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1 Introduction

We extend our congratulations to the authors for their outstanding survey on statistical
inference for high-dimensional regression models. Their comprehensive work serves
as a valuable overview on the existing literature, encompassing the origins of high-
dimensional inference as well as recent advancements in the field.

The significance of high-dimensional inference cannot be overstated, consider-
ing the soaring number of features in modern datasets over the past two decades.
In response to this challenge, penalized regression models such as Ridge regression,
Lasso, SCAD, group Lasso, and elastic net were proposed and widely adopted in prac-
tical applications. While consistent estimation and prediction are crucial, they alone
do not provide a complete picture in scientific investigations. To establish convinc-
ing conclusions, it is imperative to quantify the uncertainties associated with these
penalized regression models using tools like confidence intervals and hypothesis test-
ing. Additionally, inference techniques offer valuable insights for effective variable
selection.

In this paper, the authors have thoughtfully summarized the historical foundations
of debiased methods and presented recent progress in high-dimensional inference and
simultaneous hypothesis testing. Section2 delves into the inference on coefficients of
linear regressionmodels, as well as binary-outcomemodels such as logistic regression
and Probit regression models. Building upon this, Section 3 explores inference on
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linear and quadratic functionals of regression coefficients. The authors then proceed
to discuss simultaneous inference andmultiple testing in high-dimensional generalized
linearmodels (GLMs) in Sect. 4. Lastly, Sect. 5 provides an overview of several related
inference problems.

Of particular interest is the authors’ mention of learning from multiple hetero-
geneous regression models in the concluding section. In the subsequent part of
our discussion, we will focus on this topic, emphasizing the importance of statisti-
cal inference from heterogeneous regression models and highlighting the associated
challenges. In the end, we will outline potential avenues for future research in this
area.

2 Knowledge transfer in statistical inference

The problem of learning from multiple heterogeneous regression models has been
extensively studied for over two decades, and researchers from various domains have
investigated a few related learning problems that focus on distinct objectives, such
as transfer learning, multi-task learning, meta-learning, and federated learning. These
problems specifically address the challenge of learning from models that share simi-
larities but are not identical. This differs from distributed learning, where the aim is
to learn from the same model across different local machines.

In the context of high-dimensional problems, leveraging information from similar
models can provide several advantages. First, it can enhance the effective sample
size by combining observations from multiple sources. This has the potential to relax
the stringent sample size requirements typically associated with high-dimensional
inference. Additionally, incorporating information from similar models can lead to
more accurate quantification of uncertainty in high-dimensional models, facilitating
scientific discoveries.

Although numerous empirical and theoretical studies have explored knowledge
transfer from similar models over the past two decades, most of them have focused on
parameter estimation and out-of-sample prediction, with limited discussion on infer-
ence in this context. However, a few noteworthy studies have addressed the inference
problem. For instance, Tian and Feng (2022) and Li et al. (2023) proposed inference
methods for multiple generalized linear models (GLMs). Liu et al. (2021) investigated
false discovery rate (FDR) and false positive rate (FPR) control when learning from
multiple regression models with shared support (group sparsity). Li et al. (2022b)
discussed inference for Gaussian graphical models, while Li et al. (2022a) exam-
ined inference under a transfer learning setting when the source data are unlabeled.
Additionally, Zhou et al. (2022) explored inference problems within the context of
semi-supervised learning and causal inference. Some of these studies justified that
inference from multiple similar models can provide more accurate estimation of cer-
tain components in confidence intervals (Tian and Feng 2022) and relax the sample
size condition (Li et al. 2022a, b; Li et al. 2023). However, it is important to note that
the entry-wise confidence interval (CI) obtained in these papers still has a width of
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O(n−1/2
0 ), where n0 represents the sample size of the target model in the transfer learn-

ing problem. Therefore, these CIs do not improve upon the classical CI obtained from
considering only the target model, in terms of the rate. Furthermore, the optimality of
these CIs remains unknown.

To shed light on the challenges involved in performing statistical inference within
the context of transfer learning, let us consider a simple example. Suppose we step
back and examine a low-dimensional regression problem where we observe i.i.d. data
{x(0)

i , y(0)
i }n0i=1 and {x(1)

i , y(1)
i }n1i=1 from linear regression models:

y(k) = (x(k))Tβ(k) + ε
(k)
i ,

where x(k) ∈ R
p, x(k) ∼ N (0,�), ε

(k)
i ∼ N (0, σ 2) ⊥ x(k), p is fixed, n1 � n0,

and k = 0, 1. We assume that the target and source models are similar in the sense
that ‖β(1) − β(0)‖2 = h, where h is unknown and may change with n0 and n1. For
simplicity, we assume that � and σ are known. The models with k = 0 and k = 1 are
referred to as the target and source models, respectively.

The objective is to construct confidence intervals (CIs) for each entry of the target
coefficient β(0) with the shortest width.

Before delving into the CIs, we need to establish a point estimator for β(0). Several
intuitive options can be considered:

(i) Target-only OLS:̂β
(0) = [(X(0))T X(0)]−1(X(0))TY (0);

(ii) Weighted average of target and source OLS: ̂β
(0)
wa = n0

n0+n1
̂β

(0) + n1
n0+n1

̂β
(1)
,

wherêβ
(1) = [(X(1))T X(1)]−1(X(1))TY (1);

(iii) An adaptive estimator:̂β
(0)
ad = ̂β

(0)
wa if ‖̂β(1) −̂β

(0)‖2 ≤ √
1/n0, and̂β

(0)
ad = ̂β

(0)

otherwise.

It can be shown that under certain regularity conditions, we have ‖̂β(0) − β(0)‖2 =
Op(

√
1/n0) and ‖̂β(0)

wa − β(0)‖2 = Op(
√
1/(n0 + n1) + h). The adaptive esti-

mator ̂β
(0)
ad combines ̂β

(0)
and ̂β

(0)
wa , achieving the �2-minimax estimation error of

Op(
√
1/(n0 + n1) + h ∧ √

1/n0). However, constructing a valid CI based on ̂β
(0)
ad

poses a non-trivial challenge. For̂β
(0)

and̂β
(0)
wa , some basic algebra reveals that:

P

(

β
(0)
j ∈

[

̂β
(0)
j − σ√

n0
� j jαq/2, ̂β

(0)
j + σ√

n0
� j jαq/2

])

→ 1 − q,

P

(

β̄ j ∈
[

̂β
(0)
wa, j − σ√

n0 + n1
� j jαq/2, ̂β

(0)
wa, j + σ√

n0 + n1
� j jαq/2

])

→ 1 − q,

where β̄ = n0
n0+n1

β(0) + n1
n0+n1

β(1), � = �−1, and αq/2 is the q/2-upper quantile

of N (0, 1). In cases where h 
 √
1/(n0 + n1), these results imply that P(β

(0)
j ∈

[̂β(0)
wa, j− σ√

n0+n1
� j jαq/2, ̂β

(0)
wa, j+ σ√

n0+n1
� j jαq/2]) → 1−q. Based on these findings,

it might be intuitively tempting to make the following conjectures regarding optimal
confidence intervals (CIs) that provide correct coverage with the shortest length, up
to constants:
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(i) When h �
√
1/n0, the (1 − q)-CI [̂β(0)

j − σ√
n0

� j jαq/2, ̂β
(0)
j + σ√

n0
� j jαq/2] is

optimal;
(ii) When h 
 √

1/(n0 + n1), the (1 − q)-CI [̂β(0)
wa, j − σ√

n0+n1
� j jαq/2, ̂β

(0)
wa, j +

σ√
n0+n1

� j jαq/2] is optimal.

Unfortunately, conjecture (i) is incorrect. For example, consider a scenario where
β(0) and β(1) differ only at one entry but are identical at all the remaining entries. In
such cases, the (1 − q)-CI [̂β(0)

wa, j − σ√
n0+n1

� j jαq/2, ̂β
(0)
wa, j + σ√

n0+n1
� j jαq/2] may

be narrower than the classical CI [̂β(0)
j − σ√

n0
� j jαq/2, ̂β

(0)
j + σ√

n0
� j jαq/2] for those

identical entries. This discrepancy arises because the similarity metric, the �2-norm,
which is useful for prediction, may not be compatible with entry-wise inference,
whereas the �∞-norm is more directly related. Moreover, in cases where

√
1/n0 �

h �
√
1/(n0 + n1), it appears to be nontrivial to formulate a valid conjecture based

on the aforementioned estimators.
In high-dimensional scenarios where the number of predictors p grows with n0

and n1, the discrepancy between the similarity metric (the �2-norm) and the �∞-norm
becomes more pronounced, making inference even more complex. Additionally, the
introduction of penalization introduces extra bias, which compounds the bias resulting
from the differences between the target and source models. The interplay of these two
biases exacerbates the challenges associated with inference.

In conclusion, statistical inference from multiple similar models remains relatively
underexplored in the transfer learning and multi-task learning literature, despite its
practical importance. The gap between theoretical studies and practical significance
highlights the need for further attention and research in this promising direction. In
addition, some related possible futurework includes studying the inference problem for
unsupervised learning (Tian et al. 2022) and under other types of similarity measures
(Gu et al. 2022; Tian et al. 2023).
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