detect the active set through the KKT
conditions like most of the previous work. However, for
some folded concave penalties, such as MCP, by fixing λ

and the concavity parameter γ , the value of the derivative of
the penalty function decreases towards zero as the absolute
value of the estimator increases towards λγ . We introduce
a modified active set detection method, which has not ap-
peared in any of the previous work.

The rest of the paper is organized as follows. In Sects. 2
and 3, we introduce the path algorithm APPLE for the
LASSO and MCP penalties, respectively. We conduct simu-
lation studies in Sect. 4 and two real data examples are pre-
sented in Sect. 5. A short summary is given in Sect. 6, while
the technical details for logistic regression and Poisson re-
gression are presented in the Appendix.

2 APPLE with LASSO penalty

LASSO (Tibshirani 1996) is a popular method for regression
that uses an �1-penalty to achieve simultaneous variable se-
lection and parameter estimation. The idea has been broadly
applied in GLM, where the problem is to minimize a con-
vex function. In this section, we describe the details of the
APPLE algorithm for LASSO penalized GLM.

2.1 Problem setup

Let {(xi , yi), i = 1, . . . , n} be n i.i.d. pairs of p predictors
and a response as described in the introduction. By adding
an additional column of 1’s to the design matrix X, the
intercept β0 is absorbed into the coefficient vector β . We
are interested in finding the maximum likelihood solution
for β = (β0, β1, . . . , βp)′, with a penalization on the size
of the �1-norm of the coefficients excluding the intercept.
With a little abuse of notation, we denote ‖β‖1 =∑p

i=1 |βj |.
Therefore, the optimization problem for a given λ is reduced
to finding β̂ , which minimizes the following:

Lλ(β) = −�(y;β) + λ‖β‖1

= −1

n

n∑
i=1

{yiθ(β)i − b(θ(β)i)} + λ‖β‖1. (2)

As is common in GLM, the function b(θ) is implicitly
assumed to be twice continuously differentiable with b′′(θ)

always positive. It is straightforward to check that Lλ(·) is a
convex function. Therefore, for a given λ, the unique mini-
mizer β̂(λ) is the solution to the KKT conditions, which are

given as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂�
∂β0

∣∣
β0=β̂0

= 0,

∂�
∂βj

∣∣
βj =β̂j

= λsgn(β̂j ) for j = 1, . . . , p, s.t. β̂j �= 0,
∣∣ ∂�
∂βj

∣∣
βj =β̂j

∣∣≤ λ for j = 1, . . . , p, s.t. β̂j = 0.

(3)

2.2 Grid of penalty parameter

It is easy to notice from the KKT conditions that when

λ ≥ λmax = max
1≤j≤p

|∂�/∂βj |βj =0|,

β̂j = 0 for 1 ≤ j ≤ p. As λ decreases from λmax to 0,
β̂ = β̂(λ) changes from 0 (except for the intercept β̂0) to
the MLE solution. However, the full MLE solution has poor
predictive performance and lacks the sparsity property be-
cause of the high-dimensionality. Here, following Friedman
et al. (2010) and Breheny and Huang (2011), we set the
minimum value of λ to be λmin = δλmax and construct a se-
quence of K values of λ decreasing from λmax to λmin on the
logarithm scale. We denote the sequence of λ as λk , where
k = 1, . . . ,K . Typical values are δ = 0.01 and K = 100.

2.3 Update

From the KKT conditions, we can see the relationship be-
tween |∂�/∂βj | and λ determines whether the variable βj

is activated or not. For λk , we define the active set Ak as
follows,

Ak =
{

1 ≤ j ≤ p :
∣∣∣∣ ∂�

∂βj

∣∣∣∣≥ λk

}
∪ {0}, (4)

and the step size as 
k = λk+1 − λk . For a given λk and ac-
tive set Ak , we update the active coordinates together using
the quadratic approximation,

β̂
(k+1,0)

Ak
= β̂

(k)

Ak
+ s(k) · 
k + 1

2
d(k) · 
2

k, (5)

where s(k) and d(k) are the first and second derivatives of
β̂

(k)
with respect to λ, respectively, which are derived using

the chain rule, i.e.
(

∂�

∂βAk

)∣∣∣∣
β=β̂

(k)
= λsgn(β̂

(k)

Ak
)

⇒
(

∂2�

∂βAk
∂βT

Ak

· ∂βAk

∂λ

)∣∣∣∣
β=β̂

(k)
= sgn(β̂

(k)

Ak
)

⇒ s(k) =
(

∂2�

∂βAk
∂βT

Ak

)−1 ∣∣∣∣
β=β̂

(k)
· sgn(β̂

(k)

Ak
),
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and,

d(k) = ∂

⎡
⎣
(

∂2�

∂βAk
∂βT

Ak

)−1

· sgn(β̂
(k)

Ak
)

⎤
⎦/∂λ

∣∣∣∣
β=β̂

(k)
.

The explicit formula for calculating s(k) and d(k) are pre-
sented in the Appendix for both logistic regression and Pois-
son regression. Since the intercept is not penalized, the first
coordinates of s(k) and d(k) are both 0. Different from Park
and Hastie (2007), where linear approximation was used, the
quadratic approximation (5) is more accurate and computa-
tionally efficient as a warm-start. Keep in mind, that here,
the coefficients for the variables outside of Ak are set to
be 0 in β̂

(k+1,0)
. Additionally, the approximation (5) will

typically cause a small deviation from the KKT conditions,
which makes the following correction step necessary, in or-

der to get the exact solution β̂
(k+1)

at the current λk+1.
Here, we adopt two different correction methods depend-

ing on the current model size. To be more precise, at step k,
we check the following inequality,

#{j : β̂(k+1,0)

j �= 0} ≤ c
√

n, (6)

where c is a user-specified constant. We set c = 1 in all our
numerical examples. If (6) holds (i.e., the current solution
is relatively sparse compared with the sample size), we use
a Newton-Raphson correction, otherwise, a coordinate de-
scent correction is applied. When the correction method is

stopped by a convergence check, the last β̂
(k+1,j)

is denoted

as β̂
(k+1)

.

2.3.1 Newton-Raphson correction

Given the current solution β̂
(k+1,0)

, we use the following
Newton-Raphson method to correct the estimate until con-
vergence,

β̂
(k,j+1)

Ak
= β̂

(k,j)

Ak
−
(

∂2L(k)

∂βAk
βT

Ak

)−1(
∂L(k)

∂βAk

)
.

Here, all the active variables are corrected together, which
is different from coordinate descent method used in Fried-
man et al. (2010) and Breheny and Huang (2011). We notice
in our simulation studies that when (6) holds, the Newton-
Raphson type correction tends to be much faster than the
coordinate descent correction method.

2.3.2 Coordinate descent correction

When (6) does not hold (i.e., the number of active vari-
ables is relatively large), the Newton-Raphson method in-
volves inverting a big matrix (∂2L/∂β2), which may be-

come ill-conditioned and cause stability issues in the iter-
ation. Therefore, under this scenario, the more stable coor-
dinate descent method is applied. In the coordinate descent
algorithm, we fix all coefficients except βj , and minimize
(2) for the current λ by updating βj . The process is repeated
for j = 0, . . . , p. After sweeping through all coordinates,

we compare the new solution with β̂
(k+1,0)

. If they are suf-
ficiently close, we have reached convergence; otherwise, the
sweeping process is repeated until the two most recent esti-
mators are close enough. What makes the coordinate descent
algorithm particularly attractive is that there is an explicit
formula for each coordinate update. The details for the co-
ordinate descent algorithm may be found in Friedman et al.
(2010) and Breheny and Huang (2011).

2.4 Stopping rules

Following the updating process, we will obtain a solution

path β̂
(k)

for k = 1, . . . ,K . However, from our simulation
results, we notice that in most cases, the solutions near the
end of the path involve too many spurious variables. There-
fore, the following two stopping rules are proposed to fur-
ther speed up the path calculation process.

(a) (Model saturation detection). The first rule is designed
to terminate the path algorithm if the fitting value is
too extreme. For example, in logistic regression, if the

current estimated probability p̂i = exp(x′
i β̂

(k)
)/(1 +

exp(x′
i β̂

(k)
)) satisfies

max
i=1,...,n

p̂i > 1 − ε or min
i=1,...,n

p̂i < ε,

where ε is a predefined positive constant, we terminate
the algorithm.

(b) (A pre-specified maximum size of the model). In some
real applications, the practitioner has an upper bound on
the size of the model for various reasons. For example,
in the optimal portfolio allocation problem, one com-
mon restriction is the control of the transaction costs,
which in turn puts a restriction on the maximum num-
ber of selected stocks. In order to avoid missing the im-
portant variables, we usually set the upper limit signifi-
cantly larger than the model size we need.

Although early stopping is performed following these two
rules, the optimal solution always occurs before the stopping
point in our numerical experience.

2.5 Summary of the algorithm

S1. Define the grid of penalty parameters λ as {λ1, . . . , λK},
where λ1 = λmax, λK = λmin = δλmax, and the remain-
ing ones decrease on the logarithm scale. Set k = 1 and

the initial estimate β̂
(1) = 0.
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S2. Calculate the active set by Ak = {j : |∂�/∂βj | ≥ λk} ∪
{0}. Denote 
k = λk+1 − λk . The approximate solution
is given by

β̂
(k+1,0)

Ak
= β̂

(k)

Ak
+ s(k) · 
k + 1

2
d(k) · 
2

k.

S3. Correct the current solution towards the KKT condi-
tions. If (6) holds, we use the Newton-Raphson proce-
dure; otherwise, coordinate descent method is adopted.

S4. Check the two stopping rules, if at least one is satisfied,
stop the algorithm; otherwise, set k = k + 1 and repeat
S2–S4 until k = K .

2.6 Selection of tuning parameter

The performance of penalized likelihood estimators depends
heavily on the choice of tuning parameters, that is λ in
LASSO and (λ, γ ) in MCP. This is usually accomplished
through cross-validation or by using some information cri-
terion such as AIC, BIC.

Information criteria derived using asymptotic arguments
for the classical regression models are usually problematic
when applied to penalized regression problems where p �
n. For high-dimensional GLM, in Chen and Chen (2008),
Extended BIC (EBIC) was proposed by adding an extra
penalty term on top of BIC. It is defined as, for 0 ≤ γ ≤ 1,

EBICγ (s) = −2 logLn{θ̂ (s)} + ν(s) logn + 2γ log

(
p

j

)
,

where s is a subset of {1, . . . , p}, θ(s) is the parameter θ

with those components outside s being set to 0 or some pre-
specified values, θ̂ (s) is the maximum likelihood estimator
of θ(s), and ν(s) is the number of components in s. In this
paper, we investigate both cross-validation and EBIC.

3 APPLE with MCP penalty

Different from LASSO, MCP is a folded concave penalty
which was proposed by Zhang (2010). The penalty is a
quadratic spline defined on [0,∞) by

pλ,γ (t) = λ

∫ t

0
(1 − x/(γ λ))+ dx, (7)

where the parameter γ > 0 measures the concavity of the
penalty, and λ is the regularization parameter. The APPLE
algorithm for the MCP penalized GLM is slightly different
from what we proposed in Sect. 2 for LASSO. Due to the
non-convexity of MCP penalty, in this section, we will only
focus on the main differences from the LASSO case.

3.1 Problem setup

For MCP penalized GLM, the corresponding target function
is

Lλ(β) = −�(y;β) + λ

p∑
j=1

∫ |βj |

0

(
1 − x

λγ

)
+

dx

= −1

n

n∑
i=1

{yiθ(β)i − b(θ(β)i)}

+ λ

p∑
j=1

∫ |βj |

0

(
1 − x

λγ

)
+

dx. (8)

As introduced in Zhang (2010) and Zhang and Huang
(2008), the sparse Riesz condition (SRC)(c∗, c∗, q) holds
under some mild regularity conditions. As a result, in the
low-dimensional manifolds with dimension smaller than q ,
the convexity of −�(y;β) can dominate the concavity of
the penalty, which will lead to the convexity of the tar-
get function (8) even with the choice of folded concave
penalty. Therefore, under the SRC, for estimator with spar-
sity smaller than q , the KKT conditions are still valid to ob-
tain a global minimizer. The KKT conditions are given as
follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂�
∂β0

∣∣
β0=β̂0

= 0,

∂�
∂βj

∣∣
βj =β̂j

= λ
(
1 − |β̂j |

λγ

)
sgn(β̂j ) for 0 < |β̂j | < λγ ,

∂�
∂βj

∣∣
βj =β̂j

= 0 for |β̂j | ≥ λγ ,
∣∣ ∂�
∂βj

∣∣
βj =β̂j

∣∣≤ λ for β̂j = 0.

(9)

3.2 Grid of penalty parameter

The grid {λ1, . . . , λK} of penalty parameters is identical to
that in the LASSO case.

3.3 Update

In the LASSO case, the effective penalty level is λ for all
variables. Therefore, from the KKT condition (3), as long
as a variable is activated, it stays in the active set as λ de-
creases. But in the MCP case, for the same λ, the effective
penalty level on each variable is different depending on the
magnitude of the estimate, as shown in (9). In all the exist-
ing work, such as NCVREG package, this specific property
of MCP was not fully exploited and the same active set de-
tection method was used as that for LASSO penalty (see (4)
for details). Here we introduce a new active set detection
method using the KKT conditions, that, to our best knowl-
edge, has not appeared before for folded concave penalties
in the literature. As will be shown later, the new detection
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method is more suitable for MCP with a more efficient cal-
culation. For a given λk , we define the active set Ak as

Ak = {Ak−1 ∪ Nk} \ Dk,

where

Nk = {j ∈ {1, . . . , p} \ Ak−1 : |∂�/∂βj | ≥ λk

}
,

and

Dk = {j ∈ Ak−1 ∩ Ak−2 : sgn(β̂
(k−1)
j )sgn(β̂

(k−2)
j ) < 0

}
.

This means, with decreasing threshold λk , a particular vari-
able becomes active when it satisfies the KKT condition (9).
Then the variable will stay activated until it crosses 0 (i.e.,
the index lies in Dk), which means the covariates of the esti-
mators have different signs in two consequent steps. From
our experience, variables which cross 0 at some point in
the path are usually noise variables. If this deleted variable
satisfies the KKT condition (9) along the path later, we re-
activate it. With decreasing λ, the optimization problem (8)
will no longer be convex at some point. Therefore, the pro-
posed treatment of deleting variables which cross 0 at some
point will make the path more stable.

In accordance with Sect. 2.3, the step size is defined as

k = λk+1 − λk . For a given λk and active set Ak , we up-
date the active covariates altogether by using the quadratic
approximation,

β̂
(k+1,0)

Ak
= β̂

(k)

Ak
+ s(k) · 
k + 1

2
d(k) · 
2

k,

where s(k) and d(k) are the first and second derivatives of
β̂

(k)
with respect to λ, respectively. Since the intercept is not

penalized, the first coordinates of s(k) and d(k) are both 0.

Now, we have s(k) = (0, s
(k)′
−0 )′, where s

(k)
−0 is defined as

s
(k)
−0 =

[
1

n
X′

Ak\{0}V (k)XAk\{0} − Γ

]−1

(−sgn(β̂
(k)

Ak\{0})),

(10)

where V (k) is given by (11) in the Appendix, Γ = diag{1/γ,

. . . ,1/γ }, and sgn(·) is the sign function of a vector.
In MCP (Zhang 2010), the tuning parameter γ is free to

vary from 1+ to ∞. For the derivative s(k) defined in (10),
particularly in logistic regression, γ has to be large enough
in order to make the matrix

n−1X′
Ak\{0}V (k)XAk\{0} − Γ

invertible. However, if γ is too large, the MCP penalty (7)
is approximately equal to λ|t |, which is the same as the
LASSO penalty. In that case, it is hard to find the advantages
which MCP enjoys over LASSO. In Breheny and Huang

(2011), adaptive rescaling was proposed to solve a similar
issue. They replaced pλ,γ (|βj |) with pλ,γ (|vjβj |), where
vj is the j -th diagonal element of the Hessian matrix. Since
they used a coordinate descent algorithm, updating coor-
dinates one-at-a-time, the rescaled updates are straightfor-
ward after this change. But in our algorithm, all the active
variables are updated together. Therefore, a new adaptation
method is needed.

The adaptation we use is to replace pλ,γ (|βj |) by

p
λ,γ u

(k)
min

(|u(k)
minβj |), where u

(k)
min is the smallest eigenvalue

of the matrix 1
n
X′

Ak\{0}V (k)XAk\{0}. Then,

s
(k)
−0 =

(
1

n
X′

Ak\{0}V (k)XAk\{0}−u
(k)
minΓ

)−1

(−sgn(β̂
(k)

Ak\{0})).

Now, for any γ > 1,

1

n
X′

Ak\{0}V (k)XAk\{0} − u
(k)
minΓ > 0.

Therefore, the singularity problem in (10) is avoided for all
γ > 1.

The correction method we introduced in the LASSO case
is based on the fact that the problem (2) is convex. Here in
MCP, although the original problem is not convex, in each
step after the adaptation, our problem is still convex in a
low-dimensional manifold as long as γ > 1. One impor-
tant issue is that when calculating the first and second or-
der derivatives in the Newton-Raphson correction, u

(k)
min is

also a function of β̂
(k)

(see Appendix). To avoid computing
implicit derivatives, we use the popular quadratic approx-
imation method (e.g., McCullagh and Nelder 1989) to the
negative log-likelihood, which turns out to be very effective.
Our new target function is

L(λ) = 1

2n
(ỹ − Xβ)′V (ỹ − Xβ)

+ λ

p∑
j=1

∫ |uminβj |

0

(
1 − x

λγ umin

)
+

dx,

where ỹ = Xβ + V −1(y − π). The detailed formulations
are presented in the Appendix, (16)–(18) for logistic case
and (19)–(21) for Poisson case.

The same sparsity criterion (6) is used, and the corre-
sponding Newton-Raphson or coordinate descent method is
applied.

3.4 Stopping rules

Stopping rules are the same as the ones discussed in
Sect. 2.4. But different from the LASSO case, if a variable is
activated in a certain step of the MCP procedure (9), it may
turn inactive later, and even be activated again later on. So



Stat Comput (2014) 24:803–819 809

for the same data, we can consider making the upper limit
(Sect. 2.4, (b)) in MCP larger than that would be for the
LASSO case.

3.5 Summary of the algorithm

The algorithm is the same as in LASSO, except S2 is re-
placed with S2’ described by the following.

S2’ Calculate the active set by Ak = {Ak−1 ∪ Nk} \ Dk ,
where

Nk = {j ∈ {1, . . . , p} \ Ak−1 : ∣∣∂�/∂βj

∣∣≥ λk

}
,

and

Dk = {j ∈ Ak−1 ∩ Ak−2 : sgn(β̂
(k−1)
j )sgn(β̂

(k−2)
j ) < 0}.

3.6 Selection of tuning parameter

The selection methods are mainly the same as the ones dis-
cussed in Sect. 2.6. But as an advantage MCP is shown to
possess in our numerical results, the estimators will stay in
their optimal value for a certain interval of regularization
parameter λ. This bears some advantages in selecting the
tuning parameters.

4 Simulation results

In this section, we conduct simulation studies for compar-
ing APPLE with the GLMNET package (Friedman et al.
2010) and NCVREG package (Breheny and Huang 2011)
for LASSO and MCP penalties, respectively. Now we high-
light the differences of APPLE, GLMNET, and NCVREG.
First, APPLE uses vectorized update when the estimator
is sparse enough, which is faster than the coordinate de-
scent method used in both GLMNET and NCVREG pack-
ages. Second, GLMNET is only available for convex penal-
ties, while APPLE can handle both convex and non-convex
penalties. Third, to deal with non-convex penalties, APPLE
uses a different γ adaptation and active set detection meth-
ods from those of NCVREG.

Logistic and Poisson regression models are two popular
generalized linear models. For each model, we present re-
sults of LASSO/MCP penalized methods. For the LASSO
penalty, we compare APPLE LASSO with the GLMNET
package (Friedman et al. 2010). For MCP, we compare AP-
PLE MCP with the NCVREG package (Breheny and Huang
2011). Since NCVREG only applies to Gaussian and logis-
tic models, no comparable results are presented for MCP
penalized Poisson model. For each setting, we report re-
sults for different tuning parameter selection methods, in-
cluding EBIC and K-fold CV. The critera include false
positives (FP), true positives (TP), �1 loss = ‖β̂ − βo‖1,
�2 loss = ‖β̂ − βo‖2. We also compare the computational
cost with NCVREG for the MCP penalty case.

4.1 Logistic regression

Example 1 We consider a logistic regression model with
different dimension, sparsity level and correlation settings.
(i) Covariate dimension p = 1000, sample size n = 500
and d = 3, where d is the number of nonzero elements in
βo. The first 5 dimensions of βo are (3,1.5,0,0,2), while
the rest are all zeros and β0 = 0. The vector x follows a
multivariate normal distribution with zero mean and covari-
ance between the i-th and j -th elements being ρ|i−j | with
ρ = 0,0.2,0.5 and 0.7 in four different settings. The re-
sults are summarized in Table 1. (ii) Different dimension
and different sparsity levels are considered. In particular,
(p,n, d) = (3000,500,3) and (1000,500,24). And for both
settings, we consider ρ = 0 and ρ = 0.5 with the results re-
ported in Table 2. When d = 24, the first 56 dimensions are 8
repetitions of (3,1.5,0,0,2,0,0). In each setting, 100 rep-
etitions are performed. Part of the setup is borrowed from
Fan and Li (2001).

In Fig. 1(a), we compare the solution paths of the AP-
PLE algorithm for MCP and LASSO. We can see that the
MCP path is less smooth than the LASSO path, but has in-
tervals at which the estimators stay constant, and yields a
sparser model. With the convergence stopping rules adopted
in all simulations here, the corresponding solutions of the
MCP path are sparse even near the end of the path. Actually,
the size of active set does not exceed the square root of the
sample size, which means that the Newton-Raphson correc-
tion is used throughout the whole path. Notice that there is
a jump on the LASSO path, which is caused by the change
of correction method. See Feng et al. (2012) for the stabil-
ity comparison of various penalty functions. In Fig. 1(b),
the APPLE and GLMNET LASSO paths are illustrated. Be-
fore the change point, using the Newton-Raphson correction
method, the APPLE path exhibits better estimation with a
sparser model. After the change point, coordinate descent
correction is employed, which makes the two paths identi-
cal. In Fig. 1(c), the APPLE and NCVREG MCP paths are
compared given the same concavity parameter γ = 1.3. AP-
PLE paths are significantly smoother than NCVREG paths.
Although both paths stay at the “optimal” level, APPLE
paths have a longer period, which makes the model se-
lection task easier and leads to more stable estimation. In
Fig. 1(d), APPLE MCP paths with different concavity pa-
rameters (γ = 1.3,3,100) are presented. This shows that
as γ gets larger, the “flat” period of constant optimal mag-
nitude gets shorter, and the APPLE MCP path eventually
approaches the LASSO path when γ becomes sufficiently
large. In Fig. 1(e), we show APPLE LASSO paths with dif-
ferent correction methods throughout the whole path. We
can see that at the beginning of the path when λ is large, the
differences between these two correction methods are negli-
gible. However, as λ decreases, more variables are recruited
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Fig. 1 Solution paths for logistic regression in Example 1, where
p = 1000, n = 500, d = 3 and ρ = 0. In (a), the solid lines and dot-
ted lines are the solution paths for APPLE MCP and APPLE LASSO,
respectively. In (b), the solid lines and dotted lines are the solution
paths for APPLE LASSO and GLMNET LASSO, respectively. In (c),
the solid lines and dotted lines are for APPLE and NCVREG MCP,
respectively. In (d), the solid lines, dashed lines and dotted lines are

solution paths of APPLE MCP with different γ values. In (e), the solid
lines and dotted lines are the solution paths for APPLE LASSO with
different correction methods. For each panel and each type of lines,
the important variables are selected in the same order. As λ becomes
smaller, variables with index 1, 5 and 2 are selected one by one. When
λ gets smaller than 0.05, noise variables are selected

and the Newton-Raphson method becomes unstable, making
the coefficient estimates “take-off” more quickly compared
with the coordinate descent method. Therefore, we recom-
mend the hybrid approach of using the Newton-Raphson in
the first part of the path, and later switch to coordinate de-
scent when the number of active variables becomes large
enough.

The FP, TP, �1 loss and �2 loss results for Example 1(i)
are summarized in Table 1. When ρ = 0, comparing the AP-
PLE LASSO and GLMNET, we see the results from EBIC
are similar for these two methods. However, for the CV, AP-
PLE tends to provide a model with smaller FP values while
keeping TP the same. When MCP is applied, similar ob-
servations can be found. Overall, comparing with the exist-
ing methods, APPLE does a better job than GLMNET and
NCVREG in the LASSO and MCP cases, respectively. In

addition, for the MCP penalty, APPLE provides a smoother
path than NCVREG.

The corresponding results for Example 1(ii) can be found
in Table 2. When the dimension is increased to 3000 from
1000, the behaviors of APPLE applied to both LASSO and
MCP cases are similar to those analyzed in Example 1(i).
Recall that in APPLE, we use two different correction meth-
ods when the size of the current active set changes. To
study the robustness of this dynamic correction method, we
consider the case d = 24, which implies d >

√
n, i.e., the

true model size exceeds the square root of sample size. In
this scenario, for each setting and each method, some im-
portant variables are missing, particularly for EBIC based
LASSO estimators. We conjecture the reason to be the over-
penalization of EBIC. Recall that the modification in EBIC
is a prior imposed on all the possible subsets of a given spar-
sity level. As a result, when the size of active set is large, the
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Table 1 Comparisons for
APPLE with GLMNET and
NCVREG for LASSO and MCP
penalties, respectively, in
Example 1, where p = 1000,
n = 500 and d = 3. Design
matrices with different
correlation, and different
selection criteria are presented.
The medians of false positive
(FP), true positive (TP), �1 loss,
and �2 loss are reported over
100 repetitions, enclosed in
parentheses are the
corresponding standard errors

Model Package Method FP TP �1 loss �2 loss

LASSO
ρ = 0

APPLE EBIC 0.30(0.54) 3.00(0.00) 3.64(0.28) 4.44(0.70)
CV 23.51(7.68) 3.00(0.00) 4.93(1.27) 2.52(0.74)

GLMNET EBIC 0.25(0.48) 3.00(0.00) 3.83(0.23) 4.94(0.58)
CV 48.44(26.02) 3.00(0.00) 4.93(1.27) 2.52(0.74)

MCP
ρ = 0, γ = 1.3

APPLE EBIC 0.03(0.17) 3.00(0.00) 0.68(0.38) 0.21(0.25)
CV 0.26(0.03) 3.00(0.00) 0.86(0.96) 0.34(0.67)

NCVREG EBIC 0.65(0.45) 3.00(0.00) 2.50(0.31) 1.51(0.42)
CV 1.86(3.44) 3.00(0.00) 2.05(0.48) 1.56(0.45)

MCP
ρ = 0, γ = 3

APPLE EBIC 0.03(0.17) 3.00(0.00) 0.68(0.38) 0.21(0.25)
CV 0.26(1.03) 3.00(0.00) 0.87(0.96) 0.34(0.67)

NCVREG EBIC 0.03(0.17) 3.00(0.00) 0.85(0.47) 0.32(0.36)
CV 2.65(5.37) 3.00(0.00) 1.04(0.78) 0.30(0.32)

LASSO
ρ = 0.2

APPLE EBIC 0.29(0.55) 3.00(0.00) 3.48(0.30) 4.03(0.70)
CV 19.96(11.60) 3.00(0.00) 3.70(1.53) 2.31(0.61)

GLMNET EBIC 0.23(0.48) 3.00(0.00) 3.74(0.26) 4.71(0.67)
CV 83.19(11.60) 3.00(0.00) 4.73(1.53) 2.31(0.61)

MCP
ρ = 0.2, γ = 1.3

APPLE EBIC 0.02(0.15) 3.00(0.00) 0.72(0.36) 0.22(0.25)
CV 0.14(0.59) 3.00(0.00) 0.80(0.63) 0.29(0.47)

NCVREG EBIC 0.03(0.15) 3.00(0.00) 0.72(0.36) 0.22(0.25)
CV 0.22(0.73) 3.00(0.00) 0.82(0.55) 0.27(0.34)

MCP
ρ = 0.2, γ = 3

APPLE EBIC 0.02(0.15) 3.00(0.00) 0.72(0.36) 0.22(0.25)
CV 0.14(0.59) 3.00(0.00) 0.80(0.63) 0.29(0.47)

NCVREG EBIC 0.02(0.14) 3.00(0.00) 0.72(0.37) 0.25(0.22)
CV 0.42(0.73) 3.00(0.00) 0.80(0.64) 0.30(0.34)

LASSO
ρ = 0.5

APPLE EBIC 0.10(0.30) 3.00(0.00) 3.63(0.27) 4.44(0.70)
CV 19.20(0.45) 3.00(0.00) 3.72(0.26) 2.24(0.64)

GLMNET EBIC 0.10(0.30) 3.00(0.00) 3.78(0.22) 4.84(0.58)
CV 43.88(26.02) 3.00(0.00) 4.77(1.27) 2.48(0.74)

MCP
ρ = 0.5, γ = 1.3

APPLE EBIC 0.02(0.15) 3.00(0.00) 0.66(0.32) 0.18(0.20)
CV 0.12(0.25) 3.00(0.00) 0.79(0.49) 0.30(0.26)

NCVREG EBIC 0.07(0.26) 2.98(0.15) 0.73(0.44) 0.25(0.44)
CV 3.33(2.67) 3.00(0.00) 2.84(0.42) 2.77(0.85)

MCP
ρ = 0.5, γ = 3

APPLE EBIC 0.01(0.10) 3.00(0.00) 0.72(0.34) 0.22(0.22)
CV 0.14(0.41) 3.00(0.10) 0.87(0.60) 0.34(0.47)

NCVREG EBIC 0.01(0.11) 3.00(0.00) 1.62(0.54) 0.96(0.55)
CV 4.93(5.60) 3.00(0.00) 1.55(0.97) 0.58(0.52)

LASSO
ρ = 0.7

APPLE EBIC 0.44(0.61) 3.00(0.00) 3.52(0.24) 4.15(0.60)
CV 17.22(18.54) 3.00(0.00) 3.64(1.10) 3.48(1.57)

GLMNET EBIC 0.51(0.63) 3.00(0.00) 3.72(0.26) 5.65(0.64)
CV 45.77(11.26) 3.00(0.00) 4.76(1.62) 3.88(1.73)

MCP
ρ = 0.7, γ = 1.3

APPLE EBIC 0.16(0.49) 2.87(0.34) 1.19(0.76) 0.72(0.95)
CV 0.65(1.02) 2.79(0.41) 1.68(1.07) 1.18(1.20)

NCVREG EBIC 0.26(0.62) 2.81(0.39) 1.56(0.78) 1.09(1.01)
CV 0.72(0.90) 2.85(0.36) 1.59(0.68) 1.07(0.91)

MCP
ρ = 0.7, γ = 3

APPLE EBIC 0.16(0.53) 2.88(0.32) 1.20(0.69) 0.72(0.97)
CV 0.65(1.02) 2.79(0.41) 1.68(1.07) 1.18(1.20)

NCVREG EBIC 0.20(0.59) 2.80(0.39) 1.56(0.78) 1.09(1.01)
CV 0.70(0.95) 2.89(0.36) 1.56(0.77) 1.17(0.95)
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Table 2 Comparisons for
APPLE with GLMNET and
NCVREG for LASSO and MCP
penalties, respectively, in
Example 1, where
(p,n, d) = (3000,500,3) and
(1000,500,24). Design
matrices with different
correlation, and different
selection criteria are presented.
The medians of false positive
(FP), true positive (TP), �1 loss,
and �2 loss are reported over
100 repetitions, enclosed in
parentheses are the
corresponding standard errors

Model Package Method FP TP �1 loss �2 loss

LASSO
p = 3000
d = 3
ρ = 0

APPLE EBIC 0.06(0.09) 3.00(0.00) 3.73(0.67) 4.70(0.84)
CV 53.93(15.90) 3.00(0.00) 5.27(1.52) 2.50(0.54)

GLMNET EBIC 0.07(0.05) 3.00(0.00) 4.00(1.09) 5.43(1.10)
CV 118.03(20.83) 3.00(0.00) 5.79(1.46) 3.94(0.39f)

MCP
p = 3000
d = 3
ρ = 0

APPLE EBIC 0.03(0.18) 3.00(0.00) 0.77(0.41) 0.24(0.26)
CV 0.23(0.25) 3.00(0.00) 0.78(0.39) 0.23(0.22)

NCVREG EBIC 0.03(0.10) 3.00(0.00) 0.78(0.40) 0.25(0.22)
CV 0.27(0.64) 3.00(0.00) 1.02(0.88) 0.44(0.67)

LASSO
p = 3000
d = 3
ρ = 0.5

APPLE EBIC 0.19(0.43) 3.00(0.00) 3.61(0.26) 4.40(0.62)
CV 32.93(42.06) 3.00(0.00) 4.28(1.89) 2.58(0.72)

GLMNET EBIC 0.21(0.44) 3.00(0.00) 3.83(0.26) 4.98(0.65)
CV 190.17(13.96) 3.00(0.00) 3.83(0.25) 4.99(0.65)

MCP
p = 3000
d = 3
ρ = 0.5

APPLE EBIC 0.16(0.54) 3.00(0.00) 1.03(0.68) 0.50(0.64)
CV 0.01(0.10) 3.00(0.00) 0.89(0.52) 0.38(0.50)

NCVREG EBIC 0.30(0.66) 3.00(0.00) 1.03(0.54) 0.53(0.49)
CV 0.02(0.15) 3.00(0.00) 0.94(0.53) 0.41(0.51)

LASSO
p = 1000
d = 24
ρ = 0

APPLE EBIC 0.24(0.52) 11.17(7.67) 7.01(2.37) 10.35(3.36)
CV 124.51(18.00) 23.90(0.29) 6.85(0.99) 8.52(2.36)

GLMNET EBIC 0.00(0.00) 0.12(0.54) 7.21(0.10) 11.03(0.58)
CV 200.41(12.39) 23.91(0.28) 7.20(1.49) 6.73(1.82)

MCP
p = 1000
d = 24
ρ = 0

APPLE EBIC 0.12(0.38) 20.63(1.99) 4.48(2.50) 4.68(3.35)
CV 0.09(0.29) 23.25(1.42) 4.16(2.32) 4.17(2.86)

NCVREG EBIC 0.14(0.36) 21.95(2.31) 4.38(3.68) 5.21(6.45)
CV 4.59(1.70) 23.54(0.81) 17.82(11.51) 70.61(74.69)

LASSO
p = 1000
d = 24
ρ = 0.5

APPLE EBIC 0.90(0.98) 14.67(5.69) 6.94(1.80) 10.16(2.91)
CV 110.84(14.05) 23.82(0.43) 6.82(1.01) 8.45(2.32)

GLMNET EBIC 0.00(0.00) 0.88(3.31) 7.20(0.61) 11.01(3.03)
CV 167.15(10.24) 23.80(0.44) 7.06(2.12) 7.00(2.94)

MCP
p = 1000
d = 24
ρ = 0.5

APPLE EBIC 0.90(0.97) 15.78(2.12) 5.51(2.17) 6.54(3.51)
CV 1.14(1.09) 16.93(1.88) 5.16(2.20) 5.88(3.21)

NCVREG EBIC 0.69(0.83) 15.61(2.34) 5.37(2.70) 6.41(4.02)
CV 6.95(3.35) 18.29(1.99) 15.87(11.20) 58.76(53.40)

Table 3 Comparison of the computational cost for the APPLE and
NCVREG packages in different simulation settings. The medians of
the computation time (in seconds) are reported, enclosed in parentheses
are the corresponding standard errors. CPU: Intel(R) Xeon(R) L5420
@ 2.50 GHz

γ ρ = 0 ρ = 0.5

NCVREG APPLE NCVREG APPLE

p = 27 1.3 1.33(0.41) 0.13(0.07) 1.42(0.52) 0.14(0.06)
n = 50 3 0.22(0.28) 0.06(0.04) 0.15(0.32) 0.07(0.02)

p = 28 1.3 4.09(1.17) 0.37(0.21) 5.58(1.29) 0.42(0.11)
n = 100 3 0.35(0.53) 0.19(0.06) 0.32(0.40) 0.27(0.10)

p = 29 1.3 18.11(4.47) 1.15(0.18) 27.47(6.25) 1.21(0.20)
n = 200 3 1.58(0.77) 0.86(0.13) 1.32(0.55) 1.08(0.14)

p = 210 1.3 123.53(22.87) 6.29(0.67) 186.95(33.00) 6.55(0.80)
n = 500 3 6.55(1.49) 5.55(0.66) 9.01(4.42) 6.03(0.65)

penalty is too stringent for the variable selection purpose.
Nevertheless, with the same method for choosing the tun-
ing parameter, APPLE does a better job than GLMNET and
NCVREG in the LASSO and MCP cases, respectively.

APPLE is an efficient algorithm for computing the solu-
tion path for penalized likelihood estimators, particularly for
folded concave penalties. Table 3 illustrates the median time
required to fit the entire path and the corresponding stan-
dard errors of the NCVREG and APPLE algorithms. Here,
we use the same setting as Example 1 except for different p

and n. It is clear that APPLE takes less time than NCVREG
for the current example.

4.2 Poisson regression

Example 2 We consider a Poisson regression model with
different dimension, sparsity level and correlation settings.
(i) As Example 1(i), we set (p,n, d) = (1000,500,3). The
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Table 4 Comparison for
APPLE with GLMNET for
LASSO penalty and presenting
APPLE MCP results, in
Example 2, where p = 1000,
n = 500 and d = 3. Design
matrices with different
correlation, and different
selection criteria are presented.
The medians of false positive
(FP), true positive (TP), �1 loss,
and �2 loss are reported over
100 repetitions, enclosed in
parentheses are the
corresponding standard errors

Model Package Method FP TP �1 loss �2 loss

LASSO
ρ = 0

APPLE EBIC 0.70(0.93) 3.00(0.00) 0.42(0.16) 0.06(0.04)

CV 9.41(3.75) 3.00(0.00) 0.33(0.11) 0.02(0.01)

GLMNET EBIC 0.66(1.20) 3.00(0.00) 0.89(0.15) 0.24(0.08)

CV 28.33(22.61) 3.00(0.00) 0.74(0.33) 0.06(0.03)

MCP
ρ = 0, γ = 1.3

APPLE EBIC 0.50(0.07) 2.99(0.08) 0.42(0.10) 0.06(0.03)

CV 2.89(2.76) 2.99(0.26) 0.49(0.27) 0.07(0.05)

MCP
ρ = 0, γ = 3

APPLE EBIC 0.43(0.18) 2.97(0.62) 0.51(0.17) 0.08(0.05)

CV 3.72(5.82) 2.97(0.43) 0.49(0.17) 0.05(0.03)

LASSO
ρ = 0.2

APPLE EBIC 0.56(0.80) 3.00(0.00) 0.37(0.13) 0.05(0.03)

CV 9.68(5.41) 3.00(0.00) 0.32(0.12) 0.02(0.01)

GLMNET EBIC 1.63(1.43) 3.00(0.00) 0.63(0.13) 0.12(0.05)

CV 55.56(25.21) 3.00(0.00) 2.61(0.67) 0.08(0.03)

MCP
ρ = 0.2, γ = 1.3

APPLE EBIC 0.81(2.39) 2.97(0.16) 0.35(1.19) 0.19(1.16)

CV 6.60(15.19) 2.97(0.16) 1.82(12.20) 4.85(14.29)

MCP
ρ = 0.2, γ = 3

APPLE EBIC 0.79(2.41) 2.99(0.10) 0.30(1.21) 0.17(1.20)

CV 6.98(13.90) 2.99(0.10) 1.89(13.02) 4.99(15.48)

LASSO
ρ = 0.5

APPLE EBIC 0.86(0.95) 3.00(0.00) 0.29(0.11) 0.03(0.03)

CV 9.57(5.27) 3.00(0.00) 0.26(0.09) 0.01(0.01)

GLMNET EBIC 0.79(1.37) 3.00(0.00) 1.19(0.26) 0.51(0.23)

CV 25.64(13.92) 3.00(0.00) 0.54(0.17) 0.04(0.02)

MCP
ρ = 0.5, γ = 1.3

APPLE EBIC 0.91(0.53) 2.91(0.22) 0.16(0.54) 0.00(0.45)

CV 6.12(2.07) 2.97(0.28) 0.28(0.78) 0.03(0.75)

MCP
ρ = 0.5, γ = 3

APPLE EBIC 0.89(0.16) 2.98(0.12) 0.16(0.34) 0.00(0.42)

CV 7.22(3.31) 2.99(0.19) 0.25(0.56) 0.02(0.64)

LASSO
ρ = 0.7

APPLE EBIC 1.01(0.93) 3.00(0.00) 0.18(0.13) 0.01(0.01)

CV 11.08(10.03) 3.00(0.00) 0.19(0.09) 0.01(0.02)

GLMNET EBIC 2.58(1.49) 3.00(0.00) 0.41(0.39) 0.02(0.02)

CV 27.39(18.42) 3.00(0.00) 0.43(0.20) 0.06(0.05)

MCP
ρ = 0.7, γ = 1.3

APPLE EBIC 1.02(0.19) 2.98(0.12) 0.18(0.10) 0.01(0.01)

CV 16.10(6.10) 3.00(0.00) 0.15(0.11) 0.00(0.01)

MCP
ρ = 0.7, γ = 3

APPLE EBIC 0.99(0.21) 2.98(0.11) 0.18(0.21) 0.01(0.03)

CV 15.39(4.91) 3.00(0.00) 0.18(0.10) 0.01(0.02)

first 5 dimensions of βo are (1.2,0.6,0,0,0.8), and the rest
are all zeros and β0 = 0. The vector x follows a multivariate
normal distribution with zero mean and covariance between
the i-th and j -th elements being ρ|i−j | with ρ = 0,0.2,0.5
and 0.7 in four different settings. The results are in Table 4.
(ii) As Example 1(ii), different dimension and different spar-
sity levels are considered. We consider both (p,n, d) =
(3000,500,3) and (1000,500,24) with ρ = 0 and ρ = 0.5.
All the results are summarized in Table 5. When d = 24, the
first 56 dimensions are 8 repetitions of (1.2,0.6,0,0,0.8).
In each setting, 100 repetitions are performed. Part of the
setup is borrowed from Zou and Li (2008).

In Fig. 2(a), solution paths for APPLE MCP and LASSO
are presented. Similar to the logistic regression case, LASSO
yields a smoother path, while MCP results in better estima-
tion with a nearly “flat” region of optimal level. In addi-
tion, at the end of the MCP path, the solution is still sparse
in terms of our “square root of sample size” criterion. In
Fig. 2(b), we compare APPLE and GLMNET LASSO paths.
As in the logistic regression model, there is a small jump in
the APPLE LASSO path, which is caused by the change of
correction method. After the correction method switches to
the coordinate descent, the APPLE path coincides with the
GLMNET LASSO path. In Fig. 2(c), APPLE MCP paths
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Table 5 Comparison for
APPLE with GLMNET for
LASSO penalty and presenting
APPLE MCP results, in
Example 2, where
(p,n, d) = (3000,500,3) and
(1000,500,24). Design
matrices with different
correlation, and different
selection criteria are presented.
The medians of false positive
(FP), true positive (TP), �1 loss,
and �2 loss are reported over
100 repetitions, enclosed in
parentheses are the
corresponding standard errors

Model Package Method FP TP �1 loss �2 loss

LASSO
p = 3000
d = 3
ρ = 0

APPLE EBIC 0.49(0.25) 3.00(0.00) 0.33(0.10) 0.02(0.02)

CV 5.75(0.18) 3.00(0.00) 0.30(0.04) 0.02(0.01)

GLMNET EBIC 1.10(0.13) 3.00(0.00) 0.56(0.23) 0.06(0.02)

CV 98.28(12.17) 3.00(0.00) 1.36(0.32) 0.04(0.20)

MCP
p = 3000, d = 3, ρ = 0

APPLE EBIC 1.38(0.47) 3.00(0.00) 0.29(0.04) 0.02(0.01)

CV 6.29(0.84) 3.00(0.00) 0.27(0.07) 0.01(0.01)

LASSO
p = 3000
d = 3
ρ = 0

APPLE EBIC 0.67(0.18) 3.00(0.00) 0.29(0.04) 0.03(0.01)

CV 6.12(0.65) 3.00(0.00) 0.27(0.02) 0.01(0.02)

GLMNET EBIC 1.92(0.54) 3.00(0.00) 0.64(0.01) 0.12(0.01)

CV 168.53(6.76) 3.00(0.00) 2.13(0.02) 0.12(0.02)

MCP
p = 3000, d = 3, ρ = 0.5

APPLE EBIC 2.39(0.55) 3.00(0.00) 0.26(0.02) 0.02(0.01)

CV 10.67(1.27) 3.00(0.00) 0.37(0.04) 0.02(0.01)

LASSO
p = 1000
d = 24
ρ = 0

APPLE EBIC 0.73(0.18) 15.29(0.47) 3.92(0.53) 2.88(0.23)

CV 57.29(12.58) 23.98(0.03) 3.21(0.42) 3.89(0.35)

GLMNET EBIC 0.65(0.10) 0.49(0.04) 4.28(1.20) 3.26(0.63)

CV 142.48(22.58) 23.97(0.10) 4.29(1.02) 5.32(0.37)

MCP
p = 1000, d = 24, ρ = 0

APPLE EBIC 0.27(0.01) 22.19(0.27) 1.02(0.02) 0.98(0.02)

CV 0.10(0.20) 22.30(0.39) 0.98(0.03) 0.74(0.04)

LASSO
p = 1000
d = 24
ρ = 0.5

APPLE EBIC 0.70(0.23) 12.14(2.49) 4.29(1.02) 5.20(0.43)

CV 49.33(0.37) 22.96(1.18) 4.19(0.12) 4.32(0.48)

GLMNET EBIC 0.22(0.20) 1.02(0.04) 5.21(0.53) 4.94(0.39)

CV 155.32(13.28) 23.01(0.20) 6.32(0.48) 5.23(0.47)

MCP
p = 1000, d = 24, ρ = 0.5

APPLE EBIC 0.25(0.10) 22.47(1.03) 1.20(0.07) 0.99(0.17)

CV 0.24(0.08) 23.19(1.02) 1.04(0.03) 1.01(0.32)

with different concavity parameters are presented. The con-
tinuous gradual change with respect to γ is clear, with paths
getting smoother and tending to the LASSO path as γ be-
comes sufficiently large. In Fig. 2(d), just as the logistic re-
gression case, Newton-Raphson correction yields more ag-
gressive solution. From the simulation results presented in
Tables 4 and 5, APPLE LASSO performs much better than
GLMNET when CV is applied in all different ρ cases. Also,
it is obvious that MCP does a better job than LASSO in
terms of FP and TP. Similar behaviors as in logistic regres-
sion are observed when d >

√
n, as what we conjectured

there, we think the main reason is the over-penalization of
EBIC for the larger models.

Another interesting observation is the behavior when us-
ing different values of γ for MCP in Fig. 2(c), from the sim-
ulation results presented in Table 4, neither the selection nor
the estimation seems to be sensitive to the choice of γ . This
shows the stability of MCP in terms of the concavity param-
eter γ .

4.3 Linear v.s. quadratic approximation

Different from most previous work where a linear approx-
imation is used as the warm start in each update, APPLE

Table 6 Comparison for linear and quadratic approximation in
Sect. 4.3. The median time (in seconds) are reported over 100 repe-
titions, enclosed in parentheses are the corresponding standard errors.
CPU: Intel(R) Xeon(R) L5420 @ 2.50 GHz

LASSO MCP

ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

Linear 3.22(0.10) 1.77(0.11) 2.26(0.20) 2.20(0.19)

Quadratic 1.50(0.12) 1.56(0.14) 1.90(0.20) 2.02(0.20)

uses a quadratic approximation. The technical details can be
found in Sects. 2.3, 3.3 and Appendix. Here, we perform a
simulation study to compare the solution path and the com-
putation time under the settings ρ = 0 and ρ = 0.5 in Exam-
ple 1(i).

Due to the correction step used after the covariates are
updated when λ changes along the path, the linear and
quadratic approximation yield essentially an identical solu-
tion path (not shown). The difference of these two methods
lies in the quality of the warm starts in each step, which
affects the computation cost. As expected, Table 6 shows
quadratic approximation saves time over linear approxima-
tion.
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Fig. 2 Solution paths for
Poisson regression in
Example 2, where p = 1000,
n = 500, d = 3 and ρ = 0. In
(a), the solid lines and dotted
lines are the solution paths for
APPLE MCP and APPLE
LASSO, respectively. In (b), the
solid lines and dotted lines are
the solution paths for APPLE
LASSO and GLMNET LASSO,
respectively. In (c), the solid
lines, dashed lines and dotted
lines are solution paths of
APPLE MCP with different γ

values. In (d), the solid lines and
dotted lines are the solution
paths for APPLE LASSO with
different correction methods.
For each panel and each type of
lines, the important variables are
selected in the same order. As λ

becomes smaller, variables with
index 1, 5 and 2 are selected one
by one. When λ gets near to
zero, noise variables are selected

5 Applications

In this section, we present the analysis for two gene ex-
pression datasets with large dimension p and small sample
size n.

Example 3 (i) We consider the leukemia dataset previously
analyzed in Golub et al. (1999). There are p = 7,129 genes
and n = 72 samples coming from two classes: 47 in class
ALL (acute lymphocytic leukemia) and 25 in class AML
(acute myelogenous leukemia). (ii) The Neuroblastoma data
set, obtained via the MicroArray Quality Control phase-II
(MAQC-II) project (Consortium 2010), consists of gene ex-
pression profiles for p = 10,707 genes from 251 patients
of the German Neuroblastoma Trials NB90-NB2004, diag-
nosed between 1989 and 2004. We analyzed the gene ex-
pression data with the 3-year event-free survival (3-year
EFS), which indicates whether a patient survived 3 years af-
ter the diagnosis of neuroblastoma. There are n = 239 sub-
jects with the 3-year EFS information available (49 positives
and 190 negatives).

Potentially, a large number of genes are affected by the
two types of leukemia in (i) or negative/positive informa-

tion about 3-year EFS in (ii). In addition, the sample size
n is much smaller than the dimension p for both problems.
Therefore, a regularized logistic regression model is suit-
able. We impose LASSO and MCP penalties to these data
sets, and compare the prediction accuracy yielded by the
APPLE, GLMNET and NCVREG packages, respectively.

To check the stability of the results, we randomly split the
data into training and testing sets 5 times for each example,
and report the median prediction accuracy on the testing data
and the median model size. For simplicity, EBIC was used
to select the tuning parameter. For the MCP case, we fix
γ = 1.3 in both examples, which turned out to have better
performance than larger γ values in our simulation results.
Notice that in some other high-dimensional variable selec-
tion literature, a larger γ was chosen to present the results.
But when γ is too large, the MCP solution path has little
difference from the LASSO path, as shown in the figures of
our simulation examples.

From the results in Table 7, where test error is the num-
ber of misclassified subjects out of the size of the test
dataset, we notice that for LASSO, APPLE leads to a smaller
model size while having the same test error in both ex-
amples when compared with GLMNET. For MCP, in the
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Table 7 Comparison for APPLE with GLMNET and NCVREG in
LASSO and MCP (γ = 1.3), respectively. The medians of model size
and test error (the ratio of number of wrongly classified subjects to
size of test dataset) for two real data sets are reported, enclosed in the
enclosed in parentheses are the corresponding standard errors

Data Criteria LASSO MCP (γ = 1.3)

APPLE GLMNET APPLE NCVREG

Leukemia Model size 11 13 1 3

Test error 4/36 4/36 4/36 5/36

Neuroblastoma Model size 37 44 5 4

Test error 22/123 22/123 22/123 23/123

leukemia example, APPLE only needs 1 variable to achieve
the same test error as LASSO, and a better test error than the
NCVREG. For the neuroblastoma example, MCP performs
very well for both APPLE and NCVREG as compared with
the LASSO.

6 Summary

In this paper, we propose a new algorithm, APPLE, for cal-
culating the Approximate Path for Penalized Likelihood Es-
timators. The results from the simulation studies and real
data examples provide compelling evidence that the APPLE
algorithm is a worthwhile alternative to the existing meth-
ods.

APPLE takes significantly less time than NCVREG, and
the same order of time as GLMNET. In each step, APPLE
only updates the variables in the active set when the cur-
rent model is sparse enough. When the model involves too
many noise variables, APPLE switches to a coordinate de-
scent correction.

The γ adaptation method we adopt here is different from
the one originally introduced by Breheny and Huang (2011).
It is due to the vector update performed in APPLE. Here, the
minimum eigenvalue adaptation preserves the minimization
of the maximum concavity of the MCP penalty while main-
taining the stability in the Newton-Raphson update.

A public domain R language package apple is avail-
able from the CRAN website. http://cran.r-project.org/web/
packages/apple/

Acknowledgements The authors thank the editor, the associate ed-
itor, and referees for their constructive comments. The authors thank
Diego Franco Saldaña for proofreading.

Appendix A: Logistic regression

A.1 LASSO

In logistic regression, we assume (xi , yi), i = 1, . . . , n are
i.i.d. with P(yi = 1|xi ) = pi = exp(β ′xi )/(1 + exp(β ′xi )).

Then the target function for the LASSO penalized logistic
regression is defined as

L(β) = −1

n

n∑
i=1

{yi(β
′xi ) − log(1 + exp(β ′xi ))}

+ λ

p∑
j=1

|βj |.

The KKT conditions are given as follows.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
n

∑n
i=1

{ exp(β̂
′
xi )

1+exp(β̂
′
xi )

− yi

}
xij = λsgn(β̂j ), β̂j �= 0;

∣∣ 1
n

∑n
i=1

{ exp(β̂
′
xi )

1+exp(β̂
′
xi )

− yi

}
xij

∣∣≤ λ, β̂j = 0;
∑n

i=1
exp(β̂

′
xi )

1+exp(β̂
′
xi )

=∑n
i=1 yi.

We define active set Ak as

Ak =
{
j :
∣∣∣∣1n

n∑
i=1

{
yi − exp(β̂

(k)′
xi )

1 + exp(β̂
(k)′

xi )

}
xij

∣∣∣∣≥ λk

}
∪ {0}.

To update, we define

π
(k)
i = exp(β̂

(k)′
xi )

1 + exp(β̂
(k)′

xi )
,

V (k) = diag{π(k)
1 (1 − π

(k)
1 ), . . . , π(k)

n (1 − π(k)
n )},

T (k) = diag

{
π

(k)
1 (1 − π

(k)
1 )

1 − exp(β̂
(k)′

x1)

1 + exp(β̂
(k)′

x1)
, . . . ,

π(k)
n (1 − π(k)

n )
1 − exp(β̂

(k)′
xn)

1 + exp(β̂
(k)′

xn)

}
,

(11)

then s(k) = (0, s
(k)′
−0 )′, d(k) = (0,d

(k)′
−0 )′, where

s
(k)
−0 = −[X′

Ak\{0}V (k)XAk\{0}
]−1sgn(β̂

(k)

Ak\{0}),

ξ (k) = diag(T (k)XAk\{0}s(k)
−0),

d
(k)
−0 = −[X′

Ak\{0}V (k)XAk\{0}
]−1

X′
Ak\{0}ξ (k)XAk\{0}s(k)

−0.

To correct,

∂L(k)

∂βAk

= 1

n
X′

Ak

(
exp(β̂

(k)′
X)

1 + exp(β̂
(k)′

X)
− y

)

+ λksgn(0, β̂
(k)′
Ak\{0})′,

∂2L(k)

∂βAk
∂βT

Ak

= 1

n
X′

Ak
V (k)XAk

.

http://cran.r-project.org/web/packages/apple/
http://cran.r-project.org/web/packages/apple/


Stat Comput (2014) 24:803–819 817

A.2 MCP

For MCP penalized logistic regression, we define the target
function as

L(β) = −1

n

n∑
i=1

{yi(β
′xi ) − log(1 + exp(β ′xi ))}

+ λ

p∑
j=1

∫ |βj |

0

(
1 − t

λγ

)
+

dt.

The KKT conditions are given as follows.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

∑n
i=1

{ exp(β̂
′
xi )

1+exp(β̂
′
xi )

− yi

}
xij = λ

(
1 − |β̂j |

λγ

)
sgn(β̂j ),

0 < |β̂j | < λγ.

1
n

∑n
i=1

{ exp(β̂
′
xi )

1+exp(β̂
′
xi )

− yi

}
xij = 0,

|β̂j | ≥ λγ.

∣∣ 1
n

∑n
i=1

{ exp(β̂
′
xi )

1+exp(β̂
′
xi )

− yi

}
xij

∣∣≤ λ,

β̂j = 0.∑n
i=1

exp(β̂
′
xi )

1+exp(β̂
′
xi )

=∑n
i=1 yi.

For a given λk , define the active set Ak as

Ak = {Ak−1 ∪ Nk} \ Dk,

where

Nk =
{
j ∈ {1, . . . , p} \ Ak−1 :
∣∣∣∣1n

n∑
i=1

{
exp(β̂

′
xi )

1 + exp(β̂
′
xi )

− yi

}
xij

∣∣∣∣≥ λk

}
,

and

Dk =
{
j ∈ Ak−1 ∩ Ak−2 : sgn(β̂

(k−1)
j )sgn(β̂

(k−2)
j ) < 0

}
.

To perform adaptive rescaling on γ , define

Γ = diag
{
1/γ, . . . ,1/γ

}
.

To update, the derivatives are defined as follows,

s
(k)
−0 = −

(
1

n
X′

Ak\{0}V (k)XAk\{0} − uminΓ

)−1

(12)

× sgn(β̂
(k)

Ak\{0}), (13)

d
(k)
−0 = −

[
1

n
X′

Ak\{0}V (k)XAk\{0} − uminΓ

]−1

(14)

× X′
Ak\{0}ξ (k)XAk\{0}s(k)

−0, (15)

and

sgn(β̂
(k)

−0) =

⎛
⎜⎜⎝

sgn(β̂
(k)
Ak,1

)I {|β̂(k)
Ak,1

| < λ(k)γ }
...

sgn(β̂
(k)
Ak,nk

)I {|β̂(k)
Ak,nk

| < λ(k)γ }

⎞
⎟⎟⎠ ,

sgn(β̂
(k)
j ) = −1

n

n∑
i=1

{
exp(β̂

(k)′
xi )

1 + exp(β̂
(k)′

xi )
− yi

}
xij .

To correct we use

β̂
(k,j+1)

Ak
= β̂

(k,j)

Ak
−
(

∂2L(k)

∂βAk
∂βT

Ak

)−1(
∂L(k)

∂βAk

)
,

where

∂L(k)

∂βAk

= −1

n
X′

Ak
V (k)

(
ỹ − XAk

β̂
(k)

Ak

)

+ λksgn(0, β̂
(k)′
Ak\{0})′

(
1 − |̂β(k)

Ak\{0}|
λkγ

)
+
, (16)

∂2L(k)

∂βAk
∂βT

Ak

= 1

n
X′

Ak
V (k)XAk

− uminΓ , (17)

and

ỹ = (V (k))−1
{
y − exp(β̂

(k)′
X)

1 + exp(β̂
(k)′

X)

}
. (18)

Appendix B: Poisson regression

B.3 LASSO

In Poisson regression, we assume (xi , yi), i = 1, . . . , n are
iid with P(Y = yi) = e−λi λ

yi

i /(yi)!, where logλi = β ′xi .
Then criterion for the LASSO penalized Poisson regression
is defined as

L(β) = 1

n

n∑
i=1

{
exp(β ′xi ) − yi(β

′xi )
}+ λ

p∑
j=1

|βj |.

The KKT conditions are given as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n

∑n
i=1{exp(β̂

′
xi ) − yi}xij = λsgn(β̂j ), β̂j �= 0.∣∣ 1

n

∑n
i=1{exp(β̂

′
xi ) − yi}xij

∣∣≤ λ, β̂j = 0.

β̂0 = log
∑n

i=1 yi∑n
i=1 exp(β̂

′
xi )

.

For a given λk , we define the active set Ak as follows.

Ak =
{

j :
∣∣∣∣∣
1

n

n∑
i=1

{yi − exp(β̂
(k)′

xi )xij }
∣∣∣∣∣≥ λk

}
∪ {0}.
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To update, we define

V (k) = diag{exp(β̂
(k)′

x1), . . . , exp(β̂
(k)′

xn)},

then

s
(k)
−0 = −[X′

Ak\{0}V (k)XAk\{0}
]−1sgn(β̂

(k)

Ak\{0}),

ξ (k) = diag(V (k)XAk\{0}s(k)
−0),

and

d
(k)
−0 = −[X′

Ak\{0}V (k)XAk\{0}
]−1

× X′
Ak\{0}ξ (k)XAk\{0}s(k)

−0.

To correct,

∂L(k)

∂βAk

= 1

n
X′

Ak

(
exp(β̂

(k)′
X) − y

)+ λksgn(0, β̂
(k)′
Ak\{0})′,

∂2L(k)

∂βAk
∂βT

Ak

= 1

n
X′

Ak
V (k)XAk

.

B.4 MCP

For MCP penalized Poisson regression, we define the target
function as

L(β) = 1

n

n∑
i=1

{
exp(β ′xi ) − yi(β

′xi )
}

+ λ

p∑
j=1

∫ |βj |

0

(
1 − t

λγ

)
+

dt.

The KKT conditions are,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

∑n
i=1{exp(β̂

′
xi ) − yi}xij = λ

(
1 − |̂βj |

λγ

)
sgn(β̂j ),

0 < |β̂j | < λγ.

1
n

∑n
i=1{exp(β̂

′
xi ) − yi}xij = 0,

|β̂j | ≥ λγ.

∣∣ 1
n

∑n
i=1{exp(β̂

′
xi ) − yi}xij

∣∣≤ λ,

β̂j = 0.

β̂0 = log
∑n

i=1 yi∑n
i=1 exp(β̂

′
xi )

.

For a given λk , the active set is defined as

Ak = {Ak−1 ∪ Nk} \ Dk,

where

Nk =
{

j ∈ {1, . . . , p} \ Ak−1 :
∣∣∣∣∣
1

n

n∑
i=1

{exp(β̂
′
xi ) − yi}xij

∣∣∣∣∣≥ λk

}
,

and

Dk = {j ∈ Ak−1 ∩ Ak−2 : sgn(β̂
(k−1)
j )sgn(β̂

(k−2)
j ) < 0

}
.

To update, the derivatives are defined as follows,

s
(k)
−0 =

(
1

n
X′

Ak\{0}V (k)XAk\{0} − uminΓ

)−1

× sgn(β̂
(k)

Ak\{0}),

d
(k)
−0 = −

[
1

n
X′

Ak\{0}V (k)XAk\{0} − uminΓ

]−1

× X′
Ak\{0}ξ (k)XAk\{0}s(k)

−0,

and

sgn(β̂
(k)

−0) =

⎛
⎜⎜⎝

sgn(β̂
(k)

Ak,1
)I {|̂β(k)

Ak,1
| < λ(k)γ }

...

sgn(β̂
(k)

Ak,nk
)I {|̂β(k)

Ak,nk
| < λ(k)γ }

⎞
⎟⎟⎠ ,

sgn(β̂
(k)
j ) = −1

n

n∑
i=1

{
exp(β̂

(k)′
xi ) − yi

}
xij .

To correct we use

β̂
(k,j+1)

Ak
= β̂

(k,j)

Ak
−
(

∂2L(k)

∂βAk
∂βT

Ak

)−1(
∂L(k)

∂βAk

)
,

where

∂L(k)

∂βAk

= −1

n
X′

Ak
V (k)

(
ỹ − XAk

β̂
(k)

Ak

)

+ λksgn(0, β̂
(k)′
Ak\{0})′

(
1 − |̂β(k)

Ak\{0}|
λkγ

)
+
, (19)

∂2L(k)

∂βAk
∂βT

Ak

= 1

n
X′

Ak
V (k)XAk

− uminΓ , (20)

and

ỹ = (V (k))−1{y − exp(β̂
(k)′

X)}. (21)
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