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Community detection is one of the fundamental problems in the study of network

data. Most existing community detection approaches only consider edge information

as inputs, and the output could be suboptimal when nodal information is available. In

such cases, it is desirable to leverage nodal information for the improvement of com-

munity detection accuracy. Towards this goal, we propose a flexible network model

incorporating nodal information and develop likelihood-based inference methods.

For the proposed methods, we establish favorable asymptotic properties as well as

efficient algorithms for computation. Numerical experiments show the effectiveness

of our methods in utilizing nodal information across a variety of simulated and real

network data sets.
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1 | INTRODUCTION

Networked systems are ubiquitous in modern society. Examples include the worldwide web, gene regulatory networks and social networks. Net-

work analysis has attracted a lot of research attention from social science, physics, computer science and mathematical sciences. There have been

some interesting findings regarding the network structures, such as small world phenomena and power law degree distributions (Newman, 2003).

One of the fundamental problems in network analysis is detecting and characterizing community structure in networks. Communities can be intui-

tively understood as groups of nodes which are densely connected within groups but sparsely connected between groups.1 Identifying network

communities not only helps better understand structural features of the network but also offers practical benefits. For example, communities in

social networks tend to share similar interest, which could provide useful information to build recommendation systems.

Existing community detection methods can be roughly divided into algorithmic and model-based ones (Zhao et al., 2012). Algorithmic

methods typically define an objective function such as modularity (Newman, 2006), which measures the goodness of a network partition and

design algorithms to search for the solution of the corresponding optimization problem. See Fortunato (2010) for a thorough discussion of various

algorithms. Unlike algorithmic approaches, model-based methods first construct statistical models that are assumed to generate the networks

under study and then develop statistical inference tools to learn the latent communities. Some popular models include the stochastic block model

(SBM) (Holland et al., 1983), degree-corrected SBM (Dasgupta et al., 2004; Karrer & Newman, 2011) and mixed membership SBM (Airoldi et al.,

2009).

In recent years, there have been increasingly active researches towards understanding the theoretical performances of community detection

methods under different types of models. Regarding the SBM, consistency results have been proved for likelihood-based approaches, including

maximum likelihood (Celisse et al., 2012; Choi et al., 2012), profile likelihood (Bickel & Chen, 2009), pseudo likelihood (Amini et al., 2013) and

variational inference (Bickel et al., 2013; Celisse et al., 2012). Some of the existing results are generalized to degree-corrected block models

1More rarely, one can encounter communities of the opposite meaning in disassortative mixing networks.
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(Zhao et al., 2012). Another line of theoretical works focuses on methods of moments. See Joseph and Yu (2013), Jin (2015), Lei and

Rinaldo (2014), Qin and Rohe (2013) and Rohe et al. (2011) on theoretical analysis of spectral clustering for detecting communities in block

models. Spectral clustering (Zhang et al., 2014) and tensor spectral methods (Anandkumar et al., 2014) have also been used to detect overlapping

communities under mixed membership models. Spectral clustering has also been studied for the optimal combination of multi-layer SBMs (Huang

et al., 2020). In addition, carefully constructed convex programming has been shown to enjoy provable guarantees for community detection

(Amini & Levina, 2014; Cai & Li, 2015; Chen et al., 2012, 2015, Guédon & Vershynin 2016). See also the interesting theoretical works of commu-

nity detection under the minimax framework (Gao et al., 2015; Zhang & Zhou, 2015). Finally, there exists a different research theme focusing on

detectability instead of consistency (Abbe & Sandon, 2015; Decelle et al., 2011; Krzakala et al., 2013; Saade et al., 2014).

All the aforementioned methods are based on only the observations of the edge connections in the networks. In the real world, however, net-

works often appear with additional nodal information. For example, social networks such as Facebook and Twitter contain users' personal profile

information. A citation network has the authors' names, keywords and abstracts of papers. Since nodes in the same communities tend to share

similar features, we can expect that nodal attributes are in turn indicative of community structures. Combining both sources of edge and nodal

information opens the possibility for more accurate community discovery. Many efficient heuristic algorithms are proposed in recent years to

accomplish this goal (Akoglu et al., 2012; Chang & Blei, 2010; Nallapati & Cohen, 2008; Newman & Clauset, 2016; Ruan et al., 2013; Yang et al.,

2013). However, not much theory has been established to understand their statistical properties. Zhang et al. (2016) proposed a modularity opti-

mization approach and proved its community detection consistency. Binkiewicz et al. (2017) introduced a covariate-assisted spectral method and

derived an upper error bound. Huang and Feng (2018) studied a pair-wise covariate adjusted block model. Yan and Sarkar (2020) developed a

convex optimization algorithm and obtained upper error bounds for sparse networks. See also Deshpande et al. (2018) and Stegehuis and

Massoulié (2019) for phase transition analysis in some special settings. In this paper, we aim to give a thorough study of the community detection

with nodal information problem. Our work first introduces a flexible modelling framework tuned for community detection when edge and nodal

information coexist. Under a specific model, we then study three likelihood methods and derive their asymptotic properties. Regarding the com-

putation of the estimators, we resort to a convex relaxation (semidefinite programming, SDP) approach to obtain a preliminary community esti-

mate serving as a good initialization fed into “coordinate” ascent-type iterative algorithms, to help locate the global optima. Various numerical

experiments demonstrate that our methods can accurately discover community structures by making efficient use of nodal information.

The rest of the paper is organized as follows. Section 2 introduces our network model with nodal information. We then propose likelihood-

based methods and derive the corresponding asymptotic properties in Section 3. Section 4 is devoted to the development of practical algorithms.

Simulation examples and real data analysis are presented in Section 5. We conclude the paper with a discussion in Section 6. All the technical

proofs are collected in the supporting information.

2 | NETWORK MODELLING WITH NODAL INFORMATION

A network is usually represented by a graph G(V, E), where V¼f1,2,…,ng is the set of nodes and E is the set of edges. Throughout the paper, we

will focus on the networks in which the corresponding graphs are undirected and contain no self-edges. The observed edge information can be

recorded in the adjacency matrix A� {0, 1}n� n, where Aij ¼Aji ¼1 if and only if (i, j)� E. Suppose the network can be divided into K nonoverlapping

communities. Let c¼ðc1,…,cnÞ be the community assignment vector, with ci denoting the community membership of node i and taking values in

{1, 2,… ,K}. Additionally, the available nodal information is formulated in a covariate matrix X¼ðx1,…,xnÞT �ℝn�p, where xi �ℝp is the i-th node's

covariate vector. The goal is to estimate c from the observations A and X.

2.1 | Conditional independence

We treat A, X and c as random and posit a statistical model for them. Before introducing the model, we would like to elucidate the main motiva-

tion. For the purpose of community detection, we follow the standard two-step inference procedure: (1) Derive the parameter estimator θ̂ based

on PðA,X;θÞ; (2) Perform posterior inference according to PðcjA,X; θ̂Þ.
Under this framework, we now make a conditional independence assumption: A⊥Xjc. Admittedly, the assumption imposes a strong con-

straint that given the community membership, what nodes are like (described by covariates X) does not affect how they are connected (encoded

in A). On the other hand, this assumption is consistent with our belief that knowing nodal information can help identify the community structure

c. More importantly, this assumed conditional independence turns out to simplify the above two steps to a great extent. First, for the parameter

estimation step, the conditional independence assumption implies that

PðA,X;θÞ¼
X
c
PðAjcÞPðXjcÞPðcÞ¼PðX;θ1Þ

X
c
PðAjc;θ2ÞPðcjX;θ3Þ, ð1Þ
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where θ¼ðθ1,θ2,θ3Þ indexes a family of generative models (not restricted to parametric forms). Regarding the second step, conditional indepen-

dence leads to

PðcjA,XÞ¼ PðAjcÞPðXjcÞPðcÞP
cPðAjcÞPðXjcÞPðcÞ

¼ PðAjcÞPðcjXÞPðXÞP
cPðAjcÞPðcjXÞPðXÞ

¼ PðAjcÞPðcjXÞP
cPðAjcÞPðcjXÞ

: ð2Þ

From (1) and (2), we observe that the distribution P(X) is a “nuisance” in the two-step procedure. Hence, we are able to avoid modelling and

estimating the marginal distribution of X. As a result, the effort can be saved for the inference of PðAjcÞ and PðcjXÞ.

2.2 | Node-coupled stochastic block model

The conditional independence and follow-up arguments in Section 2.1 pave the way to a flexible framework of models for networks with nodal

covariates: specifying the two conditionals PðAjcÞ and PðcjXÞ. A similar modelling strategy was proposed in Newman and Clauset (2015), along

with detailed empirical results. Unlike them, we will consider a different model and present a thorough study from both theoretical and computa-

tional perspectives. Note that the conditional distribution PðAjcÞ only involves the edge information of the network, while PðcjXÞ is often encoun-

tered in the standard regression setting for i.i.d. data. This motivates us to consider the following model.

Node-coupled Stochastic Block Model (NSBM):

PðAjcÞ¼
Y
i < j

B
Aij
cicj ð1�Bcicj Þ

1�Aij , PðcjXÞ¼
Y
i

expðβTcixiÞXK

k¼1
expðβTk xiÞ

,

where B¼ðBabÞ� ½0,1�K�K is symmetric, β¼ðβ1,…,βKÞ�ℝKp. The distribution PðAjcÞ follows the SBM, which, as the fundamental model, has been

extensively studied in the literature. The SBM implies that the distribution of an edge between nodes i and j only depends on their community

membership ci and cj. The nodes from the same community are stochastically equivalent. The element Bab in the matrix B represents the probabil-

ity of edge connection between a node in community a and a node in community b. The PðcjXÞ simply takes a multilogistic regression form, where

we will assume βK ¼0 for identifiability. Simple as it looks, we would like to point out some advantages of NSBM:

• The parameters in NSBM can be estimated by combining the estimation of B and β, as we shall elaborate in Section 4.

• The coefficient β reflects the contribution of each nodal covariate for identifying community structures. This information can help us better

understand the implication of the network communities.

• The probability pðc¼ kjxÞ¼ expðβTk xÞXK

k¼1
expðβTkxÞ

can be used to predict a new node's community membership c based on its covariates x, without

waiting for it to form network connections.

• Both PðAjcÞ and PðcjXÞ can be readily generalized to fit more complicated structures.

Remark 1. As illustrated in Section 2.1, under the conditional independence assumption A⊥Xjc, it is sufficient to consider the con-

ditional likelihood PðA,cjXÞ instead of the full version PðA,c,XÞ. In particular, we study the maximum likelihood estimate, maximum

variational likelihood estimate and the maximum profile likelihood estimate based on the conditional likelihood in the next section.

However, we emphasize that the conditional independence assumption is not part of NSBM, though it was used to motivate the

model. In the next section, we will treat this assumption as working independence to derive the likelihood-based estimates. Hence,

the three estimates are in fact based on pseudo likelihood. With a slight abuse of terminology and for simplicity, we still call them

the aforementioned likelihood names in the rest of the paper.

3 | STATISTICAL INFERENCE UNDER NSBM

For community detection, our main goal is to find an accurate community assignment estimator ĉ for the underlying true communities c. Theoreti-

cally, we would like to study the consistency of community detection for a given method. We adopt the notions of consistency from Bickel and

Chen (2009) and Zhao et al. (2012): as n!∞,

strong consistency : Pðĉ¼ cÞ!1; weak consistency : 8ϵ>0,P 1
n

Xn

i¼1
1ðĉi ≠ ciÞ< ϵ

� �
!1:
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As the network size increases to infinity, with probability approaching 1, strong consistency requires perfect recovery of the true community

structure, while weak consistency only needs the misclassification rate to be arbitrarily small. Note that since community structure is invariant

under a permutation of the community labels in {1, 2, … , K}, the consistency notations above as well as the estimators to be introduced should

always be interpreted up to label permutations.

In the asymptotic setting where the network size n ! ∞, holding the parameter B � [0, 1]K � K unchanged implies that the total number of

edges present in the network is of order O(n 2). Such networks are unrealistically dense. To study under a more realistic asymptotic framework,

we allow B to change with n. In particular, we consider a sequence of submodels where B¼ ρnB with B fixed and ρn ¼PðAij ¼1Þ!0 as n!∞. The

same asymptotic formulation was studied in Bickel and Chen (2009), Bickel et al. (2013) and Zhao et al. (2012). In this way, the parameter ρn

directly represents the sparsity level of the network. For the consistency results to be derived in the subsequent sections, we will specify the suffi-

cient conditions on the order of ρn.

As pointed out in Section 2.2, the parameter β in NSBM is associated with the contribution of each nodal covariate for discovering communi-

ties. Measuring the importance of each nodal attribute to the community structure may provide insightful information about the network. For that

purpose, in addition to community detection, we will study the asymptotics of the estimators for β as well. Since the parameter B is not of current

interest, we will skip the theoretical analysis of the corresponding estimators.

3.1 | Consistency of maximum likelihood method

In Section 2.1, we pointed out the appealing implication of the assumed conditional independence for the likelihood based inference procedure.

We now evaluate this procedure under the asymptotic framework we introduced at the beginning of Section 3. Towards that end, we define the

following maximum likelihood based estimators2:

ðβ̂, B̂Þ¼ argmax
βK¼0, β � ℝKp

B � ½0,1�K�K ,BT¼B

X
c

Y
i< j

B
Aij
cicj ð1�Bcicj Þ

1�Aij �
Y
i

expðβTcixiÞPK
k¼1expðβTk xiÞ

, ð3Þ

ĉ¼ argmax
c � f1,…,Kgn

Y
i< j

B̂
Aij

cicj
ð1� B̂cicj Þ

1�Aij �
Y
i

expðβ̂TcixiÞPK
k¼1expðβ̂

T
kxiÞ

: ð4Þ

The estimators defined above are the realizations of the two-step procedure we mentioned at the beginning of Section 2.1. We are mainly

interested in studying the consistency of β̂ and ĉ.

First, we would like to introduce several technical conditions.

Condition 1. B has no two identical columns.

If the probability matrix B has two identical columns, then there exist at least two communities unidentifiable with each other. In practice, it

makes sense to combine those communities into a bigger one.

Condition 2. ðc1,x1Þ,…,ðcn,xnÞ�iid ðc,xÞ with EðxxTÞ≻0, where ≻0 represents the matrix being positive definite.

Condition 2 ensures that the coefficient vector β is uniquely identifiable.

Condition 3. There exist constants κ1 and κ2 such that for sufficiently large t, we have Pðkxk2 > tÞ≤ κ1e�κ2t.

Condition 3 imposes a subexponential tail bound on kxk2, which is equivalent to a subexponential tail assumption on each component of x,

via a simple union bound argument. This covers many different types of covariates like discrete, Gaussian and exponential.

Theorem 1. Assume the data (A, X) follows NSBM and Conditions 1,2 and 3 hold. In addition, assume nρn
logn!∞ as n!∞. Then, we have

as n!∞, Pðĉ¼ cÞ!1and
ffiffiffi
n

p
ðβ̂�βÞ!d Nð0, I�1ðβÞÞ, where IðβÞ is the Fisher information for the multilogistic regression problem of

regressing c on X.

2Recall that the likelihood formulation is the pseudo version as pointed out in Remark 1. Similar explanations hold for the other two likelihood based methods presented in the subsequent

sections.
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The key condition nρn
logn!∞ requires that the expected degree of every node to grow faster than the order of logn. The same condition has

been used in Bickel and Chen (2009) and Zhao et al. (2012) to derive strong consistency under SBM. Under the conditions of the theorem, the

maximum likelihood method gives us not only a strong consistent community assignment estimate ĉ but also a coefficient estimate β̂ which is as

efficient as if the true label c were known.

3.2 | Consistency of variational method

The maximum likelihood method studied in Section 3.1 has been shown to have nice theoretical properties. However, the likelihood function form

in (3) renders the computation of the estimators ðβ̂, B̂Þ intractable. In particular, it is computationally infeasible to even evaluate the likelihood

function value at a nondegenerate point (when n is not too small), due to the marginalization over all possible membership assignments. To

address this computation issue, we propose a tractable variational method and demonstrate that it enjoys equally favorable asymptotic properties

as the maximum likelihood approach. This is motivated by the works about variational methods under SBMs (Bickel et al., 2013; Celisse et al.,

2012; Daudin et al., 2008). Throughout this section, we will use the generic symbol P(�) to denote joint distributions and θ¼ðβ,BÞ. To begin with,

recall the well known identity: log PðA,X;θÞ¼EQ½log PðA,X,c;θÞ� log QðcÞ�þD½QðcÞjjPðcjA,X;θÞ�, where Q(�) denotes any joint distribution of c;

the expectation EQð�Þ is taken with respect to c under QðcÞ; D[� jj�] is the Kullback–Leibler divergence. Since D½QðcÞjjPðcjA,X;θÞ�≥0 and the equal-

ity holds when QðcÞ¼PðcjA,X;θÞ, it is not hard to verify the following variational equality,

max
θ

logPðA,X;θÞ¼max
θ,Qð�Þ

EQ½log PðA,X,c;θÞ� log QðcÞ�: ð5Þ

Hence, to compute the maximum likelihood value, we can equivalently solve the optimization problem on the right-hand side of (5). Note that

iteratively optimizing over θ and Q(�) leads to the EM algorithm (Dempster et al., 1977). However, the calculation of PðcjA,X;θÞ at each iteration of

EM is computationally intensive. Instead of optimizing over the full distribution space of Q(�), variational methods aim to solve an approximate

optimization problem by searching over a subset of all possible Q(�). In particular, we consider the mean-field variational approach (Jordan et al.,

1999),

max
θ,Q �Q

EQ½log PðA,X,c;θÞ� log QðcÞ�, ð6Þ

whereQ¼fQ :QðcÞ¼
Qn

i¼1qici ,
P
k
qik ¼1,1≤ i≤ ng. The subset Q contains all the distributions under which the elements of c are mutually indepen-

dent. The independence structure turns out to make the computation in (6) manageable. We postpone the detailed calculations to Section 4, and

focus on the asymptotic analysis in this section. Denote the maximizer in (6) by ðβ̌, B̌Þ and

č¼ argmax
c � f1,…,Kgn

Y
i< j

B̌
Aij

cicj
ð1� B̌cicj Þ

1�Aij �
Y
i

expðβ̌TcixiÞPK
k¼1expðβ̌

T
kxiÞ

: ð7Þ

Theorem 2. Suppose the conditions in Theorem 1 hold. Then as n!∞,Pðč¼ cÞ!1 and
ffiffiffi
n

p
ðβ̌�βÞ!d Nð0, I�1ðβÞÞ, where IðβÞ is the

Fisher information for the multi-logistic regression problem of regressing c on X.

As we can see, under the same conditions as the maximum likelihood method, the variational approach can deliver equally good estimators,

at least in the asymptotic sense. In other words, the approximation made by the variational method does not degrade the asymptotic perfor-

mance. This should be attributed to the condition nρn
logn!∞, which guarantees the network has sufficient edge information for doing approximate

inference.

3.3 | Consistency of maximum profile likelihood method

The two methods presented in Sections 3.1 and 3.2 are implementations of the two-step procedure we discussed in Section 2.1: first estimating

the parameters based on the likelihood function and then doing posterior inference using the estimated distribution. In this section, we introduce

a one-step method that outputs the parameter and community assignment estimates simultaneously. The method solves the following problem,
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ð~β, ~B,~cÞ¼ arg max βK¼0,β � ℝKp

c � f1,…,Kgn

B � ½0,1�K�K ,BT¼B

Y
i< j

B
Aij
cicj ð1�Bcicj Þ

1�Aij �
Y
i

expðβTcixiÞPK
k¼1expðβTkxiÞ

: ð8Þ

In the above formulation, we treat the latent variables c as parameters and obtain the estimators as the maximizer of the joint likelihood func-

tion. This enables us to avoid the cumbersome marginalization encountered in the maximum likelihood method. This approach is known as the

maximum profile likelihood (Bickel & Chen, 2009; Zhao et al., 2012). Bickel and Chen (2009) showed strong consistency under the SBM, and Zhao

et al. (2012) generalized the results to degree-corrected block models. Following similar ideas, we will investigate this method in the NSBM. For

theoretical convenience, we consider a slightly different formulation:

ð~β, ~B,~cÞ¼ arg max βK¼0,β � ℝKp

c � f1,…,Kgn

B � ½0,1�K�K ,BT¼B

Y
i< j

e�Bcicj B
Aij
cicj �

Y
i

expðβTcixiÞPK
k¼1expðβTk xiÞ

, ð9Þ

where the Bernoulli distribution in (8) is replaced by the Poisson distribution. In our asymptotic setting ρn ! 0, the difference becomes

negligible.

Theorem 3. Assume the data (A, X) follow the NSBM and Conditions 1 and 2 hold.

(i) If nρn ! ∞ and Ekxkα2 <∞ðα>1Þ, then there exists a constant γ> 0 such that, as n!∞

P
1
n

Xn
i¼1

1ð~ci ≠ ciÞ≤ γðnρnÞ�1=2

 !
!1, k~β�βk2 ¼OpððnρnÞ

1�α
2α Þ:

(ii) Assume Condition 3 is satisfied. If nρn
logn!∞, then as n!∞,Pð~c¼ cÞ!1and

ffiffiffi
n

p
ð~β�βÞ!d Nð0, I�1ðβÞÞ, where IðβÞ is the Fisher information

for the multilogistic regression problem of regressing c on X.

We see that part (ii) in Theorem 3 is identical to Theorems 1 and 2. Hence, the maximum profile likelihood method is equivalently good as

the previous two in certain sense. The conclusions in part (i) shed lights on how the network edges and nodal covariates affect the consistency

results. Under the scaling nρn !∞, ~c is only weak consistent. And the higher moment kxk2 has the faster convergence rate β̌ can achieve. Suppose

all moments of kxk2 exist, then we would have
ffiffiffiffiffiffiffi
nρn

p kβ̌�βk2 ¼Opð1Þ. Since ρn!0, this convergence rate is slower than and may be arbitrarily

close to the one in part (ii) when nρn
logn!∞.

4 | PRACTICAL ALGORITHMS

In Section 3, we have studied three likelihood based community detection methods and shown their superb asymptotic performances. In this sec-

tion, we design specialized algorithms for computing the variational estimators defined by (6), (7) and the maximum profile likelihood estimators

in (9). As discussed in Section 3.2, the maximum likelihood estimators are computationally infeasible, hence omitted here. The key challenge lies

on the fact that the likelihood-based functions in (6), (7) and (9) are all nonconvex. Multiple local optima may exist, and the global solution is often

impossible to allocate accurately. To address this issue, we first obtain a “well-behaved“ preliminary estimator via convex optimization and then

feed it as an initialization into “coordinate” ascent-type iterative schemes. The idea is that the carefully chosen initialization may help the

followed-up iterations to escape “bad“ local optima and arrive “closer” (better approximation) to the ideal global solution. As we shall see in the

numerical studies, the results with a “well-behaved” initial estimator are significantly better than those with a random initialization. These two

steps will be discussed in detail in Sections 4.1 and 4.2, respectively.

4.1 | Initialization via convex optimization

The convex optimization we consider in this section is SDP. Different formulations of SDP have been shown to yield good community detec-

tion performances in Amini and Levina (2014), Chen et al. (2012), Cai and Li (2015), Guédon and Vershynin (2016), Montanari and

Sen (2015), among others. One illuminating interpretation of SDP is to think of it as a convex relaxation of the maximum likelihood method.

For example, starting from a specialized SBM, one can derive SDP by approximating the corresponding likelihood function. See Amini and
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Levina (2014), Chen et al. (2012) and Cai and Li (2015) for the detailed arguments. However, under the NSBM, because of the nodal covari-

ate term, it is not straightforward to generalize the convex relaxation arguments. We hence resort to a different understanding of SDP elabo-

rated in Guédon and Vershynin (2016). The key idea is to construct SDP based on the observations directly, with the goal of having the true

community assignment c to be the solution of a “population” version of the SDP under construction. In particular, we consider the following SDP

problem,

Ẑ¼ arg maxZ ⟨Aþ γnXX
T ,Z⟩

subject to Z�0,Z�ℝn�n,0≤Zij ≤1,1≤ i, j≤ n,
P
ij
Zij ¼ λn

ð10Þ

where γn, λn > 0 are two tuning parameters; ⟨� , �⟩ denotes the inner product of two matrices. We then obtain the communities by running K-

means on Ẑ (treating each row of Ẑ as a data point in ℝn). Under some mild conditions on B, we can show that this approach produces a consistent

community assignment estimate, as nρn!∞. But since we propose the SDP method mainly for the algorithmic purpose, we do not detail out the

asymptotic analysis to avoid potential digression. Instead, we present some insights to justify the design of SDP in (10). The argument follows

closely Guédon and Vershynin (2016). Recall c¼ðc1,…,cnÞ is the underlying true community membership vector. Denote

Mc ¼ Z�ℝn�n : Z�0,0≤Zij ≤1,
X
ij

Zij ¼
XK
k¼1

Xn
i¼1

1ðci ¼ kÞ
 !2

8<
:

9=
;,

and SðZÞ¼ ⟨EðAjcÞþ γnEðXjcÞEðXT jcÞ,Z⟩. We can construct a “population” version of (10) as follows:

arg maxZ �Mc
SðZÞ: ð11Þ

Define ZðcÞ¼MðcÞMTðcÞ where MðcÞ�ℝn�K with MikðcÞ equals 1 if ci= k and 0 otherwise for 1 ≤ i ≤ n, 1 ≤ k ≤ K. Hence, the matrix

ZðcÞ�ℝn�n encodes the true community structure. We show below that ZðcÞ is in fact the unique solution of (11). This is because for any Z�Mc,

SðZðcÞÞ�SðZÞ¼ ⟨EðAjcÞþ γnEðXjcÞEðXT jcÞ,ZðcÞ�Z⟩

¼
P
ij
ðρnBcicj þ γnEðxTi jciÞEðxjjcjÞÞ � ðZijðcÞ�ZijÞ �1ðci ¼ cjÞ�

P
ij
ðρnBcicj þ γnEðxTi jciÞEðxjjcjÞÞ � ðZij�ZijðcÞÞ �1ðci ≠ cjÞ

≥
ðaÞ

U �
P
ij
ðZijðcÞ�ZijÞ �1ðci ¼ cjÞ�L �

P
ij
ðZij�ZijðcÞÞ �1ðci ≠ cjÞ ≥

ðbÞU�L
2

� kZðcÞ�Zk1,

ð12Þ

where

U¼ min
1≤ k ≤K

fρnBkkþ γnEðxT jc¼ kÞEðxjc¼ kÞg and L¼ max
1≤ a≠ b≤K

fρnBabþ γnEðxT jc¼ aÞEðxjc¼ bÞg:

In (a) we have used the fact that ZijðcÞ≥ Zij if ci= cj and ZijðcÞ≤Zij otherwise, and (b) holds because Z,ZðcÞ�Mc leads to

X
ij

ðZijðcÞ�ZijÞ �1ðci ¼ cjÞ¼
X
ij

ðZij�ZijðcÞÞ �1ðci ≠ cjÞ¼
1
2
kZðcÞ�Zk1:

We may interpret the gap U � L as the signal strength of the community structure. As long as the gap is positive, we see from (12) that

the true community structure ZðcÞ can be recovered by the “population” version SDP (11). As a result, if the “sample” version SDP (10) is close

to the “population” one (it holds for large samples under mild conditions), we can expect Ẑ, the solution of (10), to be close to the truth ZðcÞ
as well.

We note that there are two tuning parameters in (10). The tuning γn trades off the information from two different sources: network edges

and nodal covariates. The way we incorporate nodal covariates has the same spirit as Binkiewicz et al. (2017) does in spectral clustering. From the

simulation studies in the next section, we shall see that a flexible choice of γn can lead to satisfactory results. Regarding the parameter λn, from

the preceding theoretical justifications, we observe that λn ¼
XK

k¼1

Xn

i¼1
1ðci ¼ kÞ

� �2
is a desirable choice, which depends on the unknown truth

in a seemingly restrictive way. However, we will demonstrate through simulations that the community detection results are quite robust to the

choice of λn.
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The convex optimization problem (10) can be readily solved by standard SDP solvers such as SDPT3 (Tütüncü et al., 2003). However, those

solvers are based on interior-point methods and computationally expensive when the network size n is more than a few hundred. To overcome

this limit, we apply the alternating direction method of multipliers (ADMM) to develop a more scalable algorithm for solving (10). We start by a

brief description of the generic ADMM algorithm with the details available in the excellent tutorial by Boyd et al. (2011). In general, ADMM solves

problems in the form

minimize fðyÞþhðzÞ subject to ByþDz¼w, ð13Þ

where y�ℝm,z�ℝn,B�ℝq�m,D�ℝq�n,w�ℝq and fðyÞ,hðzÞ are two convex functions. The algorithm takes the following iterations at step t.

ytþ1 ¼ arg min
y

fðyÞþðξ=2ÞkByþDzt�wþutk22
� �

,

ztþ1 ¼ arg min
z

hðzÞþðξ=2ÞkBytþ1þDz�wþutk22
� �

, utþ1 ¼ utþBytþ1þDztþ1�w

with ξ > 0 being a step size constant.

To use this framework, we reformulate (10) as follows:

minimize lðZ�0Þþ lð0≤Yij ≤1,1≤ i, j≤ nÞþ l
P
ij
Wij ¼ λn

 !
� ⟨Aþ γnXX

T ,Z⟩

subject to Y¼Z,Y¼W,

where Z,Y ,W �ℝn�n; lðZ�0Þ equals 0 if Z�0 and +∞ otherwise; similar definitions hold for other l(�). If we set

y¼ðvecðYÞ,vecðYÞÞT �ℝ2n2 ,z¼ðvecðWÞ,vecðZÞÞT �ℝ2n2 ,B¼�D¼ I2n2 �ℝ2n2�2n2 ,w¼0�ℝ2n2 , where vec(�) denotes the vectorized version of a

matrix, then the problem above becomes an instance of (13). The corresponding iterations have the following expressions:

Ytþ1 ¼ argmin
0≤Yij ≤1

kY�WtþUtk2F þkY�ZtþVtk2F
� �

, Wtþ1 ¼ argminP
ij

Wij¼λn

kYtþ1�WþUtk2F ,

Ztþ1 ¼ argmin
Z�0

�⟨Aþ γnXX
T ,Z⟩þðξ=2ÞkYtþ1�ZþVtk2F

� �
, Utþ1 ¼UtþYtþ1�Wtþ1,Vtþ1 ¼VtþYtþ1�Ztþ1,

where k � kF denotes the Frobenius norm. It is not hard to see that each iteration above has a closed form update with the details summarized in

Algorithm 1.3

4.2 | Coordinate ascent scheme

As we may see, the problem formulations in (6) and (9) are not suitable for gradient or Hessian-based iterative algorithms, because they either

involve discrete variables or have nontrivial constraints. The variables involved in those optimization problems can be divided into community

assignment related and others. Naturally, we will adopt the iterative scheme that alternates between these two types of variables.

3In Step (c), PΛP T denotes the spectral decomposition; Λ+ represents the truncated (keep positive elements) version of Λ.
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4.2.1 | Computing variational estimates

To compute the variational estimates in (6), we follow the EM style iterative fashion by maximizing the objective function in (6) with respect to θ

and Q�Q alternatively. Specifically, we are solving

βtþ1 ¼ arg min
β � ℝpK ,βK¼0

X
i

X
k

qtikβk

 !T

xi� log
X
k

eβ
T
k xi

 !2
4

3
5, ð14Þ

Btþ1 ¼ arg min
B � ℝK�K ,BT¼B

X
ab

logBab �
X
i< j

Aijq
t
iaq

t
jbþ logð1�BabÞ �

X
i< j

ð1�AijÞqtiaqtjb

" #
, ð15Þ

fqtþ1
ik g¼ arg min

fqikg

X
ab

logBtþ1
ab �

X
i< j

Aijqiaqjbþ logð1�Btþ1
ab Þ �

X
i< j

ð1�AijÞqiaqjb

" #
þ
X
i

X
k

qikðβtþ1
k ÞTxi�

X
i

X
k

qik logqik: ð16Þ

Note that the objective function in (14) takes a similar form as the log-likelihood function of the multilogistic regression model. We hence use

the Newton–Raphson algorithm in the same way as we fit the multilogistic regression model to compute the update in (14). This corresponds to

Step (a) of Algorithm 2, in which we have used the name “FitMultiLogistic” there to denote the full step with a bit abuse of notation. In addition,

the update in (15) has an explicit solution, which corresponds to Step (b) in Algorithm 2. Regarding the update for {qik}ik in (16), unfortunately, the

optimization is nonconvex and does not have analytical solutions. We then implement an inner blockwise coordinate ascent loop to solve it. In

particular, we update fqikgKk¼1 one at a time:

fqikgk ¼ arg min
fqikgk

X
k

qik �
X
b

X
j≠ i

Aijqjb � logBkbþð1�AijÞqjb � logð1�BkbÞ
� �" #

þ
X
k

qikβ
T
kxi�

X
k

qik logqik:

It is straightforward to show that the update above has closed forms:

qik ¼
eakXK

k¼1
eak

, ak ¼ βTk xiþ
X
b

X
j≠ i

qjb � AijlogBkbþð1�AijÞlogð1�BkbÞ
� �

:

This yields Step (c) for Algorithm 2. After computing fqTikg, β
T , BT via Algorithm 2, we calculate the community assignment estimate č based

on (7). This could be done by coordinate ascent iterations, like Step (c) in Algorithm 3 (to be introduced in Section 4.2.2). Alternatively, we can use

the following approximated posterior distribution fqTikg: či ¼ arg min
1≤ k ≤K

qTik ,1≤ i≤ n, which is used in our numerical studies since it is computationally

more efficient.

4.2.2 | Computing maximum profile likelihood estimates

Similar to the variational estimates, we maximize the likelihood function in (9) with respect to ðβ,BÞ and c iteratively. In other words, we solve
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βtþ1 ¼ arg min
β � ℝpK ,βK¼0

X
i

βTct
i
xi� log

X
k

eβ
T
k xi

 !" #
, ð17Þ

Btþ1
ab ¼ arg min

Bab

logBab �
X
i< j

Aij1ðcti ¼ a,ctj ¼ bÞ�Bab �
X
i< j

1ðcti ¼ a,ctj ¼ bÞ, ð18Þ

ctþ1 ¼ arg min
c � f1,…,Kgn

X
ab

log Btþ1
ab �

X
i< j

Aij1ðci ¼ a,cj ¼ bÞ�Btþ1
ab �

X
i< j

1ðci ¼ a,cj ¼ bÞ
" #

þ
X
i

ðβtþ1
ci

ÞTxi: ð19Þ

Here, solving (17) is equivalent to computing the maximum likelihood estimate of multilogistic regression. This is carried out in Step (a) of

Algorithm 3. In addition, it is straightforward to see that Step (b) in Algorithm 3 is the solution to (18). For computing ctþ1 in (19), we update its

element one by one, as shown by Step (c) in Algorithm 3.

4.2.3 | Variational estimates versus maximum profile likelihood estimates

So far we have studied the theoretical properties of the variational and maximum profile likelihood estimates and developed algorithms to com-

pute them. The results in Sections 3.2 and 3.3 demonstrate that they have the same asymptotic performance under nρn
logn!∞. We now compare

the corresponding algorithms. By taking a close look at Algorithms 2 and 3, we observe that the three steps in the two algorithms share a lot of

similarities. Algorithm 2 is essentially a “soft” version of Algorithm 3 in the following sense: Instead of using the community assignment ci in Algo-

rithm 3, the steps in Algorithm 2 involve the probability of belonging to every possible community. This might remind us of the comparison

between the EM algorithm and K-means under Gaussian mixture models. As we will see in Section 5, variational and maximum profile likelihood

methods usually lead to similar numerical results.

5 | NUMERICAL EXPERIMENTS

In this section, we conduct a detailed experimental study of the SDP defined in (10), variational and maximum profile likelihood methods on both

simulated and real datasets. We use two quantitative measures for evaluating their community detection performance: Normalized Mutual Infor-

mation (NMI) (Ana & Jain, 2003) and Adjusted Rand Index (ARI) (Hubert & Arabie, 1985).

NMI¼
�2
P

i

P
jnijlog

nij �n
ni�n�j

� �
P

ini�log
ni�
n

� �
þ
P

jn�jlog
n�j
n

� � , ARI¼

P
ij

nij
2

� �
�
P

i

ni�
2ð Þ
P

j

n�j
2ð Þ

n
2ð Þ

1
2

P
i
ni�
2

� �
þ 1

2

P
j
n�j
2

� �
�
P

i

ni�
2ð Þ
P

j

n�j
2ð Þ

n
2ð Þ

:

In the above expressions, ni� denotes the true number of nodes in community i, n�j represents the number of nodes in the estimated community

j and nij is the number of nodes belonging to community i but estimated to be in community j. Both NMI and ARI are bounded by 1, with the value
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of 1 indicating perfect recovery while 0 implying the estimation is no better than random guess. See Steinhaeuser and Chawla (2010) for a

detailed discussion.

5.1 | Simulation studies

We set K¼2,ρn ¼ 3½logðnÞ�1:5
4n ,Pðc¼1Þ¼Pðc¼2Þ¼0:5,B¼

1:6 0:4

0:4 1:6

� �
. We consider the following two different scenarios.

(A). p¼4,xjc¼1�Nðu, I4Þ,xjc¼2�Nð�u, I4Þ,u¼ð0,0:4,0:6,0:8ÞT , where I4 �ℝ4�4 is the identity matrix.

(B). p¼4,ðx1,x2Þjc¼1�Nðu,ΣÞ,ðx1,x2Þjc¼2�Nð�u,ΣÞ,u¼ð0:5,0:5ÞT ,Σ11 ¼Σ22 ¼1,Σ12 ¼0:3,x3jc¼1�Bernoullið0:6Þ,x3jc¼2�
Bernoullið0:4Þ,x4jc¼1�Uniformð�0:2,0:5Þ,x4jc¼2�Uniformð�0:5,0:2Þ; and (x1, x2), x3 and x4 are mutually independent.

Note that in Scenario (A), the NSBM is the correct model and the first nodal variable is independent of the community assignment; In Sce-

nario (B), the NSBM is no longer correct. Under both correct and misspecified models, we would like to (i) investigate the impacts of the two tun-

ing parameters (γn, λn) in the SDP (10), (ii) examine the effectiveness of the SDP as initialization and (iii) check the performances of the variational

and maximum profile likelihood methods for utilizing nodal information.

5.1.1 | Tuning parameters in SDP

For both simulation settings, we solve SDP defined in (10) with different tuning parameters via Algorithm 1, with the number of iterations T ¼
100 and the step size ξ¼1. We then calculate the NMI of its community detection estimates. Since the ARI gives similar results, we do not show

them here for simplicity. The full procedure is repeated 500 times.

Figure 1 demonstrates the joint impact of the tuning parameters on the SDP performance under Scenario (A). First of all, the comparison of

NMI between γn ¼0 and γn>0 indicates the effectiveness of SDP (10) for leveraging nodal information. We can also see that neither small or large

values of γn lead to optimal performances, verifying the point we discussed in Section 4.1 that γn plays the role of balancing the edge and nodal

information. An appropriate choice, as suggested by the four plots, is γn ¼
½logðnÞ�0:5

n . Regarding the parameter λn, we know from Section 4.1 that

λn ¼ n2
2 is the desired choice. Interestingly, Figure 1 shows that a wide range of λn can give competitive results, as long as the corresponding γn is

properly chosen. For Scenario (B), similar phenomena can be observed in Figure 2. Note that since the nodal covariates are not as informative as

in Scenario (A), the optimal γn ≈
0:8½logðnÞ�0:5

n tends to give more weights to the adjacency matrix. The results in these two different settings imply

that SDP (10) can work beyond the NSBM.

5.1.2 | Community detection performance via variational and maximum profile likelihood methods

We implement the variational and maximum profile likelihood methods via Algorithms 2 and 3. respectively, taking the outputs from Algorithm

1 as initialization (called VEM-C and MPL-C, respectively). We do not predefine the number of iterations T in both algorithms and instead keep

iterating until convergence. To investigate the impact of SDP as an initialization, we have additionally implemented both methods with random

initialization (called VEM-B and MPL-B, respectively): run Algorithms 2 and 3 with random initialization independently multiple times and choose

the outputs that give the largest objective function value (e.g., the profile likelihood function). We have also applied both methods to the simu-

lated datasets with nodal attributes removed (called VEM-A and MPL-A, respectively). This will be used as a comparison to check the effect of the

two methods in incorporating nodal information. We set λn ¼ 1
2n

2,γn ¼ ½logðnÞ�0:5
n for all the implementations of SDP under Scenario (A); and λn ¼

1
2n

2,γn ¼ 0:8½logðnÞ�0:5
n under Scenario (B). Finally, to shed more light on the impact of initialization on the two likelihood-based methods, we have fur-

ther included the assortative covariate-assisted spectral clustering from Binkiewicz et al. (2017) (called SPEC) and both methods using it as initiali-

zation (called VEM-D and MPL-D, respectively).

Figure 3 shows the community detection results of both methods under Scenario (A). By comparing the curves in each plot, we can make a

list of interesting observations: (1) SDP is a good initialization (MPL-C vs. MPL-B, VEM-C vs. VEM-B), (2) SDP itself already gives reasonable out-

puts, but the follow-up iterations further improve the performance (SDP vs. MPL-C, SDP vs. VEM-C), (3) the nodal covariates are helpful for

detecting communities, and the two methods have made effective use of it (MPL-A vs. MPL-C, VEM-A vs. VEM-C), (4) the two methods have sim-

ilar performances when initialized with SDP (MPL-A vs. VEM-A, MPL-C vs. VEM-C); and (5) the two methods may not have a stringent require-

ment on the quality of initialization, since initialization by the spectral clustering and SDP give competitive results (MPL-C vs. MPL-D, VEM-C

vs. VEM-D) while SDP itself outperformed spectral clustering by a significant margin (SDP vs. SPEC). Moreover, we would like to point out the dif-

ferent behavior of the two methods with random initialization. The comparison between the two purple curves (MPL-B vs. VEM-B) implies that
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compared with the variational method, the maximum profile likelihood method has the potential of exploring the parameter space more effi-

ciently, especially when the sample size is large. One possible explanation is that the update of the “soft” community labels (the distribution {qik})

in the variational algorithm may cause it to move very slowly in the parameter space and hence it may take many steps to change a label assign-

ment. Furthermore, note that we can use the asymptotic normality property of the estimators for β in Theorems 2 and 3 to perform variable selec-

tion. The results of the Wald test regarding each component of β are presented in Figure 4. We see that our methods are able to identify relevant

(the last three) and irrelevant (the first) nodal variables. Regarding Scenario (B), similar observations on the community detection performance can

be made from Figure 5. We thus omit the details. As a final remark, the performances in Scenario (B) indicate that both methods can work to a

certain extent of model misspecification.

5.2 | Real data analysis

The dataset is about a research team consisting of 77 employees in a manufacturing company (Cross & Parker, 2004). The data is openly available

at https://opsahl.co.uk/tnet/datasets/Cross_Parker-Manufacturing_info.txt. The edges among the researchers are differentiated in terms of

advice ("Please indicate the extent to which the people listed below provide you with information you use to accomplish your work"). The weight

of an edge is based on the following scale: 0 (I do not know this person/I have never met this person); 1 (Very infrequently); 2 (Infrequently);

3 (Somewhat infrequently); 4 (Somewhat frequently); 5 (Frequently); 6 (Very frequently). A weight wij is assigned to the directed edge from

employee i to employee j, according to the level of advice (measured on the preceding scale) that employee i provides to employee j for

accomplishing employee j's work. In addition to the edge information, the dataset also contains several attributes of each employee: location (1:

Paris, 2: Frankfurt, 3: Warsaw, 4: Geneva); tenure (1: 1-12 months, 2: 13-36 months, 3: 37-60 months, 4: 61+ months); the organizational level

(1: Global Dept Manager, 2: Local Dept Manager, 3: Project Leader, 4: Researcher). Since the network is a weighted and directed network, we first

convert it to a binary network such that there exists an edge from i to j if and only if wij > 3. This corresponds to whether the information is

F IGURE 1 The community detection performance of semidefinite programming (SDP) (measured by Normalized Mutual Information [NMI]),
under Scenario (A), with different tuning parameters (λn, γn); NMI is averaged over 500 repetitions; we have used the scaled version of the tuning
parameters: τ¼ λn

n2 ,α¼100γn
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provided frequently or not. We then further convert it into an undirected network in the way that the edge between i and j exists if and only if

both directed edges from i to j and j to i are present. Finally, we remove three isolated nodes from the network. To explore the intro-

organizational community structure, we re-order the adjacency matrix based on random permutation and the attributes. As can be seen from

Figure 6, the attribute “location” is a very informative indicator of the network's community structure. This should not come as a big surprise,

since the same office location usually promotes communication and collaboration between team members. We now use the “location” as the gro-

und truth for the community assignment and examine the performances of SDP (10), maximum profile likelihood and variational methods based

on the rest of the data. For SDP (10), we first use spectral clustering on the adjacency matrix (Lei & Rinaldo, 2014) to estimate the size of the com-

munities and plug the estimates in the formula λn ¼
XK

k¼1

Xn

i¼1
1ðci ¼ kÞ

� �2
. Regarding γn, motivated from the simulation results, we choose

γn ¼ ρ̂n
logn, where ρ̂n ¼ 2�number of edges

n2 . The maximum profile likelihood and variational methods are initialized by the output from SDP. We can see

from Table 1 that, by incorporating the nodal information, community detection accuracy has been improved. It is interesting to observe that SDP

performs as well as the two likelihood based methods, when nodal covariates are available. Note that we can calculate the mutual information

between the “ground truth“ variable “location” and the other two to see how much community information they contain. Given that both mutual

information (0.11 & 0.03) are pretty small, the magnitude of improvement in Table 1 is reasonable.

6 | DISCUSSION

In this paper, we present a systematic study of the community detection with the nodal information problem. We propose a flexible network

modelling framework, and analyze three likelihood based methods under a specialized model. Both asymptotic and algorithmic aspects have been

F IGURE 2 The community detection performance of semidefinite programming (SDP) (measured by Normalized Mutual Information [NMI]),
under Scenario (B), with different tuning parameters (λn, γn); Normalized Mutual Information [NMI] is averaged over 500 repetitions; we have
used the scaled version of the tuning parameters: τ¼ λn

n2 ,α¼100γn

WENG AND FENG 13 of 17



thoroughly discussed. The superiority of variational and maximum profile likelihood methods are verified through a variety of numerical experi-

ments. Finally, we would like to highlight several potential extensions and open problems for future work.

1. The modelling of both the network and nodal covariates can be readily extended to more general families, such as degree-corrected SBMs,

nonparametric regression, and hypergraphs (Yuan et al., 2021). The corresponding asymptotic results might be derived accordingly.

2. In the setting with high dimensional covariates, penalized likelihood methods are more appealing for both community detection and variable

selection. Theoretical analysis of community detection and variable selection consistency will be necessary.

F IGURE 3 The community detection performances under Scenario (A); the average Normalized Mutual Information (NMI) is calculated over
500 repetitions along with its standard error bar; semidefinite programming (SDP) denotes the proposed semidefinite programming approach, and
SPEC denotes the assortative covariate-assisted spectral clustering; MPL-A, MPL-B, MPL-C and MPL-D represent the maximum profile likelihood
methods with no nodal covariates being used, random initialization, initialization from SDP and initialization from the assortative covariate-
assisted spectral clustering, respectively; similar notations are used for the variational method. We have used 15 independent random
initializations for the maximum profile likelihood method across all the sample sizes; for the variational method, the number of random
initializations used starts from 15 for n¼100 and consecutively increases by 1 for the subsequent sample sizes

F IGURE 4 Wald test for each component of β. The calculations are averaged over 2000 repetitions. The significance level is set to 0.01.
Since both variational and maximum profile likelihood methods give similar results, we only present the result of the variational method for
simplicity
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3. For very sparse networks, considering nρn ¼Oð1Þ seems to be a more realistic asymptotic framework. Under such asymptotic setting, commu-

nity detection consistency is impossible. The effect of nodal covariates becomes more critical. It is of great interest to characterize the impact

of the nodal information on community detection.

4. In this work, we assume the number of communities K is known. How to select K is an important problem in community detec tion. Some

recent efforts towards this direction include (Le & Levina, 2015; Saldana et al., 2017; Wang & Bickel, 2017; Lei, 2016).

5. Running on a laptop equivalent, the proposed algorithms in the paper can efficiently handle network data with a size up to a few thousand.

However, to deal with very large-scale networks, it is necessary to develop scalable versions. One promising way is to leverage some well-

known randomized algorithms such as scalable SDP (Yurtsever et al., 2021), random coordinate descent (Nesterov, 2012) and stochastic varia-

tional inference (Hoffman et al., 2013).

F IGURE 5 The community detection performances under Scenario (B). All the relevant descriptions are the same as in Figure 3

F IGURE 6 From left to right are the re-ordered adjacency matrices based on random permutation, location, tenure and organizational level

TABLE 1 The community detection results of SDP, maximum profile likelihood, and variational methods

SDP MPL VEM SDP MPL VEM

edge 0.881 0.894 0.894 0.882 0.883 0.883

edge + nodal 0.920 0.920 0.920 0.921 0.921 0.921

Note: MPL and VEM denote maximum profile likelihood and variational methods, respectively. NMI is computed on the left part of the table, and ARI on

the right. The row indexed by “edge” shows the results based on the network without nodal information, while the other one “edge+nodal” contains the
results of making use of the two attributes available.

WENG AND FENG 15 of 17



DATA AVAILABILITY STATEMENT

The data is openly available at http://opsahl.co.uk/tnet/datasets/Cross_Parker-Manufacturing_info.txt.

ORCID

Haolei Weng https://orcid.org/0000-0002-9879-7841

Yang Feng https://orcid.org/0000-0001-7746-7598

REFERENCES

Abbe, E., & Sandon, C. (2015). Community detection in general stochastic block models: Fundamental limits and efficient recovery algorithms. arXiv:

1503.00609.

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. In Advances in neural information processing sys-

tems, pp. 33–40.
Akoglu, L., Tong, H., Meeder, B., & Faloutsos, C. (2012). Pics: Parameter-free identification of cohesive subgroups in large attributed graphs. In Sdm,

Citeseer, pp. 439–450.
Amini, A. A., Chen, A., Bickel, P. J., & Levina, E. (2013). Pseudo-likelihood methods for community detection in large sparse networks. The Annals of Statis-

tics, 41(4), 2097–2122.
Amini, A. A., & Levina, E. (2014). On semidefinite relaxations for the block model. arXiv:1406.5647.

Ana, L. N. F., & Jain, A. K. (2003). Robust data clustering. In Computer vision and pattern recognition, 2003. Proceedings. 2003 IEEE computer society confer-

ence on, 2, IEEE, pp. II–128.
Anandkumar, A., Ge, R., Hsu, D., & Kakade, S. M. (2014). A tensor approach to learning mixed membership community models. The Journal of Machine

Learning Research, 15(1), 2239–2312.
Bickel, P. J., & Chen, A. (2009). A nonparametric view of network models and Newman–Girvan and other modularities. Proceedings of the National Academy

of Sciences, 106(50), 21068–21073.
Bickel, P. J., Choi, D., Chang, X., & Zhang, H. (2013). Asymptotic normality of maximum likelihood and its variational approximation for stochastic

blockmodels. The Annals of Statistics, 41(4), 1922–1943.
Binkiewicz, N., Vogelstein, J. T., & Rohe, K. (2017). Covariate-assisted spectral clustering. Biometrika, 104(2), 361–377.
Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multi-

pliers. Foundations and Trends® in Machine Learning, 3(1), 1–122.
Cai, T. T., & Li, X. (2015). Robust and computationally feasible community detection in the presence of arbitrary outlier nodes. The Annals of Statistics,

43(3), 1027–1059.
Celisse, A., Daudin, J.-J., & Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electronic Journal

of Statistics, 6, 1847–1899.
Chang, J., & Blei, D. M. (2010). Hierarchical relational models for document networks. The Annals of Applied Statistics, 4, 124–150.
Chen, Y., Li, X., & Xu, J. (2015). Convexified modularity maximization for degree-corrected stochastic block models. arXiv:1512.08425.

Chen, Y., Sanghavi, S., & Xu, H. (2012). Clustering sparse graphs, Advances in neural information processing systems, pp. 2204–2212.
Choi, D. S., Wolfe, P. J., & Airoldi, E. M. (2012). Stochastic blockmodels with a growing number of classes. Biometrika, 99, 273–284.
Cross, R. L., & Parker, A. (2004). The Hidden Power of Social Networks: Understanding How Work Really Gets Done in Organizations: Harvard Business Review

Press.

Dasgupta, A., Hopcroft, J. E., & McSherry, F. (2004). Spectral analysis of random graphs with skewed degree distributions, Foundations of computer sci-

ence, 2004. Proceedings. 45th annual IEEE symposium on, pp. 602–610.
Daudin, J.-J., Picard, F., & Robin, S. (2008). A mixture model for random graphs. Statistics and Computing, 18(2), 173–183.
Decelle, A., Krzakala, F., Moore, C., & Zdeborová, L. (2011). Asymptotic analysis of the stochastic block model for modular networks and its algorithmic

applications. Physical Review E, 84(6), 066106.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39, 1–38.
Deshpande, Y., Montanari, A., Mossel, E., & Sen, S. (2018). Contextual stochastic block models, Advances in neural information processing systems,

pp. 8581–8593.
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.
Gao, C., Ma, Z., Zhang, A. Y., & Zhou, H. H. (2015). Achieving optimal misclassification proportion in stochastic block model. arXiv:1505.03772.

Guédon, O., & Vershynin, R. (2016). Community detection in sparse networks via Grothendieck inequality. Probability Theory and Related Fields, 165,

1025–1049.
Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. Journal of Machine Learning Research, 14(5), 1303–1347.
Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5(2), 109–137.
Huang, S., & Feng, Y. (2018). Pairwise covariates-adjusted block model for community detection. arXiv preprint arXiv:1807.03469.

Huang, S., Weng, H., & Feng, Y. (2020). Spectral clustering via adaptive layer aggregation for multi-layer networks. arXiv preprint arXiv:2012.04646.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.
Jin, J. (2015). Fast community detection by score. The Annals of Statistics, 43(1), 57–89.
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2),

183–233.
Joseph, A., & Yu, B. (2013). Impact of regularization on spectral clustering. arXiv:1312.1733.

Karrer, B., & Newman, M. E. J. (2011). Stochastic blockmodels and community structure in networks. Physical Review E, 83(1), 016107.

Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., & Zhang, P. (2013). Spectral redemption in clustering sparse networks. Proceedings of

the National Academy of Sciences, 110(52), 20935–20940.

16 of 17 WENG AND FENG

http://opsahl.co.uk/tnet/datasets/Cross_Parker-Manufacturing_info.txt
https://orcid.org/0000-0002-9879-7841
https://orcid.org/0000-0002-9879-7841
https://orcid.org/0000-0001-7746-7598
https://orcid.org/0000-0001-7746-7598


Le, C. M., & Levina, E. (2015). Estimating the number of communities in networks by spectral methods. arXiv preprint arXiv:1507.00827.

Lei, J. (2016). A goodness-of-fit test for stochastic block models. The Annals of Statistics, 44(1), 401–424.
Lei, J., & Rinaldo, A. (2014). Consistency of spectral clustering in stochastic block models. The Annals of Statistics, 43(1), 215–237.
Montanari, A., & Sen, S. (2015). Semidefinite programs on sparse random graphs and their application to community detection. arXiv:1504.05910.

Nallapati, R., & Cohen, W. W. (2008). Link-plsa-lda: A new unsupervised model for topics and influence of blogs., Icwsm.

Nesterov, Y. (2012). Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization, 22(2), 341–362.
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.
Newman, M. E. J., & Clauset, A. (2015). Structure and inference in annotated networks. arXiv:1507.04001.

Newman, M. E. J., & Clauset, A. (2016). Structure and inference in annotated networks. Nature Communications, 7(1), 1–11.
Qin, T., & Rohe, K. (2013). Regularized spectral clustering under the degree-corrected stochastic blockmodel, Advances in neural information processing

systems, pp. 3120–3128.
Rohe, K., Chatterjee, S., & Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39(4), 1878–1915.
Ruan, Y., Fuhry, D., & Parthasarathy, S. (2013). Efficient community detection in large networks using content and links, Proceedings of the 22nd interna-

tional conference on world wide web, pp. 1089–1098.
Saade, A., Krzakala, F., & Zdeborová, L. (2014). Spectral clustering of graphs with the bethe hessian, Advances in neural information processing systems,

pp. 406–414.
Saldana, D. F., Yu, Y., & Feng, Y. (2017). How many communities are there? Journal of Computational and Graphical Statistics, 26(1), 171–181.
Stegehuis, C., & Massoulié, L. (2019). Efficient inference in stochastic block models with vertex labels. IEEE Transactions on Network Science and Engineering,

7(3), 1215–1225.
Steinhaeuser, K., & Chawla, N. V. (2010). Identifying and evaluating community structure in complex networks. Pattern Recognition Letters, 31(5), 413–421.
Tütüncü, R. H., Toh, K. C., & Todd, M. J. (2003). Solving semidefinite-quadratic-linear programs using sdpt3. Mathematical Programming, 95(2), 189–217.
Wang, Y. X. R. achel, & Bickel, P. J. (2017). Likelihood-based model selection for stochastic block models. The Annals of Statistics, 45(2), 500–528.
Yan, B., & Sarkar, P. (2020). Covariate regularized community detection in sparse graphs. Journal of the American Statistical Association, 116, 1–12.
Yang, J., McAuley, J., & Leskovec, J. (2013). Community detection in networks with node attributes, Data mining (icdm), 2013 ieee 13th international con-

ference on, pp. 1151–1156.
Yuan, M., Liu, R., Feng, Y., & Shang, Z. (2021). Testing community structures for hypergraphs. The Annals of Statistics, to appear.

Yurtsever, A., Tropp, J. A., Fercoq, O., Udell, M., & Cevher, V. (2021). Scalable semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1),

171–200.
Zhang, Y., Levina, E., & Zhu, J. (2014). Detecting overlapping communities in networks with spectral methods. arXiv:1412.3432.

Zhang, Y., Levina, E., & Zhu, J. (2016). Community detection in networks with node features. Electronic Journal of Statistics, 10(2), 3153–3178.
Zhang, A. Y., & Zhu, H. H. (2015). Minimax rates of community detection in stochastic block models. arXiv preprint arXiv:1507.05313.

Zhao, Y., Levina, E., & Zhu, J. (2012). Consistency of community detection in networks under degree-corrected stochastic block models. The Annals of Sta-

tistics, 40(4), 2266–2292.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Weng, H., & Feng, Y. (2022). Community detection with nodal information: Likelihood and its variational

approximation. Stat, 11(1), e428. https://doi.org/10.1002/sta4.428

WENG AND FENG 17 of 17

https://doi.org/10.1002/sta4.428

	Community detection with nodal information: Likelihood and its variational approximation
	1  INTRODUCTION
	2  NETWORK MODELLING WITH NODAL INFORMATION
	2.1  Conditional independence
	2.2  Node-coupled stochastic block model

	3  STATISTICAL INFERENCE UNDER NSBM
	3.1  Consistency of maximum likelihood method
	3.2  Consistency of variational method
	3.3  Consistency of maximum profile likelihood method

	4  PRACTICAL ALGORITHMS
	4.1  Initialization via convex optimization
	4.2  Coordinate ascent scheme
	4.2.1  Computing variational estimates
	4.2.2  Computing maximum profile likelihood estimates
	4.2.3  Variational estimates versus maximum profile likelihood estimates


	5  NUMERICAL EXPERIMENTS
	5.1  Simulation studies
	5.1.1  Tuning parameters in SDP
	5.1.2  Community detection performance via variational and maximum profile likelihood methods

	5.2  Real data analysis

	6  DISCUSSION
	  DATA AVAILABILITY STATEMENT

	REFERENCES


