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ABSTRACT
High-dimensional time series datasets are becoming increasingly common in various fields of economics
and finance. Given the ubiquity of time series data, it is crucial to develop efficient variable screening
methods that use the unique features of time series. This article introduces several model-free screening
methods based on partial distance correlation and developed specifically to deal with time-dependent
data. Methods are developed both for univariate models, such as nonlinear autoregressive models with
exogenous predictors (NARX), and multivariate models such as linear or nonlinear VAR models. Sure
screening properties are proved for our methods, which depend on the moment conditions, and the
strength of dependence in the response and covariate processes, amongst other factors. We show the
effectiveness of our methods via extensive simulation studies and an application on forecasting U.S. market
returns.

ARTICLE HISTORY
Received September 2019
Accepted February 2021

KEYWORDS
Distance correlation; High
dimensionality; Screening;
Sure independence time
series; Variable selection;
Variable screening

1. Introduction

High dimensionality is an increasingly common characteristic
of data being collected in fields as diverse as genetics, neu-
roscience, astronomy, finance, and macroeconomics. In these
fields, we frequently encounter situations in which the number
of candidate predictors (pn) is much larger than the number
of observations (n), and one of the common ways statistical
inference is made possible is by relying on the assumption
of sparsity. The sparsity assumption, which states that only a
small number of covariates contributes to the response, has
led to a wealth of theoretical results and methods available
for identifying important predictors in the high dimensional
setting. These methods broadly fall into two classes: variable
selection methods and screening methods. Variable selection
methods aim to recover the true signal set M∗, which can
be a very difficult goal both computationally and theoretically,
especially when pn � n. In contrast, variable screening meth-
ods have a less ambitious goal, and aim to find a set Sn such
that P(M∗ ⊂ Sn) → 1 as n → ∞. Ideally, we would
also hope that |Sn| � pn, thereby significantly reducing the
dimension of the feature space for a second-stage method,
such as penalized likelihood methods, or principal components
regression on the set of targeted predictors selected during the
screening stage.

Fan and Lv (2008) proposed Sure Independence Screening
(SIS) for the linear model, and it is based on ranking the mag-
nitudes of the marginal Pearson correlations of the covariates
with the response. A large amount of work has been done
since then to generalize the procedure to various other types
of models including generalized linear models (Fan and Song
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2010), nonparametric additive models (Fan, Feng, and Song
2011), Cox proportional hazards model (Fan, Feng, and Wu
2010), linear quantile models (Ma, Li, and Tsai 2017), and
varying coefficient models (Fan, Ma, and Dai 2014). In addition,
model-free screening methods, which do not assume any partic-
ular model a priori, have also been developed. Some examples
include a distance correlation based method in Li, Zhu, and
Zhong (2012), the fused Kolmogorov filter in Mai et al. (2015),
a conditional distance correlation method in Liu and Wang
(2017), and a smoothing bandwidth based method in Feng, Wu,
and Stefanski (2018). For a partial survey of screening methods,
one can consult Liu, Zhong, and Li (2015). The main theoretical
result of these methods is the so-called sure screening property,
which states that under appropriate conditions we can reduce
the dimension of the feature space from size pn = O

(
exp (nα)

)
to a far smaller size dn, while retaining all the relevant pre-
dictors with probability approaching 1. We note that variable
screening methods are closely related to the targeted predictors
framework more commonly used in econometrics. As intro-
duced in Bai and Ng (2008), the targeted predictors framework
was focused on selecting predictors using linear dependence
measures for the specific setting of forecasting from a second-
stage principal components regression. This can be thought of
as a specific type of variable screening with linear dependence
measures.

Although there has been a large amount of interest in devel-
oping screening methods, it is surprising to see that almost
all of the works operate under the assumption of indepen-
dent observations with a few exceptions (Chen et al. 2018;
Yousuf 2018). This is even more surprising given the ubiquity of
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time-dependent data in economics and finance. Some examples
include forecasting low-frequency macroeconomic indicators,
such as GDP or the inflation rate, or financial asset returns using
a large number of macroeconomic and financial time series and
their lags as possible covariates (Stock and Watson 2002a; Bai
and Ng 2009; Gu, Kelly, and Xiu 2018; Yousuf and Ng 2020).
These examples, among others, highlight the importance of
developing screening methods specifically for time-dependent
data.

In creating a screening method for stationary short-range
dependent time series, we aim to account for some of the fea-
tures of time series data including (a) a certain number of lags
of the response variable are usually included in the model; (b) an
ordered structure of the covariates, in which lower-order lags of
covariates are thought to be more likely to be informative than
higher-order lags; (c) the frequent occurrence of multivariate
response models such as linear or nonlinear VAR models. Note
that the idea of focusing on lower-order lags is popular in econo-
metrics, for example, Doan, Litterman, and Sims (1984) and
Litterman (1986) considered the Minnesota-type priors which
shrink distant lags faster.

We also aim to have a model-free screening approach that
can handle continuous, discrete, or grouped time series. Using
a model-free approach allows us to avoid imposing assump-
tions on the structure of the model (i.e., linearity), thereby
making our methods robust to model misspecification at the
screening stage. This gives us full flexibility to select a non-
linear or nonparametric second-stage procedure. Our goal is
thus to extend the targeted predictors framework to more
general nonlinear or nonparametric models while accounting
for the time dependence found in our data. This is especially
useful given that recent work has shown the benefits of con-
sidering nonlinear and nonparametric models in forecasting
macroeconomic and financial time series.1 Finally, using a
nonlinear dependence measure is helpful even when we aim
to fit a second-stage linear model, as the marginal relation-
ship between the predictors and the response can be highly
nonlinear.

To achieve our goals, we will introduce several distance-
correlation-based screening procedures. Distance correlation
(DC) was introduced by Székely, Rizzo, and Bakirov (2007),
for measuring dependence and testing independence between
two random vectors. The consistency and weak convergence of
sample distance correlation have been established for stationary
time series in Zhou (2012) and Davis et al. (2016). DC has
several useful properties including (a) the distance correlation
of two random vectors equals zero if and only if these two
random vectors are independent; (b) ability to handle discrete
time series, as well as grouped predictors; (c) an easy to compute
partial distance correlation (PDC) has also been developed,
allowing us to control for the effects of a multivariate random
vector (Székely and Rizzo 2014).

1Some examples include Gu, Kelly, and Xiu (2019, 2018), which showed
that nonlinear methods such as regression trees and neural networks are
the best performing methods at forecasting asset returns. Additionally, in
macroeconomics the sufficient forecasting framework (Fan, Xue, and Yao
2017) has shown improvements over using linear principal components
regression.

The first property allows us to develop a model-free screen-
ing approach, which is robust to model misspecification. The
second property is useful when dealing with linear or nonlinear
VAR models for discrete or continuous data. The third property
will allow us to account for the first two features of time series
data mentioned previously.

We will mainly be dealing with univariate response models,
some examples of which include linear or nonlinear autoregres-
sive models with exogenous predictors (NARX). Our methods
can also be extended to multivariate response models such
as linear or nonlinear VAR models. In both settings, we rely
on PDC to build our screening procedures. PDC produces
a wealthy family of screening methods by making different
choices for the conditioning vector. In many applications, it is
usually the case that researchers have prior knowledge that a
certain subset of predictors is relevant to the response. Using
this prior knowledge often enhances the screening procedure,
as shown in the case of generalized linear models in Barut, Fan,
and Verhasselt (2016). Therefore our method can be viewed
as a model-free adaption of this principle to the time series
setting. We discuss approaches for choosing the conditioning
vector of each predictor, and usually assume at least a few lags
of the response variable are part of the conditioning vector of
each predictor. We also discuss ways in which we can leverage
the ordered structure of our lagged covariates to add additional
variables to our conditioning vector.

To the best of our knowledge, there have been only two
works, Chen et al. (2018) and Yousuf (2018), studying screen-
ing methods in a stationary time series setting for a univari-
ate response. Chen et al. (2018) extended the nonparametric
independence screening (NIS) approach used for independent
observations to the time series setting. However, the method
does not use the serial dependence in the data or account for
the unique properties of the time series data we outlined. In
particular, to account for those properties, we would like to
search for a conditional relationship, which would require a dif-
ferent dependency measure. Yousuf (2018) extended the theory
of SIS to heavy-tailed and dependent data as well as proposing a
generalized least square based screening method to correct for
serial correlation. However, it is limited to linear models, and
the other unique qualities of time series data outlined above are
ignored.

Compared to the recent works on screening using distance
correlation-based methods (Wen et al. 2018; Liu and Wang
2017), our work differs in several ways. First, our work deals
with the time series setting, where both the covariates and
response are stationary time series and can have polynomially
decaying tails. Second, our screening procedures are developed
specifically to account for certain features in the time series data
mentioned previously. Lastly, we choose to rely on partial DC,
instead of conditional DC (Wang et al. 2015), when controlling
for confounding variables. A detailed comparison between par-
tial DC and conditional DC is available in the supplementary
material.

The rest of the article is organized as follows. In Section 2,
we first review the distance correlation-based methods, then
introduce our screening procedures for univariate response and
multivariate response models, respectively. Section 3 covers the
asymptotic properties of our PDC screening based methods.
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Section 4 covers extensive simulation studies comparing our
methods with existing work. We present an application to fore-
casting monthly U.S. market returns in Section 5. We conclude
the article with a short discussion in Section 6. The proofs for
all theorems, along with additional simulations, are placed in
the supplementary material.

2. Methods

Before introducing our method, we first review distance corre-
lation and its related methods in Section 2.1, then introduce our
new screening algorithms for univariate and multivariate time
series models in Sections 2.2 and 2.3, respectively.

2.1. Review of Distance Correlation-Based Methods

We start with a brief overview of distance covariance, distance
correlation, and PDC measures.

Definition 2.1. For any random vectors u ∈ Rq, v ∈ Rp, let
φu(t), φv(s) be the characteristic functions of u and v, respec-
tively. The distance covariance between u and v is defined as in
Székely, Rizzo, and Bakirov (2007):

dcov2(u, v) =
∫
Rp+q

|φu,v(t, s) − φu(t)φv(s)|2w−1(t, s)dtds,

where the weight function w(t, s) = cpcq|t|1+p
p |s|1+q

q , where t ∈
Rq, s ∈ Rp, and cp = π(1+p)/2

�((1+p)/2)
, cq = π(1+q)/2

�((1+q)/2)
with �(·)

referring to the Gamma function. Throughout this article |a|p
stands for the Euclidean norm of a ∈ Rp.

Given this choice of weight function, by Székely, Rizzo, and
Bakirov (2007), we have a simpler formula for the distance
covariance. Let (u′, v′), (u′′, v′′) i.i.d.∼ (u, v), and let:

S1 = E(|u − u′|p|v − v′|q),
S2 = E(|u − u′|p)E(|v − v′|q),
S3 = E(|u − u′|p|v − v′′|q).

Then, provided that second moments exist, we have by Remark
3 in Székely, Rizzo, and Bakirov (2007) and (1.2) in Székely
and Rizzo (2014), dcov2(u, v) = S1 + S2 − 2S3. We can now
estimate this quantity using moment-based methods. Suppose
we observe (ui, vi)i=1,...,n, the sample estimates for the distance
covariance and distance correlation are

d̂cov2
(u, v) = Ŝ1 + Ŝ2 − 2Ŝ3, and

d̂cor(u, v) = d̂cov(u, v)√
d̂cov(u, u)d̂cov(v, v)

,

where Ŝ1 = n−2
n∑

i,j=1
|ui − uj|p|vi − vj|q,

Ŝ2 = n−2
n∑

i,j=1
|ui − uj|pn−2

n∑
i,j=1

|vi − vj|q,

Ŝ3 = n−3
n∑

i,j,l=1
|ui − uj|p|vi − vl|q.

As shown in Székely, Rizzo, and Bakirov (2007), the distance
covariance given above has the property that dcov(u, v) = 0 if
and only if u and v are independent. Additionally, they proved
consistency and weak convergence of the sample distance cor-
relation estimator in the iid setting. These results were extended
to strictly stationary α-mixing processes in Zhou (2012), Davis
et al. (2016), and Fokianos and Pitsillou (2017) .

PDC was introduced in Székely and Rizzo (2014), as a means
of measuring nonlinear dependence between two random vec-
tors u and v while controlling for the effects of a third random
vector Z . We refer to the vector Z as the conditioning vector.
Székely and Rizzo (2014) showed that the PDC between u and
v, controlling for Z , can be evaluated using pairwise distance
correlations as follows:

pdcor(u, v;Z) = dcor2(u, v) − dcor2(u,Z)dcor2(v,Z)√
1 − dcor4(u,Z)

√
1 − dcor4(v,Z)

,

if dcor(u,Z) �= 1 and dcor(v,Z) �= 1, otherwise
pdcor(u, v;Z) = 0. The sample PDC (p̂dcor(u, v;Z)), is
defined by plugging in the sample distance correlation estima-
tors in the above definition. We note that Theorem 1 in this work
also establishes concentration bounds, in the time series setting,
for the sample DC and PDC, which is of independent interest.

2.2. Screening Algorithms for Univariate Time Series
Models

We first review some basic ingredients of screening procedures.
Let y = (Y1, . . . , Yn)

T be our response time series, and let
xt−1 = (Xt−1,1, . . . , Xt−1,mn)

T denote the mn predictor series
at time t − 1. Given that lags of these predictor series are
possible covariates, we let zt−1 = (xT

t−1, xT
t−2, . . . , xT

t−hn
)T =

(Zt−1,1, . . . , Zt−1,pn)
T denote the length pn vector of covariates,

where pn = mn ×hn. Now we denote our set of active covariates
as follows:

M∗ = {
1 ≤ j ≤ pn : F(Yt|Yt−1, . . . , Yt−hn , zt−1)

functionally depends on Zt−1,j
}

,

where F(Yt|·) is the conditional cumulative distribution func-
tion of Yt . The value hn represents the maximum lag order we
are considering for our response and predictor series. This value
can be decided beforehand by the user, or can be selected using
a data driven method. The value hn could differ for different
predictors, however, for simplicity of presentation we assume
the same value hn for all predictors.

2.2.1. Screening Algorithm I: PDC-SIS
In our first algorithm, PDC-SIS, we define the conditioning
vector for the lth lag of predictor series k (Xt−l,k) at time t as:
Sk,l = (Yt−1, . . . , Yt−hn , Xt−1,k, . . . , Xt−l+1,k), where 1 ≤ l ≤
hn. Since we are assuming a priori that a certain number of lags
of Yt are to be included in the model,

{
Yt−1, . . . , Yt−hn

}
is part

of the conditioning vector for all possible covariates. Our condi-
tioning vector also includes all lower-order lags for each lagged
covariate we are considering. By doing so, our method tries to
shrink toward sub-models with lower-order lags. To illustrate
this, consider the case, where Yt is strongly dependent on Xt−1,j
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even while controlling for the effects of Yt−1, . . . , Yt−hn . Under
this scenario, if Xt−1,j has strong serial dependence, higher-
order lags of Xt−1,j can be mistakenly selected by our screening
procedure even if they are not in our active set of covariates.

For convenience, let C = {
S1,1, . . . ,Smn,1,S1,2, . . . ,Smn,hn

}
denote our set of conditioning vectors; where Ck+(l−1)∗mn =
Sk,l is the conditioning vector for covariate Zt−1,(l−1)∗mn+k. Our
set of targeted predictors is:

M̂γn =
{

j ∈ {1, . . . , pn
}

: |p̂dcor(Yt , Zt−1,j; Cj)| ≥ γn
}

,

where the choice of γn will be discussed in Section 2.2.3. We use
dn to represent the size of M̂γn .

2.2.2. Screening Algorithm II: PDC-SIS+
As we have seen, the time ordering of the covariates allows us
some additional flexibility in selecting the conditioning vector
compared to the iid setting. PDC-SIS attempts to use the time
series structure of our data by conditioning on lower lags of
the covariate. However, rather than simply conditioning only
on the lower lags of a covariate, we can condition on additional
information available from lower lags of other covariates as well.
One way to attempt this, and to potentially improve PDC-SIS, is
to identify strong conditional signals at each lag level and add
them to the conditioning vector for all higher-order lag levels.
By using this conditioning scheme, we can pick up on hidden
significant variables in more distant lags, and also shrink toward
models with lower-order lags by controlling for false positives
resulting from high auto-correlation, and cross-correlation.

We now give a formal description of PDC-SIS+. The condi-
tioning vector for the first lag level of predictor series k is:Sk,1 =
(Yt−1, . . . , Yt−hn), which coincides with the conditioning vector
for the first lag level of PDC-SIS. Using the representation
zt−1 = (xt−1, . . . , xt−hn)

T , we denote the strong conditional
signal set for the first lag level as follows:

Û�n
1 =

{
j ∈ {1, . . . , mn} : |p̂dcor(Yt , Zt−1,j;Sj,1)| ≥ �n

}
,

where �n is a threshold to be discussed in Section 2.2.3. We then
use this information to form our next conditioning vector:

Ŝk,2 =
(

Yt−1, . . . , Yt−hn , Xt−1,k, zt−1,Û�n
t−1

)
,

where zt−1,Û�n
1

is a subvector of zt−1 which is formed by

extracting the indices contained in Û�n
1 . We note that any

duplicates which result from overlap between Xt−1,k and
zt−1,Û�n

1
are deleted. For convenience, we define Ĉ =

(Ŝ1,1, . . . , Ŝmn,1, Ŝ1,2, . . . , Ŝmn,hn) as our vector of estimated
conditional sets. We then use (Ŝk,2)k≤mn to compute the strong
conditional signal set for the 2nd lag level

Û�n
2 =

{
j ∈ {mn + 1, . . . , 2mn} : |p̂dcor(Yt , Zt−1,j; Ĉj)| ≥ �n

}
.

Repeating this procedure we obtain

Ŝk,l = (
Yt−1, . . . , Yt−hn , Xt−1,k, . . . , Xt−l+1,k,
zt−1,Û�n

1
, . . . , zt−1,Û�n

l−1

)
.

We can also vary the threshold �n for each lag level; for simplic-
ity we leave it the same for each of our levels here. Our subset of
predictors obtained from this procedure is

M̃γn =
{

j ∈ {1, . . . , pn
}

: |p̂dcor(Yt , Zt−1,j; Ĉj)| ≥ γn
}

.

We denote U�n =
{
U�n

1 , . . . ,U�n
hn−1

}
as the population

version of the strong conditional signal sets. Although the hope
is that U�n ⊂ M∗, this is not necessary for the success of the
algorithm. As seen in Barut, Fan, and Verhasselt (2016) for the
case of generalized linear models, conditioning on irrelevant
variables could also enhance the power of a screening proce-
dure. In practice, we would prefer not to condition on too many
variables. Therefore the threshold for adding a variable to Û�n

would be relatively high.
Now, we have presented two classes of PDC screening meth-

ods. In the first class of methods, the conditional set of each
covariate is known as a priori, while in the second class the
conditional set is estimated from the data. We can easily modify
our algorithms for both procedures depending on the situation.
For example, we can screen groups of lags at a time for certain
covariates in PDC-SIS, or allow the lag length hn to vary by
covariates. Additionally, for either procedure, we can condition
on a small number of lags of Yt , and leave the higher-order lags
of Yt as possible covariates in our screening procedure.

2.2.3. Threshold Selection
Threshold selection is a critical ingredient for the success of
any screening based method. Common methods include resam-
pling procedures (Barut, Fan, and Verhasselt 2016; Weng, Feng,
and Qiao 2019), selecting a pre-specified number of predictors
depending on the sample size (Fan and Lv 2008; Fan, Feng,
and Song 2011), and using a data-driven method such as cross-
validation. Callot et al. (2017) proposed an information criteria-
based choice for the thresholding operation on a regularized
estimator.

We first discuss how to select the parameter �n for PDC-
SIS+. For simplicity, we will only use a single threshold for all
lag levels. The idea is to create pseudo data {(xt , Y∗

t )}t=1,...,n,
where {Y∗

t }t=1,...,n is formed using a stationary bootstrap on
{Yt}t=1,...,n. This resampling procedure creates a null model,
where ω̂∗

j = p̂dcor(Y∗
t , Xt−1,j; Y∗

t−1, Y∗
t−2, . . . , Y∗

t−hn
). We can

then choose the α = 0.99 quantile of {ω̂∗
1 , . . . , ω̂∗

pn}. Given that
this threshold depends on a single resampling, we stabilize this
threshold by constructing K (e.g., K = 5)2 bootstrap samples.
In order to avoid conditioning on too many variables, an upper
bound of �n1/2� variables can be added to our conditioning
vector at each lag level. This procedure is similar to the random
decoupling approach used in Weng, Feng, and Qiao (2019) and
Barut, Fan, and Verhasselt (2016) for the iid setting.

For both PDC-SIS and PDC-SIS+, we also need to select a
threshold γn to form our targeted set of predictors. We give three
possible methods to select this threshold. The first is to use the
bootstrap resampling procedure detailed above, which is a data-
driven method to select γn. Given we used α = 0.99 to select �n,
we would want to use a quantile between 0.95 and 0.99 to select

2The performance is stable across different choices of K from our numerical
experience.
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γn. This is similar in spirit to thresholding by using a cutoff for
the t-statistics of each marginal correlation measure used in Bai
and Ng (2008). The second approach, which is most commonly
used in the literature, is to select the top dn predictors as ranked
by our screening algorithm. When pn � n, dn = �n/ log(n)�
or dn = n − 1 are common choices. Alternatively, dn can be set
by the researcher using prior knowledge of the data.3 The third
approach is to select γn via cross-validation if we have decided
on the second-stage modeling procedure.

The choice of which threshold method to select depends on
the goals of the user and prior information of the problem.
As mentioned previously, the most common method in the
literature, and the one we use in our empirical examples, is
to select the top dn predictors. This method is attractive for a
number of reasons: it is agnostic as to the choice of second-
stage model, and can be used as a quick way to reduce the
dimensionality of the problem to make the resulting exploration
and modeling more tractable. It also allows the user to control
the size of the screened set directly. The bootstrap procedure is
also a viable option, if the user does not have any prior opinion
of how large they want their screened set, although it adds
additional computational overhead. Whereas, the third option
is limited to cases where one already has chosen their second-
stage modeling procedure beforehand.

2.3. Screening for Multivariate Time Series Models

Multivariate time series models, such as linear VAR models,
are commonly used in fields such as macroeconomics (Lütke-
pohl 2005), finance, and more recently neuroscience (Valdés-
Sosa et al. 2005) and genomics. VAR models provide a use-
ful framework for forecasting, investigating Granger causality,
and modeling the temporal and cross-sectional dependence
for large numbers of series. Since the number of parameters
grows quadratically with the number of component series, VAR
models have traditionally been restricted to situations where the
number of component series is small. One way to overcome
this limitation is by assuming a sparse structure in the VAR
process, and using penalized regression methods such as the
Lasso and adaptive Lasso (Zou 2006) to estimate the model.
Examples of works which pursue this direction include Basu
and Michailidis (2015), Basu, Shojaie, and Michailidis (2015),
Kock and Callot (2015), and Nicholson, Bien, and Matteson
(2016). However, due to the quadratically increasing nature of
the parameter space, penalized regression methods can quickly
become computationally burdensome when we have a large
panel of component series. For example, in a VAR(k) process:
xt = ∑k

i=1 Bixt−i + ηt , where xt ∈ Rmn , mn = 1000, k = 5,
the number of parameters to estimate is 5 × 106. Additionally,
these methods are restricted to linear VAR models, whereas
there is considerable evidence of nonlinear effects such as the
existence of thresholds, smooth transitions, regime switching,
and varying coefficients in fields such as macroeconomics and
finance (Kilian and Lütkepohl 2017).

3If the number of targeted predictors is determined beforehand, one can set
an upper bound of dn variables which can be added to the conditioning
set in PDC-SIS+.

Screening approaches can be used in this setting, and one
option would be to screen separately for each of the mn series.
This can be computationally prohibitive since it requires esti-
mating km2

n correlations. However, if we assume a group struc-
ture in the component series and a sparse conditional depen-
dency structure between these groups, we can quickly reduce
the feature space by screening at the group level using distance
correlation-based methods. To be more precise, let xt be a
nonlinear VAR(k) process

xt = g(xt−1, . . . , xt−k) + ηt , where xt ∈ Rmn , ηt iid (1)

For simplicity, we let all groups be of size gn, let en = mn/gn
denote the total number of groups for a given lag level, and
denote our groups (Gt−1,1, . . . , Gt−k,en). To get a sense of the
computational benefits of screening on the group level, assume
for example, mn = 500, k = 1, and we have 25 groups all of
size gn = 20. For this linear VAR (1) model, when n = 200, we
note it takes about 350 times longer to compute all m2

n = 5002

pairwise distance correlations
{

d̂cor(Xt,j, Xt−1,k)
}

j≤mn,k≤mn
vs.

computing all e2
n = 252 group pairwise distance correlations.

After the group screening, examples of second-stage procedures
include: screening at the individual series level using PDCs, or
using a group lasso-type procedure (Yuan and Lin 2006) which
can handle sparsity between groups and within groups for a
linear VAR model (Basu, Shojaie, and Michailidis 2015).

We now present the details of our group PDC-SIS pro-
cedure. Note that we condition on only one lag of the
grouped response in PDC-SIS, however, the number of lags
can also be selected using a data driven procedure. Denote
the set of possible group connections for Gt,i by A(i) ={
(i, k, j) : k ∈ {t − 1, . . . , t − hn} , j ≤ en

} \ (i, t − 1, i). We
remove the entry (i, t−1, i) fromA(i), since we are conditioning
on Gt−1,i and it will not be screened. Denote the active group
connections for group i as

M(i)∗ =
{
(i, k, j) ∈ A(i) : F

⎛⎝Gt,i|Gt−1,i,
t−1⋃

r=t−hn

{
Gr,l
}

l≤en

⎞⎠
functionally depends on Gk,j

}
.

Now let the overall active group connections set be denoted as

M∗ =
en⋃

i=1
M(i)∗ . Similarly, our overall screened set is now

M̂γn =
en⋃

i=1
M̂(i)

γn

=
{

(i, k, j) ∈
en⋃

i=1
A(i) : |p̂dcor(Gt,i, Gk,j; Gt−1,i)| ≥ γn

}
.

The sure screening properties of our group PDC-SIS procedure
are presented in the supplementary material. From these results,
we can infer the maximum size of the groups is o(n1/2−κ). Given
this bound on the group size, the group PDC-SIS procedure
is most advantageous when the number of component series
(mn) increases polynomially with the sample size. This is usually
the case in most VAR models seen in practice. A group version
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of PDC-SIS+ can also be developed similarly to the procedure
in Section 2.2, however, we do not pursue this direction, as it
usually leads to situations where we are conditioning on a large
number of variables.

3. Asymptotic Properties

3.1. Dependence Measures

In order to establish asymptotic properties, we rely on two
widely used dependence measures, the functional dependence
measure and β-mixing coefficients. We give an overview of the
functional dependence measure framework here, and one can
consult (Davidson 1994) for an overview of β-mixing coeffi-
cients. For univariate processes, (Yi ∈ R)i∈Z, we assume Yi is
a causal, strictly stationary, ergodic process with the following
form:

Yi = g (. . . , ei−1, ei) , (2)

where g(·) is a real valued measurable function, and ei are iid
random variables. And for multivariate processes, such as the
covariate process (xi ∈ Rpn)i∈Z, we assume the following
representation:

xi = h
(
. . . , ηi−1, ηi

)
. (3)

Where ηi, i ∈ Z, are iid random vectors, h(·) =
(h1(·) . . . , hpn(·)), xi = (Xi1, . . . , Xipn)

T , and Xij =
hj(. . . , ηi−1, ηi).

Processes having these representations are sometimes known
as Bernoulli shift processes (Wu 2009), and include a wide
range of stochastic processes such as linear processes with their
nonlinear transforms, Volterra processes, Markov chain mod-
els, nonlinear autoregressive models such as threshold auto-
regressive (TAR), bilinear, GARCH models, among others (Wu
2011, 2005). These representations allow us to quantify depen-
dence using a functional dependence measure introduced in
Wu (2005). The functional dependence measure for a univariate
process and multivariate processes is defined respectively as
follows:

δq(Yi) = ||Yi − g
(
F∗

i
) ||q = (E|Yi − g

(
F∗

i
) |q)1/q,

δq(Xij) = ||Xij − hj
(
H∗

i
) ||q = (E|Xij − hj

(
H∗

i
) |q)1/q, (4)

where F∗
i = (

. . . , e−1, e∗
0, e1, . . . , ei

)
with e∗

0, ej, j ∈ Z being iid
And for the multivariate case, H∗

i = (. . . , η−1, η∗
0, η1, . . . , ηi)

with η∗
0, ηj, j ∈ Z being iid Since we are replacing e0 by e∗

0, we can
think of this as measuring the dependency of yi on e0, since we
are keeping all other inputs the same. We assume the cumulative
functional dependence measures are finite

�0,q(y) =
∞∑

i=0
δq(Yi) < ∞, and

�m,q(x) = max
j≤pn

∞∑
i=m

δq(Xij) < ∞. (5)

This short-range dependence condition implies, by the proof of
Theorem 1 in Wu and Pourahmadi (2009), the auto-covariances
are absolutely summable.

We note that compared to functional dependence measures,
β-mixing coefficients can be defined for any stochastic pro-
cesses, and are not limited to Bernoulli shift processes. On the
other hand, functional dependence measures are easier to inter-
pret and compute since they are related to the data-generating
mechanism of the underlying process. In many cases using
the functional dependence measure also requires less stringent
assumptions (see Wu and Wu (2016), Yousuf (2018) for details).
Although there is no direct relationship between these two
dependence frameworks, fortunately, there are a large number of
commonly used time series processes, which are β-mixing and
satisfy Equation (5). For example, under appropriate conditions,
linear processes, ARMA, GARCH, ARMA-ARCH, threshold
autoregressive, Markov chain models, amongst others, can be
shown to be β-mixing (see Pham and Tran (1985), Carrasco and
Chen (2002), An and Huang (1996), and Lu (1998) for details).

3.2. Asymptotic Properties: PDC-SIS

To establish sure screening properties, we introduce the follow-
ing conditions:

Condition 3.1. |pdcor(Yt , Zt−1,k; Ck)| ≥ c1n−κ for k ∈ M∗ and
κ ∈ (0, 1/2).

Condition 3.2. The response and the covariate processes
have representations (2) and (3), respectively. Addition-
ally, we assume the following decay rates �m,r(x) =
O(m−αz ), �m,q(y) = O(m−αy), for some αz, αy > 0, q > 2, r >

4 and τ = qr
q+r > 2.

Condition 3.3. The response and the covariate processes have
representations (2) and (3) respectively. Additionally assume
υz = supq≥2 q−α̃z�0,q(x) < ∞ and υy =
supq≥2 q−α̃y�0,q(y) < ∞, for some α̃z, α̃y ≥ 0.

Condition 3.4. The process {(Yt , xt)} is β-mixing, with mixing
rate βxy(a) = O(exp(−aλ1)), for some λ1 > 0.

Condition 3.1 is a standard population-level assumption
that allows covariates in the active set to be detected by our
screening procedure. Condition 3.2 is similar to the one used
in Yousuf (2018) and Wu and Wu (2016), and assumes both
the response and covariate processes are causal Bernoulli shift
processes, and have at least 2 and 4 finite moments respectively.
Additionally it presents the dependence conditions on these
processes, where higher values of αx, αε indicate weaker tempo-
ral dependence. Examples of response processes which satisfy
Condition 3.2 include stationary, causal, finite order ARMA,
GARCH, ARMA-GARCH, bilinear, and threshold autoregres-
sive processes, all of which have exponentially decaying func-
tional dependence measures (see Wu (2011) for details). For
the covariate process, assume xi is a vector linear process: xi =∑∞

l=0 Alηi−l. where {Al} are mn × mn coefficient matrices and
{ηi = (ηi1, . . . , ηimn)

T} are iid random vectors with cov(ηi) =
�η. For simplicity, assume {ηi,j, j = 1, . . . , mn} are identically
distributed, then δq(Xij) = ||Ai,jη0 − Ai,jη

∗
0||q ≤ 2|Ai,j|||η0,1||q,

where Ai,j is the jth column of Ai. Define ||Ai||∞ as the max-
imum absolute row sum of Ai, then if ||Ai||∞ = O(i−β) for
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β > 1, we have �m,q(x) = O(m−β+1). Other examples include
stable VAR processes, and multivariate ARCH processes which
have exponentially decaying cumulative functional dependence
measures (Wu and Wu 2016; Yousuf 2018). We note that it is
clear that if xi satisfies Condition 3.2, then zi trivially satisfies it
as well. Condition 3.3 strengthens the moment requirements of
Condition 3.2, and requires that all moments of the covariate
and response processes are finite. To illustrate the role of the
constants α̃z and α̃y, consider the example where yi is a linear
process: yi = ∑∞

j=0 fjei−j with ei iid and
∑∞

l=0 |fl| < ∞, then
�0,q(y) = ||e0−e∗

0||q
∑∞

l=0 |fl|. If we assume e0 is sub-Gaussian,
then α̃y = 1/2, since ||e0||q = O(

√q). Similarly, if ei is sub-
exponential, we have α̃y = 1.

To understand the inclusion of Condition 3.4, consider the
U-statistic

Ur(St1 , . . . , Str ) =
(

n
r

) ∑
t1≤t2≤...≤tr≤n

h(St1 , . . . , Str ),

which aims to estimate θ(h) = ∫
h(St1 , . . . , Str )

dP(S1) . . . dP(Sr). When S1, . . . , Sn are iid, the U-statistic
is an unbiased estimator of θ(h), however for r > 1 the U-
statistic is no longer unbiased if St is serially dependent. Since
our sample distance correlation estimate can be written as a
sum of U-statistics (Li, Zhu, and Zhong 2012), Condition 3.4
is needed to control the rate at which the above bias vanishes
as n → ∞. Conditions 3.2 and 3.4 are frequently used when
dealing with time series data (Wu and Pourahmadi 2009; Xiao
and Wu 2012; Davis et al. 2016).

Throughout this article, let α = min(αx, αy), and � = 1,
if αz > 1/2 − 2/r, otherwise � = r/4 − αzr/2. Let ι = 1 if
α > 1/2 − 1/τ , otherwise ι = τ/2 − τα, and let ζ = 1, if
αy > 1/2 − 2/q, otherwise ζ = q/4 − αyq/2. Additionally,
let Ky,q = supm≥0(m + 1)αy�m,q(y), and Kz,r = supm≥0(m +
1)αz�r(x). Given Condition 3.3, it follows that Kε,q, Kz,r < ∞.
Let tn = maxj dim(Cj), be the maximum dimension of the
conditional vectors. We define ψ̃ = 2

1+2α̃z+2α̃y
, ϕ̃ = 2

1+4α̃z
, α̃ =

2
1+4α̃y

. Lastly, for ease of presentation, let ω̂ = (ω̂1, . . . , ω̂pn),
ω = (ω1, . . . , ωpn), where ωk = pdcor(Yt , Zt−1,k; Ck), ω̂k =
p̂dcor(Yt , Zt−1,k; Ck). In addition, let

an = n2

⎡⎣exp

(
−n1/2−κ

tnυ2
y

)α̃

+ exp
(

−n1/2−κ

tnυzυy

)ψ̃

+ exp
(

−n1/2−κ

tnυ2
z

)ϕ̃
]

,

bn = n2
[ tr/2

n nζ Kr
y,r

nr/2−rκ/2 + tr/2
n nιKr/2

z,r Kr/2
y,r

nr/2−r/2κ
+ tr/2

n n�Kr
z,r

nr/2−rκ/2

+ exp
(

−n1−2κ

t2
nK4

z,r

)
+ exp

(
− n1−2κ

t2
nK2

z,rK2
y,r

)

+ exp

(
−n1−2κ

t2
nK4

y,r

)]
,

cn = tr/2
n Kr

y,r

nr/4−rκ/2 + tr/2
n Kr/2

z,r Kr/2
y,r

nr/4−r/2κ
+ tr/2

n Kr
z,r

nr/4−rκ/2 .

For simplicity and convenience of presentation, we assume
q = r, and one can consult the proof for the general case.
The following theorem presents the sure screening properties
of PDC-SIS.

Theorem 1. i. Suppose Conditions 3.1, 3.3, and 3.4 hold. For
any c2 > 0, we have

P(max
j≤pn

|ω̂j − ωj| > c2n−κ) ≤ O(pnan).

ii. Suppose Conditions 3.1, 3.3, and 3.4 hold. For γn = c3n−κ

with c3 ≤ c1/2, we have

P
(
M∗ ⊂ M̂γn

) ≥ 1 − O(dnan).

iii. Suppose Conditions 3.1, 3.2, and 3.4 hold. For any c2 > 0,
we have

if r < 12, P(max
j≤pn

|ω̂j − ωj| > c2n−κ) ≤ O(pncn);

if r ≥ 12, P(max
j≤pn

|ω̂j − ωj| > c2n−κ) ≤ O(pnbn).

iv. Suppose Conditions 3.1, 3.2, and 3.4 hold. For γn = c3n−κ

with c3 ≤ c1/2, we have

if r < 12, P
(
M∗ ⊂ M̂γn

) ≥ 1 − O(dncn);
if r ≥ 12, P

(
M∗ ⊂ M̂γn

) ≥ 1 − O(dnbn).

From the above theorem, we observe that the range of pn
depends on the temporal dependence in both the covariate and
the response processes, the strength of the signal (κ), and the
moment conditions. We also have two cases for finite polyno-
mial moments, one for r < 12 and one for r ≥ 12. This is
due to our proof technique, which relies on both Nagaev- and
Rosenthal-type inequalities. For the case of lower moments, we
obtain a better bound using a Rosenthal-type inequality com-
bined with the Markov inequality, whereas for higher moments
Nagaev-type inequalities lead to a better bound; more details
can be found in the proof which is provided in the supplemen-
tary file.

For example, if we assume only finite polynomial moments
with r = q and r < 12, then pn = o(nr/4−rκ/2/tn). If we
assume α ≥ 1/2−2/r and r > 12, pn = o(nr/2−rκ/2−3/tn). The
constants Kz,r and Ky,q, which are related to the cumulative func-
tional dependence measures, represent the effect of temporal
dependence on our bounds when α ≥ 1/2−2/r. However, when
using Nagaev-type inequalities, there is an additional effect in
the case of stronger dependence in the response or covariate
process (i.e., α < 1/2−2/r). For instance, if αx = αε and q = r,
the range for pn is reduced by a factor of nr/4−αr/2 in the case of
stronger dependence. The term tn depends on the number of
lags we are considering as possible predictors. In many cases,
the number of lags can be O(1), but we see the bound for tn
is o(nr/4−rκ/2). We observe that if the response and covariates
are sub-Gaussian, pn = o(exp(n

1−2κ
3 /tn)), and if they are sub-

exponential, pn = o(exp(n
1−2κ

5 /tn)).
By choosing an empty conditional set for all the variables,

our procedure reduces to the distance correlation screening
(DC-SIS) introduced in Li, Zhu, and Zhong (2012) for the
iid setting. Assuming sub-Gaussian response and covariates,
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Li, Zhu, and Zhong (2012) obtained pn = o(exp(n
1−2κ

3 )) for
DC-SIS, which matches our rate. In the iid setting with finite
polynomial moments, we can use the truncation method in their
proof and combined with the Markov inequality to obtain pn =
o(exp(nr/4−rκ/2−1)). Our results, which rely on a different proof
strategy than the truncation method, provide a better bound
even in this setting.

3.3. Asymptotic Properties: PDC-SIS+

To show the asymptotic properties associated with PDC-SIS+,
we denote

Sk,l = (
Yt−1, . . . , Yt−hn , Xt−1,k, . . . , Xt−l+1,k,

zt−1,Uλn
1

, . . . , zt−1,Uλn
l−1

)
,

as the population-level counterpart to Ŝk,l. In addition, let the
threshold �n = λn + c1n−κ , C = {S1,1, . . . ,Smn,1,S1,2,
. . . ,Smn,hn}, and

U�n
l−1 = {(l − 1)mn + 1 ≤ j ≤ lmn : |pdcor(Yt , Zt−1,j; Cj)| (6)

≥ λn + c1
2

n−κ
}

,

represent the population-level strong conditional signal set and
the population-level set of conditioning vectors, respectively.
One of the difficulties in proving uniform convergence of our
estimated PDCs in this algorithm is the presence of an estimated
conditioning set Ĉ. This issue becomes compounded as we
estimate the conditioning vector for higher lag levels, since these
rely on estimates of the conditioning vectors for lower ones. To
overcome this, we first denote the collection of strong signals
from lag 1 to hn − 1 as: U�n =

{
U�n

1 , . . . ,U�n
hn−1

}
. We assume

the following condition:

Condition 3.5. For any j ∈ {1, . . . , (hn − 1) ∗ mn}\Uλn , assume
|pdcor(Yt , Zt−1,j; Cj)| ≤ λn, where λnnκ → ∞.

Condition 3.5 assumes the variables in the strong condi-
tional signal set, U�n , are easily identifiable from the rest of the
covariates. This separation in the signal strength will allow us
to ensure with high probability that our estimated conditional
sets match their population-level counterparts. The assumption
λnnκ → ∞, is introduced to ensure dn � (the size of the set
Uλn ). Although the hope is that Uλn ⊂ M∗, this is not required
to prove sure screening properties of our algorithm. The sure
screening properties for PDC-SIS+ are similar to PDC-SIS, but
for the sake of completeness, we state the theorem in full.

Theorem 2. i. Suppose Conditions 3.1, 3.3, 3.4, and 3.5 hold.
For γn = c3n−κ with c3 ≤ c1/2, we have

P
(
M∗ ⊂ M̃γn

) ≥ 1 − O(dnan).

ii. Suppose Conditions 3.1, 3.2, 3.4, and 3.5 hold. For γn =
c3n−κ with c3 ≤ c1/2, we have

if r < 12, P
(
M∗ ⊂ M̃γn

) ≥ 1 − O(dncn);
if r ≥ 12, P

(
M∗ ⊂ M̃γn

) ≥ 1 − O(dnbn).

4. Simulations

We now evaluate the performance of PDC-SIS and PDC-
SIS+ via extensive simulation studies. We also include the per-
formance of four other screening methods whose properties
have been investigated in the time series setting; these include
marginal Pearson correlation screening (SIS) (Fan and Lv 2008),
NIS (Fan, Feng, and Song 2011; Chen et al. 2018), generalized
least-squares screening (GLSS) (Yousuf 2018), and distance cor-
relation screening (DC-SIS) (Li, Zhu, and Zhong 2012). 4

Unless noted otherwise, we fix the sample size n = 200,
the maximum number of lags considered hn = 3, and the
conditioning vector always includes the first three lags of the
response. We vary the number of candidate series, mn, from 500
to 1500, so the number of total covariates, pn, varies from 1500
to 4500. For each experiment, we report results related to out
of sample forecasting, and the proportion of relevant variables
selected in our screened set. The latter metric is defined as

number of relevant variables in the screened set
number of relevant variables in DGP

.

Note that for all procedures considered, we will not be screening
the lags of Yt , therefore the previous metric does not include
lags of Yt in the numerator or denominator. For forecasting, we
select our screening set using the first n − 1 observations and
we select the top dn = �n/ log(n)� variables as our screened set.
Using this screened set and the first n − 1 observations we fit a
non-parametric sparse additive model (Ravikumar et al. 2009)
and forecast the last observation.5 We then calculate the square
forecast error (MSFE). We repeat each experiment 500 times,
and report the average MSFE, and the average proportion of
relevant variables selected in our screened set.

We set Y0 = Y−1 = . . . = Y−(hn+1) = 0, and generate
n+200 samples of our model. We then discard the first 200−hn
samples. To ensure stationarity when generating a nonlinear
autoregressive model with exogenous predictors (NARX), we
use the sufficient conditions provided in Masry and Tjøstheim
(1997).

4.1. Data-Generation Processes

DGP 1:

Yt = ∑6
j=1 βjXt−1,j + εt , and xt = A1xt−1 + ηt ,

where A1 = 0.6 ∗ I, and ηt
iid∼ N(0, �η).

(7)

For this model, we set �η = [0.3|i−j|]ij, βj = 0.5 for j = 1, . . . , 6.
The error follows an AR(1) process: εt = αεt−1 + et where α =
.6, and we consider et

iid∼ N(0, 1).
DGP 2:

Yt = g1(Yt−1) + g2(Yt−2) + g3(Yt−3) + f1(Xt−1,1)

+ f2(Xt−2,1) + f3(Xt−1,2) + f4(Xt−2,2) + εt ,

4We use the R package energy to compute the partial DC and DC. The
NIS estimator is computed using the R package mgcv. For computational
efficiency, the GLSS estimator is computed using the nlme package using
an AR(1) approximation for the residual covariance matrix. Simulations for
our group PDC-SIS procedure are contained in the supplementary material.

5We use the R package SAM to fit the nonparametric sparse additive model.
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where the functions are defined as follows:

g1(x) = 0.25x, g2(x) = x exp(−x2/2),
g3(x) = −0.6x + 0.3x(x > 0),
f1(x) = 1.5x + 0.4x(x > 0), f2(x) = −x,
f3(x) = 1.2x + 0.4x(x > 0), f4(x) = x2 sin(2πx).

The covariate process is generated as in Equation (7), with A1 =
[0.4|i−j|+1]ij and �η = Imn . Additionally, we set εt

iid∼ N(0, 1).
DGP 3:

Yt = g1(Yt−1) + g2(Yt−2, Yt−1) + g3(Yt−3, Yt−1)

+ f1(Xt−1,1, Xt−1,4) + f2(Xt−2,1, Xt−1,4)

+ f3(Xt−1,2, Xt−1,4) + f4(Xt−2,2, Xt−1,4)

+ f5(Xt−1,3, Xt−1,4) + f6(Xt−1,4) + f7(Xt−1,3, Xt−1,4) + εt ,

where the functions are defined as follows:

g1(x) = 0.2x + 0.2x(x > 0), g2(x, y) = 0.2x + 0.1x(y > 0),
g3(x, y) = x exp(−y2/2),

f1(x, y) = f2(x, y) = f4(x, y) = x
(

1 + 1
1 + 0.5 exp(−y)

)
,

f3(x, y) = x
(

2 + 2
1 + 0.5 exp(−y)

)
, f5(x) = f6(x) = 2x,

f7(x, y) = x
(

1 + 1
1 + exp(−y)

)
.

The covariate process is a VAR(2) process: xt = A1xt−1 +
A2xt−2 + ηt , where A1 = [0.3|i−j|+1]ij, A2 = [.2|i−j|+1]ij, and

ηt
iid∼ N(0, �η) or ηt

iid∼ t5(0, 3/5 ∗ �η), in which �η =
[−.3|i−j|]ij.
DGP 4:

Yt = 0.25Yt−1 + 0.3Yt−2 + 0.3Yt−3 + f1(Xt−1,1) + f2(Xt−2,1)

+ β1,tf3(Xt−1,2, Xt−1,3) + β2,tf4(Xt−2,2, Xt−2,3)

+ β3,tf5(Xt−1,3)

+ β4,tf6(Xt−2,3) + f7(Xt−1,2) + f8(Xt−2,2, Xt−1,2) + εt ,

where the functions are defined as follows:

f1(x) = f7(x) = 1.5x + 0.4x(x > 0), f2(x) = 1.2x,
f3(x, y) = f4(x, y) = xy,

f5(x) = f6(x) = x, f8(x, y) = 1.2x + 0.4x(y > 0),

β1,t , β2,t , β3,t , β4,t
iid∼ Unif(.5, 1) ∀t.

The covariate process is generated as in Equation (7), with
A1 = [0.4|i−j|+1]ij and �η = [−0.3|i−j|]ij. We also note that the
coefficients β1,t , β2,t , β3,t , β4,t , are random at each time t.
DGP 5: Yt = 0.25Yt−1 + 0.3Yt−2 + 0.3Yt−3 + Xt−1,1 − Xt−2,1 +
0.5Xt−1,2 + 0.5Xt−2,2 + εt .

The covariate process is generated as in Equation (7), with
A1 = [0.4|i−j|+1]ij and �η = Imn . Additionally we set εt

iid∼
N(0, 1).

Table 1. Average MSFE over 500 repetitions.

n = 200, pn = 1500

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

DC-SIS 1.91 1.98 14.25 9.40 2.79
SIS 1.90 1.99 14.08 9.01 2.78
NIS 1.92 2.06 14.17 9.23 2.81
PDC-SIS 1.89 1.97 9.54 6.11 2.05
GLSS 1.94 1.96 10.5 6.32 2.68
PDC-SIS+ 1.69 1.96 9.50 6.10 1.83

n = 200, pn = 4500

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

DC-SIS 2.48 2.03 18.2 12.26 3.19
SIS 2.40 2.02 17.85 11.47 3.10
NIS 2.53 2.11 18.98 11.66 3.22
PDC-SIS 2.43 2.03 14.61 7.78 2.57
GLSS 2.40 2.00 14.64 7.63 2.93
PDC-SIS+ 2.30 2.02 14.58 7.77 2.28

NOTE: For each screening method we select the top dn = �n/ log(n)� variables as
our screened set and estimate a one step ahead forecast using a non-parametric
sparse additive model. In this and the following table, bold entries refer to the
best performing model.

Table 2. Average proportion of relevant variables selected over 500 repetitions.

n = 200, pn = 1500

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

DC-SIS 0.97 0.78 0.76 0.36 0.63
SIS 0.98 0.77 0.79 0.45 0.67
NIS 0.97 0.77 0.77 0.42 0.65
PDC-SIS 0.99 0.84 0.89 0.85 0.91
GLSS 0.98 0.73 0.76 0.64 0.58
PDC-SIS+ 0.98 0.87 0.89 0.85 0.94

n = 200, pn = 4500

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

DC-SIS 0.94 0.76 0.65 0.18 0.50
SIS 0.95 0.75 0.69 0.24 0.56
NIS 0.94 0.74 0.67 0.22 0.53
PDC-SIS 0.97 0.76 0.83 0.76 0.84
GLSS 0.97 0.72 0.69 0.52 0.54
PDC-SIS+ 0.97 0.80 0.83 0.76 0.86

NOTE: For each screening method we select the top dn = �n/ log(n)� variables
as our screened set and calculate the proportion of relevant variables selected
(excluding the conditioning variables) in our screened set.

4.2. Results

The MSFE results are displayed in Table 1, and the average
proportion of relevant variables results are reported in Table 2.

For DGP 1, we see that all methods perform well in this case
with PDC-SIS+ performing slightly better than the rest. We see
from Table 2 that all methods are able to capture the relevant
variables. We note that for DGP 1, our PDC-based methods
contains irrelevant variables in the conditioning set, namely the
lags of Yt .

For DGP 2, the nonlinear transformations used are mainly
threshold functions which are popular nonlinear transforma-
tions for time series data (Teräsvirta, Tjostheim, and Granger
2010). We see that the proposed methods PDC-SIS and PDC-
SIS+ outperform the other methods in terms of average pro-
portion of relevant variables selected, and are comparable in
terms of MSFE. As seen in Table 8 of the supplementary file,
the covariate Xt−2,1 appears to be the most difficult to detect for
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Table 3. Results for n = 100, pn = 1500.

Average proportion of relevant variables selected.

DC-SIS SIS NIS PDC-SIS GLSS PDC-SIS+

DGP 3 0.38 0.41 0.38 0.54 0.47 0.54
DGP 4 0.08 0.09 0.09 0.39 0.28 0.40

MSFE

DGP 3 36.8 35.9 36.02 33.6 30.5 33.4
DGP 4 18.3 18.0 18.5 16.2 13.1 16.1

NOTE: See notes to Tables 1 and 2.

Table 4. Relative performance of the bootstrap approach to that of the top dn
predictor approach when n = 200, pn = 1500.

PDC-SIS PDC-SIS PDC-SIS+ PDC-SIS+
(α = 0.975) (α = 0.99) (α = 0.975) (α = 0.99)

Ratio of the Average Proportions of Relevant Variables Selected
DGP 3 0.97 0.92 0.97 0.93
DGP 4 0.98 0.91 0.98 0.91

Ratio of the MSFE

DGP 3 1.0 0.99 0.99 1.01
DGP 4 1.0 1.0 1.0 1.0

the competing methods, and our conditioning scheme greatly
improves the detection of this signal. For DGP 3, we apply a
logistic smooth transition function to the covariates, and for
the autoregressive terms, we mainly employ a hard threshold
function. For this DGP, our PDC-based methods significantly
outperform the other methods, with GLSS following next. The
variable which appears to be the most difficult to detect is the
transition variable, Xt−1,4. DGP 4 contains a mix of threshold
functions, interactions, and random coefficients. The results for
this are similar to DGP 3 with our PDC-based methods out-
performing the remaining methods, especially in terms of the
proportion of relevant variables selected. Looking at Table 10 of
the supplementary file, we notice that the covariates Xt−1,3 and
Xt−2,3, which only appear through random coefficient effects,
are the most difficult to detect. Overall, we see that for DGPs 1-
5, our PDC-based methods perform best, with PDC-SIS+ does
as good, and in most cases, better than PDC-SIS.

4.3. Additional Results

We present some additional results which show the effect of
the sample size, and the choice of threshold for our screening
methods. Due to space considerations, we only present results
for DGPs 3 and 4. We start with the effect of the sample size n,
we set n = 100, pn = 1500 and choose the top dn = �n/ log n�
predictors as our screened set. From the results in Table 3, we
observe that the MSFE has sharply increased and the propor-
tion of relevant variables selected sharply decreased for both
DGPs.6

Next, we examine the effect of setting alternate thresholds for
our screening methods. Instead of selecting the top dn predic-
tors, we use the bootstrap resampling technique discussed in
Section 2.2.3 to select the threshold γn. We provide results for

6This conclusion holds even if set the threshold to dn = �200/ log 200�.

α = 0.99 and α = 0.975. The results can be seen in Table 4,
and they are presented as ratios to the benchmark which selects
the top dn = �n/ log n� predictors as our screened set. We
see from the results that all three thresholds lead to essentially
identical results for forecasting. For variable selection, setting
dn = �n/ log n� does best with α = 0.975 following closely
behind.

5. Real Data Application: Forecasting Portfolio
Returns

In this section, we present an application to forecasting US
monthly equity portfolio returns, with the data originally ana-
lyzed in Kelly and Pruitt (2013). We first focus on forecasting
market returns as measured by the CRSP value weighted index,
and the SP500 index. Then, we forecast returns from 5 Fama-
French (FF) portfolios sorted on market cap. For our predictor
series, we use the book to market valuation ratios for FF size
and value sorted portfolios, in which U.S. stocks are divided into
25 or 100 portfolios sorted by market cap and book to market
ratios. Kelly and Pruitt (2013) built on the present value identity
and argued both theoretically and empirically that this cross-
section of dis-aggregated valuation ratios is predictive of future
market returns.7

Let xt denote the 100 (or 25) FF portfolios at time t, and
Yt+1 denote the portfolio return at time t + 1. Since there
exists autocorrelation in the returns, we set Yt as a conditioning
variable in PDC-SIS and PDC-SIS+, and our predictor set is
zt = (xt , xt−1, xt−2, xt−3). Due to the strong autocorrelation
present in xt , we have a high degree of cross sectional correlation
in zt , and it is likely that many elements of zt are unimportant.

The linear dynamic factor model (sometimes referred to as
Diffusion Index (DI) model), in which the factors are estimated
by principal components, is very commonly used in econo-
metrics (Stock and Watson 2002a,b). One of the well-known
weaknesses of the DI model is that the response is ignored when
estimating the factors. Rather than estimating the principal
components over the entire set of predictors zt , Bai and Ng
(2008) and Bair et al. (2006), among others, have shown that esti-
mating the principal components on a targeted set of predictors
can often lead to greater predictive accuracy. This procedure is
sometimes known as supervised principal components. Besides
targeting predictors, another possible solution is to use a one-
step supervised procedure, such as partial least squares (PLS),
to form our factors (Kelly and Pruitt 2013, 2015).

Given the above discussion, we report the forecasting perfor-
mance of 9 different models. The first is a linear AR(1) model:
Ŷt+1 = α̂0 + α̂Yt . The second model is the Diffusion Index
model (DI)

Ŷt+1 = β̂0 + α̂1Yt + γ̂ F̂t , (8)

where F̂t = (F̂t,1, . . . , F̂t,k) are k factors which are estimated as
the first k principal components of zt . We then combine each of
the six screening methods under consideration with a second-
stage DI model. For each screening method, we select the top

7There were a small number of missing values (∼ 1 percent for 100 portfolio
dataset), which we imputed using the cross-sectional median of the time
period.
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Table 5. Percent improvement in MSFE over AR(1)

CRSP SP 500

25 FF 100 FF 25 FF 100 FF
Portfolios Portfolios Portfolios Portfolios

SIS −1.07 −3.38 −1.96 −3.99
PDC-SIS 0.79** 0.86** 0.56* 0.54*
DC-SIS −0.29 0.00 −0.44 −0.70
PDC-SIS+ 0.37 0.80∗∗ 0.56* 0.54*
NIS 0.25 −0.32 −1.22 −1.60
GLSS −1.11 −.3.41 −1.95 −3.88
DI 0.28 −1.42 −0.21 −0.11
PLS −6.66 −11.08 −8.55 −12.00

NOTES: For all procedures besides “DI”we use a screened consisting of the top dn =
�pn/10� predictors. Where our predictors consist of the book-to-market ratio of
25 or 100 Fama French size and value sorted portfolios along with three of their
lags. Our response is the monthly returns of the CRSP and SP500 indices. In this
and the following tables, ***, **, and * indicates significance at 0.01, 0.05, and 0.1
levels using the forecast encompassing test “ENC-NEW”, respectively.

dn = �pn/10� predictors of zt , and use these predictors form
our k factors. We use BIC to select k among values between
2 and 5. Lastly, we consider the DI model (8) using PLS to
estimate Ft .

Following Kelly and Pruitt (2013), we form expanding win-
dow out of sample forecasts, where the first out of sample
forecast is for the time period 1980:1 (January 1980), and
the last forecast is for time period 2010:11 (November 2010).
To construct the forecast for 1980:1, we use the observations
between 1930:1 and 1979:11 to estimate the factors and model
parameters. Therefore, for the models described previously, t =
1930:1 to 1979:10. We then use the predictor values at t =
1979:11 to form our forecast for 1980:1. The next window uses
observations from 1930:1 to 1980:1 to forecast 1980:2. This gives
us a total of 372 out of sample forecasts. For each of our eight
models, the predictive ability is reported through the percentage
improvement in mean squared forecast error (MSFE) over the
baseline AR model. Specifically, we have

100 ∗
(

1 −
∑2010:11

t=T0 (Ŷt − Yt)2∑2010:11
t=T0 (Ŷt,AR − Yt)2

)
(9)

where T0 =1980:1 and Ŷt,AR is the forecast for time t made with
the AR(1) model. This measure ranges from (−∞, 100], where
100 indicates perfect out of sample prediction, and negative
values indicating that the method is outperformed by a baseline
AR(1) forecast. We conduct out of sample inference by using
the forecast encompassing test “ENC-NEW” derived by Clark
and McCracken (2001). We use this test for all methods which
outperform the baseline AR(1).

We report the results when forecasting the SP500 and CRSP
market index using either 25 FF portfolios and 100 FF port-
folios in Table 5. We observe that in both cases that finding
targeted predictors via PDC-SIS and PDC-SIS+ outperform the
alternatives, with the next best model is formed using DC-SIS.
On the other hand, linear screening procedures such as SIS
and GLSS underperform a factor model estimated on all the
predictors and underperform the mean forecast in most cases
as well. Interestingly, PLS is our worst performing model. PLS
takes into account the correlation between zt and the response
when estimating the factors, and it appears that the high degree
of correlation between predictors as well as a large number of

Table 6. Percent improvement in MSFE over AR(1)

Quintile 1 Quintile 5
(Small) Quintile 2 Quintile 3 Quintile 4 (Large)

SIS −1.80 −1.13 −1.76 −2.34 −1.56
PDC-SIS 0.31 1.18∗∗∗ 0.81∗∗ 0.12 −0.76
DC-SIS 0.65∗ 0.97∗∗ 0.91** −0.11 −0.79
PDC-SIS+ 0.71** 1.25*** 0.72∗∗ −0.33 −0.55
NIS −2.36 −1.45 −1.50 −2.14 −0.58
GLSS −1.19 −.44 −1.28 −2.02 −1.64
DI −1.07 −0.42 −0.45 −0.89 −0.14

NOTES: See notes to Table 5. We provide results to forecasting the monthly returns
to 5 FF size sorted portfolios.

irrelevant covariates is deteriorating its performance. From the
results, we see that in general nonlinear screening methods, such
as DC-SIS and PDC-SIS, outperform linear screening methods.
This suggests that accounting for nonlinearities in marginal
relationships is beneficial even when using linear second-stage
procedures.

In Table 6 we report the results when forecasting the 5 FF
size sorted portfolios.8 The first quintile corresponds to small-
cap stocks, and we see distance correlation methods strongly
outperform other methods for this portfolio. Interestingly, in
contrast to Kelly and Pruitt (2013), we obtain the highest pre-
dictability for this portfolio. Moreover, we generally find port-
folios corresponding to smaller cap stocks easier to forecast
than larger-cap stocks using distance correlation methods. Once
again, in almost all cases, distance correlation-based methods
outperform competing screening methods.

As stated previously, we used a sample split date of 1980:1 for
our out of sample forecasts. In order to show the robustness of
our results to this choice of split date, we plot the R2

OOS for the
range of sample split dates between T0 = 1960:1 to T0 = 1995:1
in Figure 1. We plot this for both the CRSP index and the SP 500
index, using 100 FF portfolios as predictors. For the convenience
of the presentation, we omit the performance of GLSS and PDC-
SIS+ models in our plot, given their very close performance
with PDC-SIS and SIS, respectively. We see from the plot that
PDC-SIS models outperform the alternatives over almost the
entire range of sample split points. We also observe using a
DI model estimated on all the predictors, along with linear
screening methods underperform the baseline AR(1) forecast
over the range of sample split points.

6. Discussion

In this work, we have introduced two classes of PDC-based
screening procedures, which are applicable to univariate and
multivariate time series models. These methods aim to use
the unique features of time series data as an additional source
of information, rather than treating temporal dependence as
a nuisance. The methods introduced can be readily used by
researchers, given that distance correlation methods are com-
putable at low cost by existing statistical packages. Lastly, by
using a model-free first stage procedure, we can expand the

8We used the 25 FF portfolios as possible predictors along with their lags. The
results were qualitatively similar for the 100 FF portfolio setting; thus we
omit its results due to space considerations. Due to the poor performance
of PLS, we omit its results for the remainder of the section.
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Figure 1. Percent improvement in MSFE vs. sample split date. We select each date between 1960:1-1995:1 as our sample split point and plot the corresponding percentage
of improvement in MSFE over the baseline. We omit the values for GLSS and PDC+ due to having very close results to SIS and PDC, respectively. We used 100 FF portfolios
and their lags as possible predictors.

choice of models which can be considered for a second-stage
procedure. This is especially helpful for the case of nonlinear
or nonparametric models where estimation in high dimensions
can be computationally challenging.

There are many opportunities for further research, such as
developing a theoretical or data-driven approach to selecting
the number of lags considered in our algorithms. Additionally,
we can build screening algorithms for time series data using
measures that are more robust to heavy-tailed distributions.
Also, our procedures were developed under the assumption that
the underlying processes are weakly dependent and stationary.
Although these assumptions are satisfied for an extensive range
of applications, there are many instances where they are vio-
lated. For example, nonstationarity is commonly induced by
time-varying parameters, structural breaks, and co-integrated
processes, all of which are common in the fields of macroeco-
nomics and finance. Therefore, developing new methodologies
for certain classes of nonstationary processes, such as locally
stationary processes, would be particularly welcome. Another
important problem is to study the robustness of the PDC-SIS+
method for the multivariate case when the group structure is
misspecified.

Supplementary Material

Due to space limitations, simulations and a real data application of our
group PDC-SIS procedure are contained in the supplementary mate-
rial. Additionally, the supplementary material also contains a comparison
between PDC-SIS and CDC-SIS, the proofs for all the theorems, as well as
more detailed tables of the results from Section 4.
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