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In statistics and machine learning, classification studies how to automatically learn
to make good qualitative predictions (i.e., assign class labels) based on past obser-
vations. Examples of classification problems include email spam filtering, fraud
detection, market segmentation. Binary classification, in which the potential class
label is binary, has arguably the most widely used machine learning applications.
Most existing binary classification methods target on the minimization of the over-
all classification risk and may fail to serve some real-world applications such as
cancer diagnosis, where users are more concerned with the risk of misclassifying
one specific class than the other. Neyman-Pearson (NP) paradigm was introduced
in this context as a novel statistical framework for handling asymmetric type I/II
error priorities. It seeks classifiers with a minimal type II error subject to a type I
error constraint under some user-specified level. Though NP classification has the
potential to be an important subfield in the classification literature, it has not
received much attention in the statistics and machine learning communities. This
article is a survey on the current status of the NP classification literature. To stimu-
late readers’ research interests, the authors also envision a few possible directions
for future research in NP paradigm and its applications. © 2016 The Authors. WIREs

Computational Statistics published by Wiley Periodicals, Inc.

How to cite this article:
WIREs Comput Stat 2016, 8:64–81. doi: 10.1002/wics.1376

Keywords: Classification, Neyman-Pearson paradigm, plug-in methods, high
dimension

INTRODUCTION

Classification has broad applications in various
fields, such as biological sciences, medicine,

engineering, finance, and social sciences. For exam-
ple, gene expression data can help predict various
types of cancer, analysts can use classification meth-
ods to predict whether customers will respond to cer-
tain promotions, spam filtering algorithms keep our
inbox clean of the junk emails. In general, the aim of
classification is to accurately predict discrete out-
comes (i.e., class labels) for new observations, on the
basis of labeled training data. The development of
classification theory, methods and applications has
been a dynamic area in statistics and machine learn-
ing for more than half a century.1

Most existing binary classification methods tar-
get on the optimization of the expected classification
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error R (or ‘risk’). The risk is a weighted sum of the
type I error R0 (the conditional probability that the
predicted label is 1 given that the true label is 0) and
the type II error R1 (the conditional probability that
the predicted label is 0 given that the true label is 1),
where the weights are the marginal probabilities of
the two class labels. In real-world applications, how-
ever, users’ priorities for the type I and type II errors
may be different from these weights. A representative
example of such scenario is the diagnosis of serious
disease. Let 1 code the healthy class and 0 code the
diseased class. Given that usually

P Y = 1ð Þ�P Y = 0ð Þ;

minimizing the overall risk might yield classifiers
with small overall risk R (as a result of small R1) yet
large R0 — a situation quite undesirable in practice
given flagging a healthy case incurs only extra cost of
additional tests while failing to detect the disease
endangers a life. We now demonstrate this point
using the neuroblastoma dataset introduced by
Ref 2. This dataset contains gene expression profiles
of 10707 genes from 246 patients in the German
neuroblastoma trials, among which 56 are high-risk
patients (labeled 0) and 190 are low-risk patients
(labeled 1). The average error rates of PSN2

(a classifier proposed in Ref 3 under NP paradigm),
Gaussian naive Bayes (nb), penalized logistic regres-
sion (pen-log), and support vector machines (svm)
over 1000 random splits are summarized in Table 1.

Except for PSN2, all procedures lead to low
type II errors and high type I errors. None of the
commonly used nb, pen-log, and svm is satisfactory
since misdiagnosing a high-risk patient as low-risk
(making a type I error) has more severe consequences
than the other way around.

One existing approach to asymmetric error
control is cost-sensitive learning, which allows users
to assign two different costs as weights of the type I
and type II errors.4,5 Despite merits of this frame-
work, limitations arise in applications when assigning
costs lacks consensus or is morally unacceptable.
Also, when users have a specific probabilistic target
for the type I/II error control, cost-sensitive learning
cannot serve the purpose. Other classification meth-
ods targeting small type I errors include the

asymmetric support vector machine6 and the p-value
for classification.7 But like all previous methods, they
have no probabilistic guarantee regarding the type I
error bound, resulting in some non-negligible proba-
bility of large type I errors. Even if we follow a com-
mon practice and tune the empirical type I error
(e.g., by adjusting the costs of errors or changing
penalty levels) as equal to the targeted level, true type
I error of the resulting classifier could actually exceed
this level with close to half of the chance!

To address such a concern, a novel statistical
framework was introduced to control asymmetric
errors in binary classification: the Neyman-Pearson
(NP) classification paradigm, which seeks a classifier
that solves:

min
type I error ≤ α

type II error;

where α is a user-specified level, usually a small value
(e.g., 5%). The NP paradigm can also prioritize the
type II error by symmetry, but we will only discuss
the prioritization of type I error in the rest of this
paper for presentation consistency.

Although the NP approach has a century-long
history in hypothesis testing, it has not been paid
much attention in the classification area. This article
aims to (1) provide a survey on the current status of
NP classification and related literature, and (2) make
some suggestions about future research topics in the
field. The rest of the article is organized as follows.

• Section NP Oracle Inequalities introduces a
new theoretical performance measure for NP
classification methodology. A large part of our
discussion is centered around this measure.

• Section Empirical Risk Minimization Approach
discusses NP classifiers that follow an empirical
risk minimization approach.

• Section Plug-in Approach discusses NP classi-
fiers using a plug-in approach with a focus on
important theoretical assumptions and chal-
lenges in modern high-dimensional settings.

• Section Selected Topics Related to NP Classifi-
cation discusses a few topics that have connec-
tions to NP classification.

• Section Suggestions for Future Research sug-
gests future research topics in NP classification
and NP paradigm in general.

Since we believe that NP classification will undergo a
significant development in the next few years, we
write the article at this moment to encourage more

TABLE 1 | Average Errors for Neuroblastoma Data

Error Type PSN2 Nb Pen-log Svm

type I (0 as 1) .038 .308 .529 .603

type II (1 as 0) .761 .150 .103 .573
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researchers to get into the field. Owing to the
authors’ experience and personal tastes, this survey is
inevitably incomplete and biased.

NP ORACLE INEQUALITIES

In this section, we will introduce an important theo-
retical measure of performance for classifiers in the
NP paradigm: the NP oracle inequalities. A few com-
monly used notations are set up to facilitate our dis-
cussion. Let (X, Y) be random variables where
X2X �Rd is a vector of features and Y 2 {0, 1} is a
class label. A classifier h is a mapping h :X ! 0,1f g
that returns the predicted class given X. An error
occurs when h(X) 6¼ Y, and the binary loss is I(h(X)
6¼ Y), where I (�) denotes the indicator function. The
risk is the expected loss with respect to the joint dis-
tribution of (X, Y): R(h) = E(I(h(X) 6¼ Y)) = P(h(X)
6¼ Y), which can be expressed as a weighted sum of
type I and II errors:

R hð Þ=P Y = 0ð ÞR0 hð Þ+P Y =1ð ÞR1 hð Þ;

where R0(h) = P(h(X) 6¼ Y|Y = 0) denotes the type I
error, and R1(h) = P(h(X) 6¼ Y|Y = 1) denotes the
type II error. While the classical binary classification
aims to minimize the risk R(�), the NP classification
aims to mimic the NP oracle classifier

ϕ* = arg min
ϕ:R0 ϕð Þ ≤ α

R1 ϕð Þ;

where the user-specified level α reflects a conservative
attitude (priority) toward the type I error. Figure 1
shows a toy example that demonstrates the difference
between classical and NP classifiers.

Rigollet and Tong8 argued that, a good classi-
fier ϕ̂ under the NP paradigm should respect the cho-
sen significance level α. More concretely, two
theoretical properties should both be satisfied with
high probability.

(I) the type I error constraint is respected,
i.e., R0 ϕ̂

� �
≤ α.

(II) the excess type II error R1 ϕ̂
� �

−R1 ϕ*
� �

diminishes with an explicit rate
(w.r.t. sample size).

A classifier is said to satisfy NP oracle inequal-
ities if it has properties (I) and (II) simultaneously
with high probability. NP oracle inequalities measure
theoretical performance of classifiers under the NP

paradigm, as well as define a new NP counterpart of
the well established oracle inequalities for classifiers
in the classical paradigm (see Ref 9 and references

within). Recall that, for a classifier ĥ, the classical
oracle inequality insists that with high probability,

the excess risk R ĥ
� �

−R h*
� �

diminishes with an explicit rate;

where h*(x) = I(η(x) ≥ 1/2) is the Bayes classifier
under the NP paradigm, in which
η xð Þ=E YjX =x½ � =P Y =1jX =xð Þ is the regression
function of Y on X.

EMPIRICAL RISK MINIMIZATION
APPROACH

Existing NP literature can be categorized by follow-
ing either empirical risk minimization or plug-in
approaches. Both approaches are common in the
classical classification literature. In this section, we
discuss the empirical risk minimization approach to
NP classification, and in the next section we investi-
gate the plug-in approach.

NP Paradigm Before 2011
Despite the practical importance of NP classification,
a short literature list suffices to summarize the impor-
tant progress in this field. Cannon et al.10 initiated
the theoretical treatment of the NP classification, and
an early empirical study can be found in Ref 11. Sev-
eral results for traditional statistical learning such as

Classical

classifer

Class 0 Class 1

III

x

NP

classifer

−2 0 2 41.65

III

FIGURE 1 | Classical versus NP classifiers in a binary classification
example. The true distributions of data x under the two balanced
classes are N 0,1ð Þ and N 2,1ð Þ respectively. Suppose that a user
prefers a type I error ≤0.05. The classical classifier I (x ≥ 1) that
minimizes the risk would result in a type I error = 0.16 > 0.05. On
the other hand, the NP classifier I (x ≥ 1.65) that minimizes the type
II error under the type I error constraint (≤0.05) delivers the desirable
type I error.
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Probably Approximately Correct (PAC) bounds or
oracle type inequalities have been studied in Refs
12,13 in the same framework as the one laid down
by Ref 10. Scott14 proposed performance measures
for the NP classification that weigh type I and type II
errors in sensible ways. Han et al.15 transposed sev-
eral earlier results to the NP classification with a con-
vex loss. All these works follow an empirical risk
minimization (ERM) approach, and there is a com-
monality in this line of literature: a relaxed empirical
type I error constraint (i.e., bigger than α) is used in
the optimization program, and as a result, the type I
error can only be shown to satisfy a relaxed upper
bound. In the following, we discuss a few highlights
in these papers.

To be consistent with the notations in the litera-
ture, we denote in this subsection the NP oracle as
h* = arg min{R1(h) : h 2 H, R0(h) ≤ α}, where H is
some family of classifiers. Cannon et al.10 established
that ERM type classifiers guarantee PAC bounds for

fixed tolerance levels ε1, ε0 > 0 as follows. Let ĥn be
a solution to the program

min
ϕ2H,R̂0 ϕð Þ ≤ α+ ε0=2

R̂1 ϕð Þ;

where H is a set of classifiers with finite Vapnik-
Chervonenkis (VC) dimension V, and where R̂0 and
R̂1 denote the empirical type I and type II errors,
respectively. It was shown that

1. Under retrospective sampling where class
0 sample size n0 and class 1 sample size n1 are
known before the sample is observed, for any
n(=n0 + n1),

P R0 ĥn
� �

−α > ε0
n o

[ R1 ĥn
� �

−R1 h*
� �

> ε1
n oh i

≤ 8nV
0 e

−n0ε20=128 + 8nV
1 e

−n1ε21=128 :

2. Under i.i.d. sampling in which n0 and n1 are
unknown until the training sample is observed,

if n ≥ 10
ffiffi
5

p
π2j ε

2
j
, πj = P(Y = j), j = 0, 1, then

P R0 ĥn
� �

−α > ε0
n o

[ R1 ĥn
� �

−R1 h*
� �

> ε1
n oh i

≤ 10 2nð ÞV e
−
nπ20ε

2
0

640
ffiffiffi
5

p
+ e

−
nπ21ε

2
1

640
ffiffiffi
5

p
 !

:

Scott and Nowak13 pointed out that the above
bound for i.i.d. sampling is substantially larger than

that for retrospective sampling, and does not hold
for small n. To address this, they proposed an alter-
native way to derive PAC bounds such that
the resulting PAC bounds apply to both
sampling schemes for all values of n. This is accom-
plished by making the tolerance levels ε0 and ε1 vari-
able. Specifically, they proved for any δ0, δ1 > 0 and
any n 2 ℕ:

1. Given a VC class H with VC dimension V,
define

εj = εj nj,δj,H
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128

V⁢log⁡nj + log 8=δj
� �

nj

s
, j = 0,1:

The classifier ĥn satisfies

P R0 ĥn
� �

−α > ε0 n0,δ0,Hð Þ
n o

[ R1 ĥn
� �nh

−R1 h*
� �

>21 n1,δ1,Hð Þg� ≤ δ0 + δ1 :

2. Given a finite class H, define

εj = εj nj,δj,H
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
logjHj + log 2=δj

� �
nj

s
, j = 0,1:

The classifier ĥn satisfies

P R0 ĥn
� �

−α > ε0 n0,δ0,Hð Þ
n o

[ R1 ĥn
� �nh

−R1 h*
� �

> ε1 n1,δ1,Hð Þg� ≤ δ0 + δ1 :

Scott and Nowak13 also considered a nested family
of classifier classes: H1 � � � � � HK(n), and proposed
the classifier

ehn = arg min
h2HK nð Þ

R̂1 hð Þ+ 1
2
ε1 n1,δ1,k hð Þð Þ;

s:t: R̂0 hð Þ ≤ α + 1
2
ε0 n0,δ0,k hð Þð Þ;

where k(h) is the smallest k such that h 2 Hk. The

classifier ehn was shown to satisfy the following
theorem.

Theorem 1. For any n, it holds with probability at
least 1 − (δ0 + δ1),
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R0
ehn� �

−α ≤ ε0 n0,δ0,K nð Þð Þ;

R1
ehn� �

−R1 h*
� �

≤ min
1 ≤k ≤K nð Þ

ε1 n1,δ1,K nð Þð Þ+ inf
h2Hk,R0 hð Þ ≤ α

R1 hð Þ−R1 h*
� � !

:

Realizing that sometimes, it is necessary to compare
classifiers under the NP paradigm, Scott14 proposed
sensible measures that combine type I and type II
errors. Denote by f *α the classifier that minimizes
R1(f ) subject to R0(f ) ≤ α, and set βα =R1 f *α

� �
. Two

families of performance measures were proposed,
each indexed by a parameter 0 < τ ≤ ∞, which
reflects the users’ trade-off between type I and type II
errors:

Mτ fð Þ= τ R0 fð Þ−αð Þ + + R1 fð Þ−βαð Þ + ;
N τ fð Þ= τ R0 fð Þ−αð Þ + +R1 fð Þ−βα ;

where (x)+ = max(0, x). Both measures penalize
any type I error R0 in excess of α. But compared to
Mτ, N τ encourages small type II error R1 below the
oracle level βα, potentially at the expense of type I
error.

NP Oracle Inequalities Under
Convex Loss
We believe that NP oracle inequalities (defined in NP
Oracle Inequalities section) are an important evalua-
tion metric for classifiers’ theoretical performance
under the NP paradigm. Bearing these new oracle
inequalities as a guideline, Rigollet and Tong8 pro-

posed a computationally feasible classifier ehκ, such
that simultaneously with high probability, (i) the

φ-type I error of ehκ, Rφ
0
ehκ� �

, is smaller than α, and

(ii) the excess φ-type II error of ehκ converges to 0 with
explicit rates, where the φ-type I error and φ-type II
error are standard convex relaxations of the type I
and type II errors by replacing the binary loss with a
convex loss φ. Common choices for φ include the
hinge loss, the logistic loss, etc.

More concretely, let {h1, � � �, hM} be a collection
of M base classifiers, and restrict the attention to
Hconv, the collection of convex combinations of these

base classifiers. The proposed classifier ehκ is a solu-
tion to the convex program:

min
h2Hconv,R̂φ

0 hð Þ ≤ α−κ= ffiffiffiffin0p R̂
φ

1 hð Þ; ð1Þ

where R̂
φ

0 and R̂
φ

1 are empirical φ-type I/II errors
respectively and n0 and n1 are sample sizes from class
0 and 1. Note that the empirical φ-type I error is
bounded from above by a more stringent level
α−κ=

ffiffiffiffiffi
n0

p
, which is necessary for controlling the type

I error under α. The parameter κ controls how tight
we would like to bound the empirical φ-type I error.
For example, a large κ means a very stringent bound,
which ensures control on the φ -type I error, but will
deteriorate the φ-type II error. A careful choice of κ
balances φ-type I/II errors as in the following
theorem.

Theorem 2. (NP oracle inequalities for ehκ under con-
vex loss; Thm 5 of Tong 2011) Let φ be Lipschitz on
[−1, 1] with Lipschitz constant L. Take in (3.1)

κ = 4
ffiffiffi
2

p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

2M
δ

� �s
;

where M is the number of base classifiers in Hconv.
Then under mild regularity conditions, the following
hold with probability 1 − 2δ,

Ið Þ Rφ
0
ehκ� �

≤ α;

IIð Þ Rφ
1
ehκ� �

− min
h2Hφ,αR

φ
1 hð Þ

≤C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2M=δð Þ

n0

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2M=δð Þ

n1

s !
;

where Hφ,α = h2Hconv,Rφ
0 hð Þ ≤ α	 


.

In other words, the classifier ehκ satisfies NP ora-
cle inequalities under a convex surrogate loss. On the
technical side, the φ-type I error control is a standard
exercise of empirical process theory, while the φ-type
II error control involves studying sensitivity of the
optimal value to a stochastic constraint set in a con-
vex program.

Type I error R0 is controlled by α with high

probability because R0
ehκ� �

≤Rφ
0
ehκ� �

. On the other

hand, the excess φ-type II error bound (inequality
(II) of the above theorem) does not imply that the

excess type II error of ehκ diminishes to 0. Actually,
Rigollet and Tong8 proved a negative result by
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constructing a counter example (Proposition 8 in Ref
8): ERM approaches (using either indicator loss or
convex loss function in the optimization program)
cannot guarantee diminishing excess type II error as
long as one insists the type I error of the proposed
classifier be bounded from above by α with high
probability. This negative result motivated the study
of the NP classification with a plug-in approach in
Tong.16

PLUG-IN APPROACH

In classical binary classification, plug-in methods that
target the Bayes classifier I(η(x) ≥ 1/2) have been
studied. The earliest works cast doubt on the efficacy
of the plug-in approach to classification. For exam-
ple, Yang17 showed plug-in estimators cannot
achieve excess risk with rates faster than O 1=

ffiffiffi
n

pð Þ
under certain assumptions, while direct methods can
achieve fast rates up to O(1/n) under margin
assumption.18–21 However, some light was shed on
plug-in methods by more recent works starting from
Audibert and Tsybakov,22 which combined a
smoothness condition on η with the margin assump-
tion, and showed that plug-in classifiers I η̂n ≥ 1=2ð Þ
based on local polynomial estimators can achieve
rates faster than O(1/n). The plug-in target under the
NP paradigm, however, is not I(η ≥ 1/2).

The Oracle Under the NP Paradigm
The oracle classifier under the NP paradigm arises
from its close connection to the NP Lemma in statis-
tical hypothesis testing. Hypothesis testing bears
strong resemblance to binary classification if we
assume the following model. Let P1 and P0 be two
known probability distributions on X �Rd. Let
ζ 2 (0, 1) and assume that Y � Bernouli(ζ). Assume
further that the conditional distribution of X given
Y is denoted by PY. Given such a model, the goal of
statistical hypothesis testing is to determine whether
X was generated from P1 or from P0. To this end, we
construct a randomized test ϕ :X ! 0,1½ � and the
conclusion of the test based on ϕ is that X is gener-
ated from P1 with probability ϕ(X) and from P0 with
probability 1 − ϕ(X). Two kinds of errors arise: type
I error occurs when P0 is rejected given X � P0,
and type II error occurs when P0 is not rejected given
X � P1. The NP paradigm in hypothesis testing
amounts to choosing ϕ that

max:E ϕ Xð ÞjY =1½ �, s:t: E ϕ Xð ÞjY = 0½ � ≤ α;

where α 2 (0, 1) is the significance level of the test. A
solution to this constrained optimization problem is
called a most powerful test of level α. The NP
Lemma gives mild sufficient conditions for the exist-
ence of such a test.

Theorem 3. (Neyman-Pearson Lemma) Let P0

and P1 be probability distributions possessing densi-
ties q and p respectively with respect to some meas-
ure μ. Let r(x) = p(x)/q(x) and Cα be such that P0(r
(X) > Cα) ≤ α and P0(r(X) ≥ Cα) ≥ α. Then for a
given level α, the most powerful test of level α is
defined by

ϕ* Xð Þ =
1 if r Xð Þ>Cα

0 if r Xð Þ<Cα

α−P0 r Xð Þ >Cαð Þ
P0 r Xð Þ =Cαð Þ if r Xð Þ=Cα :

8>><>>:
In other words, under a mild continuity assumption,
the plug-in target under the NP paradigm is the ora-
cle classifier

ϕ* xð Þ= I p xð Þ=q xð Þ ≥Cαð Þ= I η xð Þ ≥Dαð Þ,

whereDα =
P Y = 1ð ÞCα

P Y = 1ð ÞCα +P Y = 0ð Þ :

Note that in the classical paradigm, the oracle classi-
fier puts a threshold on the regression function η at
precisely 1/2, so plug-in methods do not involve esti-
mating the threshold level. In contrast, NP paradigm
faces new challenges, because the threshold level
needs to be estimated in addition to the regression
function (or the density ratio).

Two Important Theoretical Assumptions
Besides smoothness conditions on density functions,
there are two important technical assumptions on the
neighborhood of the oracle decision boundary for
plug-in classifiers under the NP paradigm.

Definition 1. (margin assumption) A function f(�) is
said to satisfy margin assumption of order �γ with
respect to probability distribution P at level C* if
there exists a positive constant M0, such that for
any δ ≥ 0,

P jf Xð Þ−C*j ≤ δ	 

≤M0δ

�γ :
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This assumption was first introduced in Polonik.23 In
the classical binary classification framework, Mam-
men and Tsybakov18 proposed a similar condition
named ‘margin condition’ by requiring most data to
be away from the optimal decision boundary. In the
classical classification paradigm, definition 1 reduces
to the ‘margin condition’ by taking f = η and C* =
1/2, with {x : |f(x) − C*| = 0} = {x : η(x) = 1/2} giv-
ing the decision boundary of the Bayes classifier. On
the other hand, unlike the classical paradigm where
the optimal threshold level is known and does not
need an estimate, the optimal threshold level Cα in
the NP paradigm is unknown and needs to be esti-
mated, suggesting the necessity of having sufficient
data around the decision boundary to detect it well.
This concern motivated the following condition pro-
posed in Zhao et al.3 which is an improvement over
Tong.16

Definition 2. (detection condition) A function f(�) is
said to satisfy detection condition of order γ

−
with

respect to P (i.e., X � P) at level (C*, δ*) if there
exists a positive constant M1, such that for
any δ 2 (0, δ*),

P C* ≤ f Xð Þ ≤C* + δ
	 


≥M1δ
γ
− :

The detection condition works as an opposite force
to the margin assumption, and is basically an
assumption on the lower bound of probability.
Though a power function was used to keep the lower
bound simple and aesthetically similar to the upper
bound in margin assumption, any increasing function

u(�) on R+ with limx!0+u(x) = 0 could serve the pur-
pose. Zhao et al.3 also established the necessity of
such a detection condition (in the general sense).

The version of margin assumption and detec-
tion condition one should use in the NP paradigm
takes f = r, C* = Cα, and P = P0 (recall that P0 is the
conditional distribution of X given Y = 0). For
graphical illustration of these conditions, please refer
to Figure 2.

Plug-in Classifiers Under Low-
dimensional Settings
Low-dimensional settings refer to the situations
where the feature dimensionality d is small and fixed.
Under these settings, classical nonparametric estima-
tors can be used to estimate the density ratio p/q or
the regression function η. For example, with some
proper threshold level estimator D̂α determined via
Vapnik-Chervonenkis theory and the Nadaraya-
Watson estimator η̂, it was shown in Tong16 that the

plug-in classifier eϕ xð Þ= I η̂ xð Þ ≥ D̂α

� �
satisfies NP ora-

cle inequalities.

Theorem 4. (NP Oracle Inequalities for eϕ; Prop 4.2
and Thm 4.1 in Tong 2013) Suppose we have access
to a mixed i.i.d. sample �S = X1,Y1ð Þ,…, Xm,Ymð Þf g,
and a class 0 sample S0 = X−

1 ,…,X−
n

	 

. Leteϕ xð Þ = I η̂ xð Þ ≥ D̂α

� �
. Assume the regression function

η satisfies smoothness conditions, the margin assump-
tion with parameter �γ, and the detection condition
with parameter γ

−
. In the Nadaraya-Watson estimator

(a)

Too many points around oracle boundary Too few points around oracle boundary

(b)

FIGURE 2 | Illustration violation of the margin assumption and detection condition. The solid lines represent the oracle decision boundaries.
Subfigure (a) illustrates violation of the margin assumption, and subfigure (b) illustrates violation of the detection condition.
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η̂, where the kernel is β-valid and L0-Lipschitz, take

the bandwidth h = log⁡m
m

� �1= 2β +dð Þ
. Then there exists a

positive constant �C, such that for any δ 2 (0, 1) and
any m, n ≥ 1/δ, it holds with probability at
least 1 − 3δ,

Ið Þ R0 eϕ� �
≤ α;

IIð Þ R1 eϕ� �
−R1 ϕ*� �

≤ �C
log⁡n
n

� �min 1
2,1+ �γ2 γ�ð Þ

+
log⁡m
m

� �β 1 + �γð Þ
2β + d

" #
:

A central intermediate step in proving the above
result was to derive a high probability bound for
k η̂−ηk∞ . This uniform deviation bound on
Nadaraya-Watson estimators is an interesting result
by itself.

Plug-in Classifiers Under High-
dimensional Settings
In the big data era, the NP classification framework
faces the same ‘High Dimension, Low Sample Size’
challenge as its classical counterpart does. An over-
view of general statistical challenges associated with
high-dimensionality was given in Hastie et al.24 and
James et al.25 Despite the NP paradigm’s wide big
data application potential, Zhao et al.3 is the first
(and so far the only) attempt to construct classifiers
satisfying NP oracle inequalities in high-dimensional
settings. That paper studied parametric and nonpara-
metric nb models, and proposed a computationally
feasible plug-in approach to construct classifiers,
which are NOT simple extensions of Tong.16 The
challenge is that one can no longer apply nonpara-
metric estimators blindly in the high-dimensional set-
tings; moreover, a new way to estimate the threshold
level is necessary to make the classifiers useful with
moderate sample size.

Recall that the NP plug-in target is the oracle
ϕ*(x) = I(r(x) ≥ Cα) = I(p(x)/q(x) ≥ Cα) motivated by
the NP Lemma. From this oracle, it is clear that next
two components should be addressed in proposing
any plug-in classifiers in high-dimensional settings
under the NP paradigm:

• build low complexity working models for the
density ratio r = p/q. Four model types can be
investigated: (I) parametric naive Bayes,
(II) nonparametric naive Bayes, (III) linear rules

leveraging feature dependence, and
(IV) nonlinear rules leveraging feature
dependence.

Independence Dependence

Linear (I) (III)

Nonlinear (II) (IV)

• find a threshold estimate Ĉα based on moderate
sample size. Bearing respect to the type I error
constraint, Tong16 required the empirical type I
error be bounded from above by α − tl, where

tl �
ffiffiffiffiffiffiffi
log⁡l
l

q
and l is the size of class 0 sample not

used for estimating r = p/q. This approach is of
limited practical value except with a large sam-
ple size, which is not the case in most modern
genetic/genomic applications.

To facilitate the discussion, assume that the
available sample contains n i.i.d. observations
S1 = U1,� � �,Unf g from class 1 with density p, and
m i.i.d. observations S0 = V1,� � �,Vmf g from class
0 with density q. The samples S1 and S0 are decom-
posed as follows: S1 =S1

1[S1
2, and S0 =S0

1[S0
2[S0

3,
where jS1

1j =n1, jS1
2j = n2, jS0

1j =m1, jS0
2j =m2,

jS0
3j =m3. Given this decomposition, Zhao et al.3

introduced a generic plug-in procedure.

Procedure: NP Plug-in Procedure
Step 1. Use S1

1, S1
2, S0

1, and S0
2 to construct a density

ratio estimate r̂. The specific use of each subsample
will depend on the working models, e.g., S1

1 and S0
1

are used for independent feature screening when the
feature dimensionality is extremely high.

Step 2. Given r̂, choose a threshold estimate Ĉα from
the set r̂ S0

3

� �
= fr̂ðVi +m1 +m2Þgm3

i = 1.

Denote by r̂ kð Þ S0
3

� �
the k th order statistic of

r̂ S0
3

� �
, k 2 {1, � � �, m3}. The corresponding plug-in

classifier by setting Ĉα = r̂ kð Þ S0
3

� �
is

ϕ̂k xð Þ= r̂ xð Þ ≥ r̂ kð Þ S0
3

� �	 

: ð2Þ

In rest of this section, we discuss how Zhao et al.3

modeled and estimated r, and achieved a generic
method for choosing k in (2).
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Working Models for the Density Ratio
There are many contemporary applications under the
broad ‘n � d high-dimensional setting’ umbrella.
Just as different models are needed for different
applications under the classical paradigm, we need
an array of working models to handle different appli-
cations under the NP paradigm. Zhao et al.3 dis-
cussed the following two models of low complexity.
Low complexity is a commonality among many high-
dimensional models, because complex models cannot
be supported by limited amount of data.

(I) Parametric Naive Bayes
The over simplistic nb models, which ignore all
feature dependency, work well in numerous
high-dimensional applications. Taking a two class
Gaussian model with a common covariance matrix,
Bickel and Levina26 showed that naively carrying out
Fisher’s discriminant rule performs poorly due to
diverging spectra. These authors argued that nb per-
forms better than Fisher’s rule in many high-
dimensional settings. In addition, even simple models
such as nb need to be regularized when we have
extremely limited samples. Fan and Fan27 established
the necessity of feature selection for high-dimensional
classification problems by showing that even inde-
pendence rules can be as poor as random guessing
due to noise accumulation. When sample size is fairly
limited, the (sparse) nb approach is a natural first try
for NP classification.

Assuming a two-class Gaussian model
XjY = 0ð Þ�N μ0,Σ

� �
and XjY = 1ð Þ�N μ1,Σ

� �
, where

Σ = diag σ21,� � �,σ2d
� �

, Zhao et al.3 estimated μ0, μ1,

and Σ using their sample versions μ̂0, μ̂1, and Σ̂. This
model is suitable when a linear decision boundary
can separate data reasonably well, when correlation
among features is low, or when the sample size is so
small that one cannot afford to consider more com-
plicated models.

(II) Nonparametric Naive Bayes
The parametric native Bayes model does not allow
flexible nonlinear decision boundaries. Hence, Zhao
et al.3 also considered the nonparametric nb model
that relaxes the Gaussian assumption and assumes
that the conditional distributions of each feature
given the class labels are independent:

log
p xð Þ
q xð Þ =

Xd
j = 1

log
pj xj
� �

qj xj
� � ;

where pj and qj are the marginal densities of class
1 and 0, respectively, and xj denotes the j-th compo-
nent of x, for j = 1, � � �, d. The marginal densities pj
and qj are approximated by nonparametric estimates
p̂j and q̂j.

(III) and (IV)
Models of types (III) and (IV) will be discussed in the
section for future research.

Threshold Estimate Ĉα

Leveraging properties of order statistics, Zhao et al.3

proposed a universal estimate of Cα that works for
any given density ratio estimate r̂. For a given esti-
mate r̂, they found a proper order statistic r̂ kð Þ S0

3

� �
as

an estimate of the threshold level Cα, so that type I
error of the classifier defined in Eq. (2) is controlled
from above by α with high probability.

Proposition 1. For any δ1 2 (0, 1) and
k 2 {1, � � �, m3}, it holds that

P R0 ϕ̂k

� �
> g δ1,m3,kð Þ� �

≤ δ1 ;

where

g δ1,m3,kð Þ= m3 + 1−k
m3 + 1

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k m3 + 1−kð Þ

δ1 m3 + 2ð Þ m3 + 1ð Þ2
s

:

Let K =K α,δ1,m3ð Þ= k2 1,� � �,m3f g : g δ1,m3,kð Þ≤αf g.
Proposition 1 implies that k2K α,δ3,m3ð Þ is a suffi-
cient condition for the classifier ϕ̂k to satisfy NP Ora-
cle Inequality (I). The next proposition characterizes
K, and the smallest k2K will ensure small excess
type II error for ϕ̂k.

Proposition 2. The minimum k that satisfies g(δ1,
m3, k) ≤ α is

kmin : = Aα,δ1 m3ð Þ� m3 + 1ð Þ� �
;

where dze denotes the smallest integer larger than or
equal to z and

Aα,δ1 m3ð Þ = 1 + 2δ1 m3 + 2ð Þ 1−αð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 4δ1 1−αð Þα m3 + 2ð Þp

2 δ1 m3 + 2ð Þ + 1½ � :

Zhao et al.3 proposed the plug-in NP classifier
ϕ̂ xð Þ = ϕ̂ kminð Þ xð Þ, and established the conditions under
which it satisfies NP oracle inequalities.
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A Critical Intermediate Result
The construction of the threshold estimate Ĉα via
order statistics guarantees the type I error bound. To
bound the excess type II error, the following interme-
diate result is critical. This result goes beyond the
scopes of Tong16 and Zhao et al.3 and can serve as a
general strategy for type II error control.

Proposition 3. Let α, δ1, δ2 2 (0, 1). Assume that the
density ratio r satisfies the margin assumption of
order �γ (with constant M0) and detection condition
of order γ

−
(with constant M1), both with respect to

distribution P0 at level Cα. If m3 ≥max 4= αδ1ð Þ,f
δ−21 ,δ−22 g, the excess type II error of the classifier ϕ̂
satisfies with probability at least 1 − δ2,

R1 ϕ̂
� �

−R1 ϕ*� �
≤ 2M0

R0 ϕ̂
� �

−R0 ϕ*� �

 


M1

 !1=γ
−

+ 2 k r̂−rk∞

24 351 + �γ

+CαjR0 ϕ̂
� �

−R0 ϕ*� �j:
Bounding jR0 ϕ̂

� �
−R0 ϕ*� �j, the deviation of type I

error of ϕ̂ away from that of the oracle, is a standard
exercise. Hence in view of the above result, to show
ϕ̂ satisfies the NP Oracle Inequalities, the challenging
part is to establish a high probability bound for
k r̂−rk∞ , the uniform deviation of density ratio esti-
mates. In low-dimensional settings, theoretical prop-
erties of kernel density estimators have been studied
intensively in the literature (see Ref 28 and references
therein for a survey). Related results include the con-
vergence in distribution for weighted sup norms
derived in Giné et al.29, and the expected sup-norm
loss of multivariate density estimation studied in
Lepski30 using an oracle approach. Tong16 developed
a technical lemma on uniform deviation of kernel
density estimates because none of the previous works
include such a result, except one with a similar flavor
but without explicit constants in the bound.31 This
lemma also contributes to the proof in the nonpara-
metric NP nb settings in Zhao et al.3

Numerical Studies
Zhao et al.3 proposed four classifiers: PN2

(Parametric NP Naive Bayes), its screening based var-
iant PSN2, NN2 (Nonparametric NP nb), and its
screening based variant NSN2. The classifiers PN2

and PSN2 are based on model (I), and NN2, and
NSN2 are based on model (II). The four classifiers

were designed for different sample size/dimensional-
ity ratios and different data patterns. The following
simulation example and real data example are
selected from that paper.

Simulation Example
In the following simulation example, these methods are
compared with some commonly used classification
methods. Let XjY = 1ð Þ� 0:5N a,Σð Þ + 0:5N −a,Σð Þ
and XjY =0ð Þ�N 0d,Idð Þ, where a = 3=

ffiffiffiffiffiffi
10

p �1010,
�

00d−10Þ0, Σ =
1=10�I10 0

0 Id−10

� �
. For α = 0.05, the

oracle risks are R0 ϕ*
α

� �
=0:05 and R1 ϕ*

α

� �
= 0:027.

The performance of the screening sub-step of
PSN2 and NSN2 is shown in Table 2. While both
screening methods keep the false positive rates at
around 0.05, the parametric screening method
(in PSN2) with t-statistic misses almost all signals,
while the nonparametric screening method (in NSN2)
using D-statistica does well. This is not surprising
since t-statistic ranks features by differences in means
and the two groups have exactly the same marginal
mean and variance across all dimensions.

Figure 3 presents the average errors for differ-
ent dimensionality d. Horizontal axis in each plot of
the figure is the logarithm of the sample size m (=n).
The vertical axis of the plots in the first row indicates
average type I errors, while that of the plots beneath
each of them indicates average type II errors under
the same settings. Although all the NP methods work
well in controlling the type I error, NSN2, and NN2

(based on nonparametric techniques) perform better
in terms of the type II error than PSN2 and PN2 on
non-normal data.

Email Spam Example
This e-mail spam dataset is accessible at https://
archive.ics.uci.edu/ml/datasets/Spambase, which
contains 4601 observations with 57 features,
among which 2788 are class 0 (non-spam) and
1813 are class 1 (spam). Five thousand synthetic
features consisting of independent N 0,1ð Þ vari-
ables were added to make the problem more chal-
lenging. This augmented dataset is split into a
training set with 1000 observations from each class
and a testing set with the remaining observations.
The nonparametric NSN2 was applied since the sam-
ple size is relatively large. The average type I and
type II errors over 1000 random splits are shown in
Table 3.

To evaluate the flexibility of NSN2 in terms of
prioritized error control, Table 3 also reports the
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performance when the priority is switched to control
the type II error below α = 0.05. Table 3 demon-
strates that NSN2 can control either type I or type II
error depending on the specific need of the
practitioner.

SELECTED TOPICS RELATED TO NP
CLASSIFICATION

In this section, we connect NP classification to a few
other subfields and related papers in machine learn-
ing, optimization, and statistics.

Anomaly Detection
NP classification is a useful framework to address
anomaly detection problems. In anomaly detection,
the goal is to discover outcomes/behaviors that are
different from the usual patterns. An unusual behav-
ior is named an anomaly. A variety of problems, such
as credit card fraud detection, insider trading detec-
tion and system malfunctioning diagnosis, fall into
this category. There are many approaches to anom-
aly detection, some serving a specific purpose and
others more generic. Modeling techniques include
classification, clustering, nearest neighbors, etc. A
comprehensive review of anomaly detection literature

TABLE 2 | Average Screening Sub-step Performance Summarized over 1000 Independent Simulations at Sample Sizes m = n = 400 with
Standard Errors in Parentheses

# of Selected Features # of Missed Signals # of False Positive

d t-stat D-stat t-stat D-stat t-stat D-stat

10 1.76 (1.53) 8.13 (1.83) 8.24 (1.53) 1.87 (1.83) 0 (0) 0 (0)

100 5.93 (3.44) 11.96 (3.57) 9.38 (0.80) 2.34 (1.59) 5.31 (3.17) 4.29 (2.68)

1000 50.69 (9.60) 58.78 (9.87) 9.50 (0.69) 1.26 (1.04) 50.19 (9.51) 50.04 (9.62)

PSN2 uses t-statistics for screening, and NSN2 uses D-statistics.
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FIGURE 3 | Average error rates of ϕ̂’s over 1000 independent simulations for each combination of (d, m, n). Error rates are computed as the
average of 2000 independent testing data points over 1000 simulations.
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is provided by Chandola et al.32 Earlier review
papers include,33–37 etc.

When we have training data from the normal
class, a common approach to anomaly detection is to
estimate the normal class density p and try to thresh-
old at a proper level, but this is inappropriate if the
anomaly class is far from uniformly distributed.
Indeed, to decide whether a certain point is an anom-
aly, one should consider how likely it is for this point
to be normal as opposed to abnormal. The likelihood
ratio p/q or the regression function η are good to for-
malize such a concern. The results in NP classifica-
tion can be adapted for anomaly detection
applications, where the normal sample size is much
bigger than the anomaly sample size.

Set Estimation Problems
The plug-in approach to NP classification leads to
problems related to density level set estimation (see
Ref 38 and references therein), where the task is to
estimate {x : p(x) > λ}, for some given level λ > 0.
Density level set estimation has applications in anom-
aly detection and unsupervised or semi-supervised
learning. Plug-in methods for density level set estima-
tion, as opposed to direct methods, do not involve
complex optimization procedure, and only amount
to thresholding the density estimate at a proper level.
The challenges in the NP classification different from
those of density level set estimation, such as those in
Rigollet and Vert,38 are two folds. First, the thresh-
old level in the NP setup needs to be estimated, and
secondly, NP classification deals with density ratios
rather than densities.

NP classification paradigm is also related to the
learning of minimum volume set.39 Given a probabil-
ity measure P and a reference measure μ, the mini-
mum volume set with mass at least β 2 (0, 1) is

G*
β = arg⁡min μ Gð Þ :P Gð Þ ≥ β,G measurablef g:

The question of interest is to estimate G*
β based on

independent samples distributed according to the
measure P.

The oracle solution to the NP classification
with alternative distributions P0 and P1 can be re-
expressed in terms of acceptance region as

G*
1−α = arg⁡min P1 Gð Þ :P0 Gð Þ ≥ 1−α,Gmeasurablef g:

We do not reject (accept) the null if X2G*
1−α. The

type I error

P0 X=2G*
1−α

� �
= 1−P0 G*

1−α

� �
≤ α

satisfies the constraint, whereas the type II
error P1 X2G*

1−α

� �
=P1 G*

1−α

� �
is minimized. The

major difference between minimum volume set
estimation problem and NP classification problem
is that the reference measure μ in the former is
assumed to be known, while P1 in the latter is
unknown.

Semi-supervised Learning
Blanchard et al.40 developed a general solution
to semi-supervised novelty detection by reducing
it to the NP classification. Let Pmixture denote the
marginal distribution of X after integrating out Y.
Blanchard et al.40 made an important observation
that the optimal test of size α for hypothesis testing
problem

H0 :X�P0 , Hmixture :X�Pmixture;

is also optimal, with the same size α, for hypothesis
testing problem

H0 :X�P0 , H1 :X�P1 :

Specifically, for classifier f : ℝd ! {0, 1}, in addition
to the conventional type I/ II error under 0–1 loss
Ry(f ) = Py(f(X) 6¼ y), y = 0, 1, define

Rmixture fð Þ=Pmixture f Xð Þ= 0f g;

as the error of misclassifying a sample from the mix-
ture distribution as from P0. Let

TABLE 3 | Average Errors over 1000 Random Splits with Standard Errors in Parentheses

NSN2 -R0 NSN2 -R1 Pen-log Nb Svm

Type I .019 (.007) .488 (.078) .064 (.007) .444 (.018) .203 (.013)

Type II .439 (.057) .020 (.009) .133 (.015) .054 (.008) .235 (.017)

The suffix after NSN2 indicates the type of error it targets to control under α.
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R*
1,α Fð Þ= inf

f 2F
R0 fð Þ ≤ α

R1 fð Þ; ð3Þ

R*
mixture,α Fð Þ= inf

f 2F
R0 fð Þ ≤ α

Rmixture fð Þ: ð4Þ

Assumption. For any α 2 (0, 1), there exists f* 2 F
such that R0(f*) = α and R1 f *ð Þ=R*

1,α Fð Þ,

Theorem 5. (Thm 1 in Blanchard et al.40) Under
Assumption 1, consider any α 2 (0, 1), and assume
π = IP(Y = 1) > 0. Then for any f 2 F , the two fol-
lowing statements are equivalent:

1. Rmixture fð Þ=R*
mixture,α Fð Þ and R0(f ) ≤ α ,

2. R1 fð Þ=R*
1,α Fð Þ and R0(f ) = α .

More generally, let L1,α f ,Fð Þ=R1 fð Þ−R*
1,α Fð Þ and

Lmixture,α f ,Fð Þ =Rmixture fð Þ−R*
mixture,α Fð Þ, and

assume π > 0. If R0(f ) ≤ α + ε for ε > 0, then

L1,α f ,Fð Þ ≤ π−1 Lmixture,α f ,Fð Þ + 1−πð Þε	 

:

This theorem suggests estimating the solution to
Eq. (3) by solving the surrogate problem Eq. (4). It
links the NP paradigm not only to semi-supervised
novelty detection (SSND) but also to semi-supervised
learning problems in general.

Chance Constraint Optimization
It was mentioned in Rigollet and Tong8 that imple-
menting the NP paradigm for the convexified binary
classification bears strong connections with chance
constrained optimization. A recent account of such
problems can be found in Ben-Tal et al.,41 Chapter 2
and we refer to this book for references and applica-
tions. A chance constrained optimization problem is
of the following form:

min
λ2Λ

f λð Þ s:t: P F λ,ξð Þ ≤ 0f g ≥ 1−α; ð5Þ

where ξ 2 Ξ is a random vector, Λ � ℝM is convex,
α is a small positive number and f is a deterministic
real valued convex function. Problem (5) can be
viewed as a relaxation of robust optimization that
solves problems of the form

min
λ2Λ

f λð Þ s:t: sup
ξ2Ξ

F λ,ξð Þ ≤ 0;

which essentially corresponds to (5) for the
case α = 0.

In a parallel form of (5), the NP classification
paradigm (restrict the search to some convex combi-
nation of M base classifiers) can be recast as

min
λ2Λ

R1 hλð Þ s:t: P0 hλ Xð Þ ≤ 0f g ≥ 1−α; ð6Þ

where Λ is the flat simplex of ℝM.
Problem (6) differs from (5) in that R1(hλ) is

not a convex function of λ. Replacing R1(hλ) by the
convexified Rφ

1 hλð Þ turns (6) into a standard chance
constrained optimization problem:

min
λ2Λ

Rφ
1 hλð Þ s:t: P0 hλ Xð Þ ≤ 0f g ≥ 1−α: ð7Þ

However, there are two important differences in the
NP setting that prevent one from directly using
chance constraint optimization techniques, such as
Scenario Approach and Bernstein Approximation, to
solve (7). First, Rφ

1 hλð Þ is an unknown function of λ.
Second, NP classification assumes minimum knowl-
edge about P0, while chance constrained optimiza-
tion techniques in previous literature need knowledge
about the distribution of the random vector ξ.

Classification with Confidence
Classification with confidence is a classification para-
digm proposed by Lei.42 Given α0, α1 2 (0, 1), its
target optimization problem is formulated as

min
C0[C1 =X
Pj Cj
� �

≥ 1−αj

P X2C0\C1ð Þ; ð8Þ

and the decision rule is that assigning label 1 in
region C1\C0, label 0 in region C0\C1, and ‘ambigu-
ous’ in C0 \ C1. This paradigm aims to keep the
class-specific coverage rates at least 1 − αj. The fol-
lowing theorem serves as the oracle for classification
with confidence, and plays a role analogous to that
of the NP Lemma in the NP paradigm.

Theorem 6. (Thm 1 in Lei42) A solution to the opti-
mization problem (5.8) is

C0 = x : η xð Þ ≤ t0f g, C1 = x : η xð Þ ≥ t1f g[Cc
0;
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where t0 = t0(α0) and t1 = t1(α1) are chosen such that
P0{η(X) ≤ t0} = 1 − α0, and P1{η(X) ≥ t1} = 1 − α1.

The optimization constraint can also be the
overall coverage control, then the problem becomes

min
C0[C1 =X

π0P0 C0ð Þ + π1P1 C1ð Þ ≥ 1−α
P X2C0\C1ð Þ:

SUGGESTIONS FOR FUTURE
RESEARCH

On a broader level, NP paradigm is a general formal
framework for balancing two conflicting interests.
For instance, in addition to the type I/II errors in
hypothesis testing and classification, these interests
could be in false discovery rate and false negative
rate in multiple testing. Moreover, in the same spirit
that oracle inequalities in the classical classification
paradigm is not the sole criterion in deciding the fate
of a classifier, the authors’ own proposal of NP ora-
cle inequalities should not be an excuse to exclude
useful NP classifiers from designed and practiced. In
particular, we think that NP variants of popular clas-
sification methods are in demand, but they should
not be done in a naive manner such as tuning the
empirical type I error to α, which might result in a
type I error violation rate close to 50%. To stimulate
readers’ creative minds, the authors suggest a few
possible directions for future research in NP para-
digm and its applications.

Leveraging Dependence Under High-
dimensional Settings
Zhao et al.3 considered plug-in classifiers based on
nb models under high-dimensional settings. This
leaves methods exploiting feature dependency an
unexplored territory. Dependence among features is
usually an essential characteristic of data,43 and it
can reduce classification error under suitable models
and given relative data abundance. The challenge
here is that the available sample size is small com-
pared to the feature dimensionality, so the working
models for densities should be simple. In particular,
the following two working models are worth to
consider.

Linear Rules Leveraging Feature Dependence
The sparse versions of Linear Discriminant Analysis
(LDA) model

XjY = 0ð Þ�N μ0,Σð Þand XjY = 1ð Þ�N μ1,Σð Þ,

where Σ is a common covariance matrix have been
considered in many recent works44–48 under the clas-
sical paradigm. It is worthwhile to consider this
model because it is the simplest among all models
that take feature dependence into account. Obtaining
density ratio estimate r̂ under this model involves
estimating the precision matrix Σ− 1, or the optimal
data projection direction Σ− 1(μ1 − μ0). Insights can
be learned from recent literature on precision/covari-
ance matrix estimation.

Nonparametric Rules Leveraging Feature
Dependence
While the nonparametric nb model allows each
dimension to enter the decision boundary in a non-
linear fashion, it lacks consideration of feature
dependence. The simplest linear structure should be a
first try to glue all features together. The following
model is a delicate blend of local complexity and
global simplicity:

log
p xð Þ
q xð Þ =

Xd
j =1

aj⁢log
pj xj
� �

qj xj
� � ;

where pj and qj are estimated nonparametrically and
the coefficients aj’s are to be learned. This model was
proposed by Fan et al.49 for classical binary classifi-
cation under high-dimensional settings, and is the
backbone of the FANS method in that paper. FANS
demonstrates superior data performance under a
wide range of spectrums, so we believe it should be
interesting to investigate this model under the NP
paradigm for applications where feature dependence
is significant and linear decision boundaries do not
separate data well.

Extension to Multi-class NP Classification
Originating from binary trade-offs, NP classification
methods can also be applied to multi-class
(Y 2 {1, � � �, K}, K ≥ 3) problems in the following
two strategies.

• (Strategy 1) Missing class 1 has more severe
consequences than missing others. A two step
procedure can be executed: first apply NP meth-
ods to classify class 1 versus the rest. Stop if a
new observation is assigned to class 1. Other-
wise, continue and apply a (multi-class) classifi-
cation algorithm to choose among
classes {2, � � �, K}.
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• (Strategy 2) There is a hierarchical order
(1 > � � � > K) of severity for misclassification.
First apply NP methods to 1 versus {2, � � �, K}.
Stop if a new observation is assigned to class
1. Otherwise, apply NP methods to 2 versus
{3, � � �, K}. Continue along this line until the
observation is assigned a label.

Clearly, NP oracle inequalities are not immediately
applicable for multi-class NP classification. New var-
iants should be developed to measure the theoretical
performance of multi-class NP classifiers.

Automatic Disease Diagnosis
Automatic disease diagnosis from patients’ genomic
data is a long-time challenge in cutting-edge clinical
research. This task involves a classification problem,
where diseases correspond to different classes, and
the goal is to predict the diseases that are most likely
associated with a patient’s genomic sample. Thanks
to the rapid development of high-throughput geno-
mic technologies (e.g., microarray and next-
generation sequencing), there exists a large amount
of disease related genomic data, which can be used as
training data in this classification problem. Taking
gene expression data as an example, the NCBI
(National Center for Biotechnology Information)
Gene Expression Omnibus (GEO) currently contains
more than 690,000 human gene expression samples,
which are related to hundreds of diseases such as

heart diseases, mental illnesses, infectious diseases,
and various types of cancers.

A novel strategy to tackle automatic disease
diagnosis is using NP classification and network-
assisted correction. The procedure involves two steps
(Figure 4). Step 1: (a) based on public microarray
gene expression datasets with 110 Unified Medical
Language System (UMLS) class labels (i.e., standar-
dized disease concepts), use NP classification to build
a binary classifier for each disease class, and
(b) classify a patient’s microarray gene expression
sample into these disease classes. Step 2: (c) correct
the predicted diseases based on the disease taxonomy
(network). In Step 1, since the disease classes are
nonexclusive (one dataset may have multiple disease
class labels), this multi-label classification problem is
inherently composed of multiple binary classification
problems, where every disease class needs a binary
decision. In previous works,50,51 binary classifiers
such as svm and nb classifiers were used for this task,
and all disease classes were treated in an interchange-
able manner. This has raised an issue: some diseases
are more life-threatening than others, as in the exam-
ple of lung cancer versus athritis. Therefore, it is
important to allow doctors to have different levels of
conservativeness, i.e., pose different threshold values
α on the type I error (missing a disease when a
patient in fact has it), for different diseases. Although
previous researchers have attempted to address this
trade-off between false positives and false negatives
in disease diagnosis,52 their approach lacks a
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FIGURE 4 | Automatic disease diagnosis via NP classification and network-assisted correction.
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theoretical guarantee. The NP classifiers can work
precisely as a cure for this issue because of their flexi-
bility and theoretical guarantee on the type I error
control.

Disease Marker Detection
Multi-class NP classifiers can be used to detect/screen
key markers (i.e., genes and genomic features) for
disease diagnosis, so as to help researchers gain
insights into the molecular pathways and mechan-
isms of diseases. In previous multiple cancer diagno-
sis studies,52–54 to determine which genes should be
included as features (markers), classification error of
each disease class versus others was used as a crite-
rion. In other words, ‘the smallest set’ of genes that
can result in low classification error for a disease
class is retained as key markers of that disease. How-
ever, this criterion lacks consideration of the priority
of the types I/II errors, and the selected markers for a
disease could lead to high false negative rates in the
diagnosis of that disease—a dangerous situation for
severe diseases such as cancers. Therefore, in the
diagnosis of severe diseases, a more reasonable crite-
rion would be the type II error given a pre-specified
type I error control. Using the NP classification, key
markers would be selected as those leading to a low
type II error while retaining the type I error below a
threshold (see Figure 5). Markers selected by this
new detection scheme will be pooled to make disease
prediction and thus increase the sensitivity of disease
diagnosis.

Multi-agent Binary Decision (Voting)
Voting is an important social learning theme in dem-
ocratic societies. When there are two candidates

(coded by 0 and 1), a voting problem is similar to a
binary classification problem. The difference is that
classification can be considered as a single-agent
binary decision problem based on n data points,
while voting is a multi-agent decision problem in
which data exchanges can be considered. This is
analogous to the difference between typical statistical
inference settings and the multi-agent inference
paradigm.55

One concrete problem of interest is to derive a
finite sample NP version for the renowned Condor-
set’s Jury Theorem in Political Science and Political
Economics. Condorset’s Jury Theorem (CJT) (see Ref
56 and references within) applies to the situation that
n voters decide between two alternatives 0 and
1. One of the decisions is ‘correct’, but they do not
know which. Assume that each voter acts independ-
ently, and makes the correct decision with probabil-
ity bigger than 1/2. CJT says, as n ! ∞, the
probability of the group coming to a correct decision
by majority vote tends to 1. Variants of CJT have
considered dependent voters and/or included finite
sample (i.e., fixed n) results.

One can consider a situation where people
decide between 0 (the status quo) and 1 (a new alter-
native), and the choices are not symmetric as the cost
of replacing 0 can be high. In this situation, it is rea-
sonable to keep a low probability of mistakenly
switching to 1, and the NP paradigm naturally fits
in. It would be interesting to develop new group deci-
sion rules that minimize the probability of wrongly
sticking with 0 while keeping the probability of mis-
takenly switching to 1 at some low level. One can
also take into account information exchange among
voters before voting, and study the role of network
structures in information exchange. Large deviation
techniques in statistical learning theory are expected
to be useful.

NOTE
a The marginal D-statistic for the j-th feature is defined

by Dj = k F̂0
j − F̂

1
j k∞ , j = 1,2, � � �,d
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