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ABSTRACT
Stochastic blockmodels and variants thereof are among the most widely used approaches to community
detection for social networks and relational data. A stochastic blockmodel partitions the nodes of a network
into disjoint sets, called communities. The approach is inherently related to clustering with mixture mod-
els; and raises a similar model selection problem for the number of communities. The Bayesian information
criterion (BIC) is a popular solution, however, for stochastic blockmodels, the conditional independence
assumption given the communities of the endpoints among different edges is usually violated in practice.
In this regard, we propose composite likelihood BIC (CL-BIC) to select the number of communities, and we
show it is robust against possible misspecifications in the underlying stochastic blockmodel assumptions.
We derive the requisite methodology and illustrate the approach using both simulated and real data. Sup-
plementary materials containing the relevant computer code are available online.

1. Introduction

Enormous network datasets are being generated and analyzed
along with an increasing interest from researchers in study-
ing the underlying structures of a complex networked world.
The potential benefits span traditional scientific fields such as
epidemiology and physics, but also emerging industries, espe-
cially large-scale Internet companies. Among a variety of inter-
esting problems arising with network data, in this article, we
focus on community detection in undirected networks G :=
(V,E), where V and E are the sets of nodes and edges, respec-
tively. In this framework, the community detection problem can
be formulated as finding the true disjoint partition of V = V1
! · · · !VK , where K is the number of communities. Although it
is difficult to give a rigorous definition, communities are often
regarded as tightly knit groups of nodes that are loosely con-
nected between themselves.

The community detection problem has close connections
with graph partitioning, which could be traced back to Euler,
while it has its own characteristics due to the concrete physical
meanings from the underlying dataset (Newman and Girvan
2004). Over the last decade, there has been a considerable
amount of work on it, including minimizing ratio cut (Wei and
Cheng 1989), minimizing normalized cut (Shi andMalik 2000),
maximizing modularity (Newman and Girvan 2004), hierar-
chical clustering (Newman 2004), and edge-removal methods
(Newman and Girvan 2004), to name a few. Among all the
progress made by peer researchers, spectral clustering (Donath
and Hoffman 1973) based on stochastic blockmodels (Holland,
Laskey, and Leinhardt 1983) debuted and soon gained amajority
of attention.We refer the interested readers to Spielmat andTeng
(1996) and Goldenberg et al. (2010) as comprehensive reviews
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on the history of spectral clustering and stochastic blockmodels,
respectively.

Compared to the amount of work on spectral clustering or
stochastic blockmodels, to the best of our knowledge, there is
little work on the selection of the community number K. In
most of the previously mentioned community detection meth-
ods, the number of communities is generally input as a pre-
specified quantity. For the literature addressing the problem of
selecting K, besides the block-wise edge splitting method of
Chen and Lei (2014), a common practice is to use Bayesian
information criterion (BIC) type criteria (Airoldi et al. 2008;
Daudin, Picard, andRobin 2008) or a variational Bayes approach
(Hunter, Krivitsky, and Schweinberger 2012; Latouche, Birmelé,
and Ambroise 2012). An inherently related problem is that of
selecting the number of components in mixture models, where
the birth-and-death point process of Stephens (2000) and the
allocation sampler of Nobile and Fearnside (2007) provide two
fully Bayesian approaches in the case where K is finite but
unknown. Based on the allocation sampler, McDaid et al. (2013)
proposed an efficient Bayesian clustering algorithm that directly
estimates the number of communities in stochastic blockmod-
els, and that exhibits similar results to the variational Bayes
approach of Latouche, Birmelé, and Ambroise (2012). Nonpara-
metric Bayesian methods based on Dirichlet process mixtures
(Ferguson 1973) have also been used to estimate the number of
components in this finite but unknown K setting (Fearnhead
2004), although the inconsistency of this approach has been
recently shown by Miller and Harrison (2014). This commu-
nity or mixture component number K, as a vital part of model
selection procedures, highly depends on themodel assumptions.
For instance, the famous stochastic blockmodel has undesirable
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restrictive assumptions in the form of independent Bernoulli
observations when the community assignments are known.

In this article, we study the community number selection
problemwith robustness consideration against model misspeci-
fication in the stochastic blockmodel and its variants. Our moti-
vation is that, the conditional independence assumption among
edges, when the communities of their endpoints are given, is
usually violated in real applications. In addition, we do not
restrict our interest only to exchangeable graphs. Using tech-
niques from the composite likelihood paradigm (Lindsay 1988),
we develop a composite likelihoodBIC (CL-BIC) approach (Gao
and Song 2010) for selecting the community number in the sit-
uation where assumed independencies in the stochastic block-
model and other exchangeable graph models do not hold. The
procedure is tested on simulated and real data, and is shown
to outperform two competitors—traditional BIC and the vari-
ational Bayes criterion of Latouche, Birmelé, and Ambroise
(2012), in terms of model selection consistency.

The rest of the article is organized as follows. The background
for stochastic blockmodels and spectral clustering is introduced
in Section 2, and the proposed CL-BIC methodology is devel-
oped in Section 3. In Section 4, several simulation examples as
well as two real datasets are analyzed. The article is concluded
with a short discussion in Section 5.

2. Background

First, we would like to introduce some notation. For an N-
node undirected, simple, and connected network G, its sym-
metric adjacency matrix A is defined as Ai j := 1 if (i, j) is an
element in E, and Ai j := 0 otherwise. The diagonal {Aii}Ni=1 is
fixed to zero (i.e., self-edges are not allowed). Moreover, D and
L denote the degree matrix and Laplacian matrix, respectively.
Here, Dii := di, and Di j := 0 for i ̸= j, where di is the degree
of node i, that is, the number of edges with endpoint node i;
and L := D−1/2AD−1/2. As isolated nodes are discarded, D−1/2
is well-defined.

2.1 Stochastic Blockmodels

.. Standard Stochastic Blockmodel
Stochastic blockmodels were first introduced in Holland,
Laskey, and Leinhardt (1983). They posited independent
Bernoulli random variables {Ai j}1≤i< j≤N with success proba-
bilities {Pi j} that depend on the communities of their end-
points i and j. Consequently, all edges are conditionally inde-
pendent given the corresponding communities. Moreover, each
node is associated with one and only one community, with label
Zi, where Zi ∈ {1, . . . ,K}. Following Rohe, Chatterjee, and Yu
(2011) and Choi, Wolfe, and Airoldi (2012), throughout this
article we assume each Zi is fixed and unknown, thus yielding
P(Ai j = 1;Zi = zi,Zj = z j) = θziz j . Treating the node assign-
ments Z1, . . . ,ZN as latent random variables is another popu-
lar approach in the community detection literature, and various
methods including the variational Bayes criterion of Latouche,
Birmelé, and Ambroise (2012) and the belief propagation
algorithm of Decelle et al. (2011) efficiently approximate the
corresponding observed-data log-likelihood of the stochastic

blockmodel, without having to add KN multinomial terms
accounting for all possible label assignments.

For θ := (θab; 1 ≤ a ≤ b ≤ K)′ and for any fixed community
assignment z ∈ {1, . . . ,K}N , the log-likelihood under the stan-
dard stochastic blockmodel (SBM) is given as

ℓ(θ;A) :=
∑

i< j

[Ai j log θziz j + (1− Ai j) log(1− θziz j )]. (1)

For the remainder of the article, denote Na as the size of
community a, and nab as the maximum number of possible
edges between communities a and b, that is, nab := NaNb for a ̸=
b, and naa := Na(Na − 1)/2. Also, let mab :=

∑
i< j Ai j1{zi =

a, z j = b}, and θ̂ab := mab/nab be the maximum likehood esti-
mator (MLE) of θab in (1).

Under this framework, Choi, Wolfe, and Airoldi (2012)
showed that the fraction of misclustered nodes converges in
probability to zero under maximum likelihood fitting when K
is allowed to grow no faster than

√
N. By means of a regular-

izedmaximum likelihood estimation approach, Rohe, Qin, and
Fan (2014) further proved that this weak convergence can be
achieved for K = O(N/ log5 N).

.. Degree-Corrected Stochastic Blockmodel
Heteroscedasticity of node degrees within communities is often
observed in real-world networks. To tackle this problem, Kar-
rer and Newman (2011) proposed the degree-corrected block-
model (DCBM), in which the success probabilities {Pi j} are
also functions of individual effects. To be more precise, the
DCBM assumes that P(Ai j = 1;Zi = zi,Zj = z j) = ωiω jθziz j ,
whereω := (ω1, . . . , ωn)

′ are individual effect parameters satis-
fying the identifiability constraint

∑
i ωi1{zi = a} = 1 for each

community 1 ≤ a ≤ K.
To simplify technical derivations, Karrer and Newman

(2011) allowed networks to contain both multi-edges and self-
edges. Thus, they assumed the random variables {Ai j}1≤i≤ j≤N
to be independent Poisson, with the previously defined success
probabilities {Pi j} of an edge between vertices i and j replaced
by the expected number of such edges. Under this framework,
and for any fixed community assignment z ∈ {1, . . . ,K}N , Kar-
rer and Newman (2011) arrived at the log-likelihood ℓ(θ,ω;A)

of observing the adjacency matrixA = (Ai j) under the DCBM,

ℓ(θ,ω;A) := 2
∑

i

di logωi +
∑

a,b

(mab log θab − θab). (2)

After allowing for the identifiability constraint on ω, the MLEs
of the parameters θab and ωi are given by θ̂ab := mab and ω̂i :=
di/
∑

j:z j=zi d j , respectively.
As mentioned in Zhao, Levina, and Zhu (2012), there is no

practical difference in performance between the log-likelihood
(2) and its slightly more elaborate version based on the true
Bernoulli observations. The reason is that the Bernoulli dis-
tribution with a small mean is well approximated by the Pois-
son distribution, and the sparser the network is, the better the
approximation works (Perry and Wolfe 2012).
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.. MixedMembership Stochastic Blockmodel
As a methodological extension in which nodes are allowed to
belong to more than one community, Airoldi et al. (2008) pro-
posed the mixed membership stochastic blockmodel (MMB) for
directed relational data {Ai j}1≤i, j≤N . For instance, when a social
actor interacts with its different neighbors, an array of different
social contexts may be taking place and thus the actor may be
taking on different latent roles.

The model assumes the observed network is generated
according to node-specific distributions of community mem-
bership and edge-specific indicator vectors denoting member-
ship in one of the K communities. More specifically, each ver-
tex i is associated with a randomly drawn vector π⃗i, with πia
denoting the probability of node i belonging to community a.
Additionally, let the indicator vector z⃗i→ j denote the commu-
nity membership of node i when he sends a message to node
j, and z⃗i← j denote the community membership of node j when
he receives a message from node i. If, to account for the asym-
metric interactions, we denote by θ := (θab) the K × K matrix
where θab represents the probability of having an edge from a
social actor in community a to a social actor in community b, the
MMB posits that the {Ai j}1≤i, j≤N are drawn from the following
generative process.! For each node i ∈ V :

– Draw a K-dimensional mixed membership vector
π⃗i ∼ Dirichlet(α), with the vector α = (α1, . . . , αK )′

being a hyperparameter.! For each possible edge variable Ai j:
– Drawmembership indicator vector for the initiator
z⃗i→ j ∼ Multinomial(π⃗i).
– Drawmembership indicator vector for the receiver
z⃗i← j ∼ Multinomial(π⃗ j).
– Sample the interaction Ai j ∼
Bernoulli(⃗z′i→ jθz⃗i← j).

Upon defining the set of mixed membership vectors % :=
{π⃗i : i ∈ V } and the sets ofmembership indicator vectorsZ→ :=
{⃗zi→ j : i, j ∈ V } and Z← := {⃗zi← j : i, j ∈ V }, following Airoldi
et al. (2008), we obtain the complete data log-likelihood of the
hyperparameters {θ,α} as

ℓ(θ, α;A,%,Z→,Z←) :
=
∑

i, j

[Ai j log(⃗z′i→ jθz⃗i← j) + (1− Ai j ) log(1− z⃗′i→ jθz⃗i← j )]

+N
(
log&

(∑

a

αa

)
−
∑

a

log&(αa)
)

+
∑

i

∑

a

(αa − 1) logπia + const, (3)

whereA corresponds to the observed data and {%,Z→,Z←} are
the latent variables.

To carry out posterior inference of the latent variables given
the observations A, Airoldi et al. (2008) proposed an efficient
coordinate ascent algorithm based on a variational approxima-
tion to the true posterior. Therefore, one can compute expected
posteriormixedmembership vectors and posteriormembership
indicator vectors. We refer interested readers to Section 3 in
Airoldi et al. (2008) for further details.

Consequently, following the same profile likelihood
approach, for any fixed set {%,Z→,Z←}, the MLE of θab is

given by

θ̂ab :=
∑

i, j

Ai j · z⃗i→ j,az⃗i← j,b

/∑

i, j

z⃗i→ j,az⃗i← j,b. (4)

As the MLE of αa does not admit a closed form, Minka (2000)
proposed an efficient Newton–Raphson procedure for obtain-
ing parameter estimates in Dirichlet models, where the gradient
and Hessian matrix of the complete data log-likelihood (3) with
respect to α are

∂ℓ(θ,α;A)

∂αa
= N

(
((
∑

a
αa)−((αa)

)
+
∑

i

∑

a
logπia

∂2ℓ(θ,α;A)

∂αa∂αb
= N

(
( ′(

∑

a
αa)−( ′(αa)1{a = b}

)
, (5)

and ( is known as the digamma function (i.e., the logarithmic
derivative of the gamma function).

2.2 Spectral Clustering and SCORE

Although there is a parametric framework for the standard
stochastic blockmodel, considering the computational bur-
den, it is intractable to directly estimate both parameters θ
and z based on exact maximization of the log-likelihood (1).
Researchers have instead resorted to spectral clustering as a
computationally feasible algorithm. For comprehensive reviews,
we refer interested readers to von Luxburg (2007) and Rohe,
Chatterjee, and Yu (2011), in which the authors proved the con-
sistency of spectral clustering in the standard stochastic block-
model under proper conditions imposed on the density of the
network and the eigen-structure of the Laplacian matrix. The
algorithm finds the eigenvectors u1, . . . , uK associated with the
K eigenvalues of L that are largest in magnitude, forming an
N × KmatrixU := (u1, . . . , uK ), and then applies theK-means
algorithm to the rows ofU .

Similarly, Jin (2015) proposed a variant of spectral cluster-
ing for the DCBM, called Spectral Clustering On Ratios-of-
Eigenvectors (SCORE). Instead of using the Laplacian matrix
L, SCORE collects the eigenvectors v1, . . . , vK associated with
the K eigenvalues of A that are largest in magnitude, and then
forms theN × KmatrixV := (1, v2/v1, . . . , vK/v1), where the
division operator is taken entry-wise, that is, for vectors a, b ∈
Rn, with)n

ℓ=1bℓ ̸= 0, a/b := (a1/b1, . . . , an/bn)′. SCORE then
applies the K-means algorithm to the rows of V . The corre-
sponding consistency results for the DCBM are also provided
in Jin (2015).

3. Model Selection for the Number of Communities

3.1 Motivation

In much of the previous work, for example, Airoldi et al. (2008),
Daudin, Picard, and Robin (2008), and Handcock, Raftery, and
Tantrum (2007), researchers have used a BIC-penalized version
of the log-likelihood (1) to choose the community number K.
However, we are aware of the possible misspecifications in the
underlying stochastic blockmodel assumptions and in the loss of
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precision from the computational relaxation brought in by spec-
tral clustering.

First, in network data, edges are not necessarily indepen-
dent if only the communities of their endpoints are given. For
instance, if two different edges Ai j and Ail have mutual end-
point i, it is highly likely that they are dependent even given
the community labels of their endpoints. This misspecification
problem exists in both the standard stochastic blockmodel and
its variants, such as DCBM (Karrer and Newman 2011) and
MMB (Airoldi et al. 2008). Second, as previously mentioned,
spectral clustering is a feasible relaxation, but the loss of preci-
sion is inevitable. Several examples of this can be found in Guat-
tery and Miller (1998). Whence, we resort to introducing CL-
BIC with the concern of robustness against misspecifications in
the underlying stochastic blockmodel.

We would like to emphasize that CL-BIC is not a new com-
munity detection method. Instead, under the SBM, DCBM, or
MMB assumptions, it can be combined with existing commu-
nity detection methods to choose the true community number.

3.2 Composite Likelihood Inference

The CL-BIC approach extends the concepts and theory of
conventional BIC on likelihoods to the composite likelihood
paradigm (Lindsay 1988; Varin, Reid, and Firth 2011). Com-
posite likelihood aims at a relaxation of the computational
complexity of statistical inference based on exact likelihoods.
For instance, when the dependence structure for relational
data is too complicated to implement, a working independence
assumption can effectively recover some properties of the usual
maximum likelihood estimators (Cox and Reid 2004; Varin,
Reid, and Firth 2011). However, under this misspecification
framework, the asymptotic variance of the resulting estimators
is usually underestimated as the Fisher information. Composite
marginal likelihoods (also known as independence likelihoods)
have the same formula as conventional likelihoods in terms of
being a product of marginal densities (Varin 2008), while statis-
tical inference based on them can capture this loss of variance.
Consequently, to pursue the “true” model, CL-BIC penalizes the
number of parameters more than what BIC does for dependent
relational data.

Before going into details, we would like to give the ratio-
nale of using stochastic blockmodels under a misspecification
framework. To estimate the true joint density g of {Ai j}1≤i< j≤N ,
we consider the stochastic blockmodel family P = {pθ : θ ∈
*}, where * = [0, 1]K(K+1)/2 for the standard stochastic block-
model, and * = [0, 1]K(K+1)/2+N for DCBM. The true joint
density g may or may not belong to P , which is a parametric
family imposing independence among the {Ai j}i< j when only
the communities of the endpoints are given.

Due to the difficulty in specifying the full, highly structured(N
2
)
-dimensional density g, while having access to the univariate

densities pi j(·; θ) of Ai j under the blockmodel family P , the
composite marginal likelihood paradigm compounds the first-
order log-likelihood contributions to form the composite log-
likelihood

cl(θ;A) :=
∑

i< j

log pi j(Ai j; θ), (6)

where cl(·;A) corresponds to (1) under the standard stochastic
blockmodel, and corresponds to (2) in the DCBM framework.
Since each component of cl(θ;A) in (6) is a valid log-likelihood
object, the composite score estimating equation ∇θ cl(θ;A) = 0
is unbiased under usual regularity conditions. The associated
composite likelihood estimator (CLE) θ̂C, defined as the solution
to ∇θ cl(θ;A) = 0, suggests a natural estimator of the form p̂ =
p

θ̂C
tominimize the expected compositeKullback–Leibler diver-

gence (Varin and Vidoni 2005) between the assumed block-
model pθ and the true, but unknown, joint density g,

+C(g, p; θ) :=
∑

i< j

Eg(log g({Ai j}i< j ∈ Ai j)− log pi j(Ai j; θ)),

where {Ai j}i< j denotes the corresponding set of marginal
events.

In terms of the asymptotic properties of the CLE, following
the discussion in Cox and Reid (2004), it is important to distin-
guish whether the available data consist of many independent
replicates from a common distribution function or form a few
individually large sequences.While, in the first scenario, consis-
tency and asymptotic normality of the corresponding θ̂C hold
under some regularity conditions from the classical theory of
estimating equations (Varin, Reid, and Firth 2011), some diffi-
culties arise in the second one, which includes our observations
{Ai j}i< j. Indeed, as argued in Cox and Reid (2004), if there is too
much internal correlation present among the individual compo-
nents of the composite score ∇θ cl(θ;A), the estimator θ̂C will
not be consistent. The CLEwill retain good properties as long as
the data are not too highly correlated, which is the case for spa-
tial data with exponential correlation decay. Under this setting,
Heagerty and Lele (1998) proved consistency and asymptotic
normality of θ̂C in a scenario where the data are not sampled
independently from a study population. Under more general
settings, consistency results are expected upon using limit the-
orems and parametric estimation for fields (e.g., Guyon 1995);
however, applying the corresponding results requires a properly
defined distance on networks andα-mixing conditions based on
such distance.

3.3 Composite Likelihood BIC

Taking into account the measure of model complexity in the
context of composite marginal likelihoods (Varin and Vidoni
2005), we define the following criterion for selecting the com-
munity number K:

CL-BICk := −2 cl(θ̂C;A) + d∗k log (N(N − 1)/2) , (7)

where k is the number of communities under consideration in
the current model used as model index, d∗k := trace(H−1k V k),
Hk := Eθ(−∇2

θ cl(θ;A)) and V k := Varθ(∇θ cl(θ;A)). Then
the resulting estimator for the community number is

k̂CL-BIC := argmin
k∈K

CL-BICk,

whereK is the set of candidate values for k.
Note that the CLE is a function of k, since a different model

index yields a different estimator θ̂C := θ̂C(k). Assuming inde-
pendent and identically distributed data replicates, which lead
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to consistent and asymptotically normally distributed estimators
θ̂C, Gao and Song (2010) established themodel selection consis-
tency of a similar composite likelihood BIC approach for high-
dimensional parametric models. While allowing for the num-
ber of potential model parameters to increase to infinity, their
consistency result only holds when the true model sparsity is
bounded by a universal constant.

Even though, under a misspecification framework for the
blockmodel family P , the observed data {Ai j}i< j do not form
independent replicates from a common population, we antici-
pate the CL-BIC criterion (7) to be consistent in selecting the
true community numberK, at least when the correlation among
the {Ai j}i< j is not severe and the estimators θ̂C are consistent and
asymptotically normal, as in Heagerty and Lele (1998). Since all
the moment conditions in the consistency results from Gao and
Song (2010) hold automatically after noticing the specific forms
of the blockmodel composite log-likelihoods (1)–(3), under a
properly defined mixing condition on {Ai j}i< j (Guyon 1995),
and for a bounded community number K ≤ k0, we conjecture
that P{k̂CL−BIC = K}→ 1 as the number of nodes N in the net-
work grows to infinity. This theoretical study will be relegated as
a future work.

3.4 Formulas

.. Standard Stochastic Blockmodel
Following our discussions in the previous section, we treat (1)
as the composite marginal likelihood, under the working inde-
pendence assumption that, given the community labels of their
endpoints, the Bernoulli random variables {Ai j}i< j are indepen-
dent. The first-order partial derivative of ℓ(θ;A)with respect to
θ is denoted as u(θ) = (u(θab); 1 ≤ a ≤ b ≤ k)′, where

u(θab) =
∑

i< j

[
Ai j

θziz j
−

1− Ai j

1− θziz j

]

Ia,bi, j ,

and

Ia,bi, j = min
(
!{zi = a, z j = b} + !{zi = b, z j = a}, 1

)
.

Furthermore, the second-order partial derivative of ℓ(θ;A) has
the following components,

∂2ℓ(θ;A)

∂θa1b1∂θa2b2
= 0, if (a1, b1) ̸= (a2, b2)

and

∂2ℓ(θ;A)

∂θ2
ab

= −
∑

i< j

[
Ai j

θ2
ziz j

+
1− Ai j

(1− θziz j )
2

]

Ia,bi, j .

Define the Hessian matrixHk(θ) = Eθ(−∂u(θ)/∂θ), then

Hk(θ) = Eθ

(
diag

{
−∂2ℓ(θ;A)/∂θ2

ab; 1 ≤ a ≤ b ≤ k
})

.

Define the variability matrix V k(θ) = varθ(u(θ)) and, follow-
ing Varin and Vidoni (2005), the model complexity d∗k =
trace[Hk(θ)−1V k(θ)]. If the underlying model is indeed a cor-
rectly specified standard stochastic blockmodel, we have d∗k =
k(k + 1)/2 and CL-BIC reduces to the traditional BIC. Indexed
by 1 ≤ k ≤ k0, the estimated criterion functions for the CL-BIC

sequence (7) are

̂CL-BICk = −2 cl(θ̂C;A) + d̂∗k log (N(N − 1)/2) , (8)

where θ̂C and d̂∗k are estimators of θ and d∗k , respectively. For a
certain k, the explicit estimator forms are given below:

Ĥk(θ̂C) = diag

⎧
⎨

⎩
∑

i< j

[
Ai j

θ̂2
ziz j

+
(1− Ai j)

(1− θ̂ziz j )
2

]

Ia,bi, j

⎫
⎬

⎭

and V̂ k(θ̂C) = u(θ̂C)[u(θ̂C)]T .
As noted by Gao and Song (2010), the above naive estimator

for V k(θ) vanishes when evaluated at the CLE θ̂C. An alterna-
tive proposed in Varin, Reid, and Firth (2011) is to use a jack-
knife covariancematrix estimator, for the asymptotic covariance
matrix of θ̂C, of the form

varjack(θ̂C) = N − 1
N

N∑

l=1

(θ̂
(−l)
C − θ̂C)(θ̂

(−l)
C − θ̂C)T , (9)

where θ̂
(−l)
C is the composite likelihood estimator of θ with

the lth vertex deleted. Let A(−l) be the (N − 1)× (N − 1)
matrix obtained after deleting the lth row and column from
the original adjacency matrix A. An explicit form for θ̂

(−l)
C

is given by θ̂ (−l)
ab = 1/n(−l)

ab
∑

i< j A
(−l)
i j 1{zi = a, z j = b}, with

n(−l)
ab = N(−l)

a N(−l)
b for a ̸= b, and n(−l)

aa = N(−l)
a (N(−l)

a − 1)/2;
naturally, N(−l)

a = Na − 1 if zl = a and N(−l)
a = Na otherwise.

Since the asymptotic covariance matrix of θ̂C is given
by the inverse Godambe information matrix, Gk(θ)−1 =
Hk(θ)−1V k(θ)Hk(θ)−1, see Gao and Song (2010) and Varin,
Reid, and Firth (2011), an explicit estimator for d∗k can be
obtained by right-multiplying the jackknife covariance matrix
estimator (9) byHk(θ) to obtain

d̂∗k = trace
[
varjack(θ̂C)Ĥk(θ̂C)

]

=
∑

1≤a≤b≤k

{
varjack(θ̂ab)×

∑

i< j

[ Ai j

θ̂2
ziz j

+
1− Ai j

(1− θ̂ziz j )
2

]
Ia,bi, j

}
.

.. Degree-Corrected Stochastic Blockmodel
Similarly, we develop corresponding parallel results for DCBM.
Thefirst- and second-order partial derivatives of ℓ(θ,ω;A)with
respect to θ are defined as follows,

∂ℓ(θ, ω;A)

∂θ
= u(θ) = (u(θab); 1 ≤ a ≤ b ≤ k)′, u(θab) = mab

θab
− 1,

∂2ℓ(θ, ω;A)

∂θa1b1∂θa2b2
= 0, if (a1, b1) ̸= (a2, b2),

∂2ℓ(θ, ω;A)

∂θ 2
ab

= −mab

θ 2
ab

,

Ĥk(θ̂C) = diag
{

1
θ̂ab

; 1 ≤ a ≤ b ≤ k
}

,

which yields

d̂∗k =
∑

1≤a≤b≤k

{
varjack(θ̂ab)/θ̂ab

}
.
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.. MixedMembership Stochastic Blockmodel
The estimated model complexity for MMB now involves
second-order partial derivatives of ℓ(θ,α;A)with respect to the
hyperparameters θ and α. Upon noticing the form of the first
term of the complete data log-likelihood (3), and recalling the
Hessian matrix with respect to α detailed in (5), it is easy to see
that Ĥk(θ̂C, α̂C) is a block matrix of the form

Ĥk(θ̂C, α̂C) =
(
Ĥk(θ̂C) 0

0 Ĥk(α̂C)

)

,

where Ĥk(θ̂C) is a k2 × k2 diagonal matrix given by

Ĥk(θ̂C) = diag
{∑

i, j

[
Ai j

θ̂2
zi→ j,zi← j

+
(1− Ai j)

(1− θ̂zi→ j,zi← j )
2

]

1{zi→ j = a, zi← j = b}
}
,

and Ĥk(α̂C) = (Ĥk(α̂C)ab) is a k× kmatrix with entries

Ĥk(α̂C)ab = N
(
( ′(α̂a)1{a = b}−( ′

(∑

a
α̂a

))
.

In a slight abuse of notation, we denote by zi→ j above the label
assignment corresponding to node iwhen he sends amessage to
node j, and similarly for zi← j. The estimated model complexity
is thus d̂∗k = trace[varjack(θ̂C, α̂C)Ĥk(θ̂C, α̂C)], where the jack-
knife matrix varjack(θ̂C, α̂C), assuming a similar form as in (9)
with θ̂

(−l)
C and α̂

(−l)
C estimated as explained in Section 2, pro-

vides the corresponding asymptotic covariancematrix estimator
of the CLE (θ̂C, α̂C).

Wewould like to remark that ourCL-BIC approach for select-
ing the community number K extends beyond the realm of
stochastic blockmodels. Indeed, both the latent space cluster
model of Handcock, Raftery, and Tantrum (2007) and the local
dependence model of Schweinberger and Handcock (2015), as
well as any other (composite) likelihood-based approach that
requires to select a value of K can employ our proposed CL-
BICmethodology for selecting the number of communities. We
leave the details of this further investigation for future research.

4. Experiments

In this section, we show the advantages of the CL-BIC approach
over the traditional BIC aswell as the variational Bayes approach
in selecting the true number of communities via simulations and
two real datasets.

4.1 Simulations

For simplicity of the presentation, we consider only the SBM
and the DCBM in our simulations. For each setting, we relax
the assumption that the Ai j ’s are conditionally independent
given the labels (Zi = zi,Zj = z j), varying both the dependence
structure of the adjacency matrix A ∈ RN×N and the value of
the parameters (θ,ω). The models introduced are correlation-
contaminated stochastic blockmodels, that is, we bring different
types of correlation into the stochastic blockmodels, both stan-
dard and degree-corrected, mimicking real-world networks.

All of our simulated adjacency matrices have independent
rows. That is, the binary variables Aik and Ajl are independent,
whenever i ̸= j, given the corresponding community labels of
their endpoints. However, for a fixed node i ∈ V , correlation
does exist across different columns in the binary variables Ai j
and Ail . For the standard stochastic blockmodel, correlated
binary random variables are generated, following the approach
in Leisch, Weingessel, and Hornik (1998), by thresholding a
multivariate Gaussian vector with correlation matrix & satisfy-
ing , jl = ρ jl . Specifically, for any choice of |ρ jl | ≤ 1, we sim-
ulate correlated variables Ai j and Ail such that cov(Ai j,Ail ) =
L(−µ j,−µl, ρ jl )− θziz jθzizl . Here, following Leisch, Weinges-
sel, and Hornik (1998), we have L(−µ j,−µl, ρ jl ) = P(Wj ≥
−µ j,Wl ≥ −µl ), µ j = .−1(θziz j ), and µl = .−1(θzizl ), where
(Wj,Wl ) is standard bivariate normal with correlation ρ jl . Cor-
related Bernoulli variables for the degree-corrected blockmodel
are generated in a similar fashion.

In each experiment, carried over 200 randomly generated
adjacency matrices, we record the proportion of times the cho-
sen number of communities for each of the different criteria for
selecting K agrees with the truth. Apart from CL-BIC and BIC,
we also consider the integrated likelihood variational Bayes (VB)
approach of Latouche, Birmelé, and Ambroise (2012). To esti-
mate the true community number, their method selects the can-
didate value k thatmaximizes a variational Bayes approximation
to the observed data log-likelihood.

We restrict attention to candidate values for the true K in
the range k ∈ {1, . . . , 18}, both in simulations and the real data
analysis section. For Simulations 1–3, spectral clustering is used
to obtain the community labels for each candidate k, whereas
in the DCBM setting of Simulation 4, the SCORE algorithm is
employed. Additionally, among the incorrectly selected commu-
nity number trials, we calculate the median deviation between
the selected community number and the true K = 4, as well as
its robust standard deviation.

Simulation 1: Correlation among the edges within and
between communities is introduced simultaneously through-
out all blocks in the network, and not proceeding in a block-
by-block fashion. Concretely, for each node i, all edges {Ai j}i< j
are generated by thresholding a correlated (N − i)-dimensional
Gaussian random vector with correlation matrix & = (ρ jl ).
Thus, in this scenario, all edges Ai j and Ail with common end-
point i are correlated, regardless of whether j and l belong to
the same community or not. Cases ρ jl = ρ and ρ jl = ρ| j−l|,
with several choices of ρ are conducted. We consider a four-
community network, θ = (θab; 1 ≤ a ≤ b ≤ 4)′, where θaa =
0.35 for all a = 1, . . . , 4 and θab = 0.05 for 1 ≤ a < b ≤ 4.
Community sizes are 60, 90, 120, and 150, respectively. Results
are collected in Table 1.

Simulation 2:Correlation among the edges within (ρ W.) and
between (ρ B.) communities is introduced block-wisely. Con-
cretely, for each node i, all edges Ai j and Ail are generated inde-
pendently whenever j and l belong to different communities. If j
and l belong to the same community, edgesAi j andAil are gener-
ated by thresholding a correlated Gaussian random vector with
correlationmatrix& = (ρ jl ). Parameter settings are identical to
Simulation 1, with results collected in Table 2.

Simulation 3: Correlation settings are the same as in Simula-
tion 2, but we change the value of the parameter θ to allow for
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Table . Comparison of CL-BIC and BIC over 200 repetitions from Simulation , where Eq and Dec indicate equally correlated and exponential decaying cases, respectively.
Both correlation of multivariate Gaussian random variables (ρ MVN) and the correspondingmaximum correlation between Bernoulli variables (ρ Ber.) are presented.

CORR PROP MEDIAN DEV CORR PROP MEDIAN DEV

ρ MVN ρ Ber. CL-BIC BIC CL-BIC BIC ρ MVN ρ Ber. CL-BIC BIC CL-BIC BIC

. . . . .(.) .(.) . . . . .(.) .(.)
. Eq . . . .(.) .(.) .Dec . . . .(.) .(.)
. . . . .(.) .(.) . . . . .(.) .(.)

NOTE: CORR, correlation; PROP, proportion; MEDIAN DEV, median deviation. In the MEDIAN DEV columns, results are in the form of median (robust standard deviation).

Table . Comparison of CL-BIC and BIC over 200 repetitions from Simulation , where Ind indicates ρ jl = 0 for j ̸= l . For simplicity, we omit the correlation between the
corresponding Bernoulli variables.

CORR PROP MEDIAN DEV CORR PROP MEDIAN DEV

ρ W. ρ B. CL-BIC BIC CL-BIC BIC ρ W. ρ B. CL-BIC BIC CL-BIC BIC

. . . .(.) .(.) . . . .(.) .(.)
. Eq Ind . . .(.) .(.) . Eq .Dec . . .(.) .(.)
. . . .(.) .(.) . . . .(.) .(.)
. . . .(.) .(.) . . . .(.) .(.)
.Dec Ind . . .(.) .(.) . Eq .Dec . . .(.) .(.)
. . . .(.) .(.) . . . .(.) .(.)

more general network topologies.We set θ = (θab; 1 ≤ a ≤ b ≤
4)′ with θaa = θb4 = 0.35 for all a = 1, . . . , 4 and b = 1, 2, 3.
The remaining entries of θ are set to 0.05. Hence, following
Latouche, Birmelé, andAmbroise (2012), vertices from commu-
nity 4 connect with probability 0.35 to any other vertices in the
network, forming a community of only hubs. Community sizes
are the same as in Simulation 1, with results collected in Table
3.

Simulation 4: We follow the approach of Zhao, Levina, and
Zhu (2012) in choosing the parameters (θ,ω) to generate net-
works from the degree-corrected blockmodel. Thus, the iden-
tifiability constraint

∑
i ωi1{zi = a} = 1 for each community

1 ≤ a ≤ K is replaced by the requirement that the ωi be inde-
pendently generated from a distribution with unit expectation,
fixed here to be

ωi =

⎧
⎨

⎩

ηi, w.p. 0.8,
2/11, w.p. 0.1,
20/11, w.p. 0.1,

where ηi is uniformly distributed on the interval [0, 2]. The vec-
tor θ, in a slight abuse of notation, is reparameterized as θn =
γnθ, where we vary the constant γn to obtain different expected
degrees of the network. Correlation settings and community
sizes are the same as in Simulation 1, with results presented in
Table 4, where choices for γn and θ are specified.

When the stochastic blockmodels are contaminated by the
imposed correlation structure, which is expected in real-world
networks, CL-BIC outperforms BIC overwhelmingly. Tables 1–
2 show the improvement is more significant when the imposed
correlation is larger. For instance, in the block-wise correlated
case of Table 2, when we only have within-community correla-
tion ρDec = 0.60, CL-BIC does the right selection in all cases,
while BIC is only successful in 14% of 200 trials.

As shown in Table 3 for the model with a community of only
hubs, if the network is generated from a purely stochastic block-
model, or if the contaminating correlation is not too strong, CL-
BIC and VB have similar performance in selecting the correct
K = 4. But again, as the imposed correlation increases, VB fails

to make the right selectionmore often than CL-BIC. This is par-
ticularly true in the ρEq = 0.20 case, where CL-BIC makes the
right selection in 85%of simulated networks, whereasVB fails in
all cases, yielding models with a median of nine communities.

The same pattern translates into the DCBM setting of Table
4, where smaller values of γn yield sparser networks. The com-
munity number selection problem becomes more difficult as
γn decreases, as degrees for many nodes are small, yielding
noisy individual effect estimates ω̂i = di/

∑
j:z j=zi d j . Neverthe-

less, the CL-BIC approach consistently selects the correct num-
ber of communitiesmore frequently than BIC over different cor-
relation settings.

In addition, Figure 1 presents simulation results where the
true community number K increases from 2 to 8. Follow-
ing our previous examples, community sizes grow accord-
ing to the sequence (60, 90, 120, 150, 60, 90, 120, 150). The
selected correlation-contaminated stochastic blockmodels are
ρEq = 0.10 from Simulation 1, within-community correlation
ρEq = 0.10 from Simulation 2, and within-community correla-
tion ρDec = 0.60 from Simulation 3. As K increases and enough
vertices are added into the network, CL-BIC tends to correctly
estimate the true community number in all simulation settings.
Even in this scenario with a growing number of communities,
the proportion of times CL-BIC selects the true K is always
greater than the corresponding BIC or VB estimates.

Before moving to the last simulation example, we would like
to define two measures to quantify the accuracy of a given node
label assignment. The first measure is a “goodness-of-fit” (GF)
measure defined as

GF(z, ẑk) =
∑

i< j

(
!{zi = z j}!{ẑi = ẑ j}

+!{zi ̸= z j}!{ẑi ̸= ẑ j}
) /(N

2

)
, (10)

where z represents the true community labels and ẑk repre-
sents the community assignments from an estimator. Thus, the
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Table . Comparison of CL-BIC and VB over 200 repetitions from Simulation . For simplicity, we omit the correlation between the corresponding Bernoulli variables.

CORR PROP MEDIAN DEV CORR PROP MEDIAN DEV

ρ W. ρ B. CL-BIC VB CL-BIC VB ρ W. ρ B. CL-BIC VB CL-BIC VB

. . . .(.) .(.) . . . .(.) .(.)
. Eq Ind . . .(.) .(.) .Dec Ind . . .(.) .(.)
. . . .(.) .(.) . . . .(.) .(.)
. . . .(.) .(.) . . . .(.) .(.)

Table . Comparison of CL-BIC and BIC over 200 repetitions from Simulation . Before being scaled by the constant γn , we selected θ = (θab; 1 ≤ a ≤ b ≤ 4)′ , where
θaa = 7 for all a = 1, . . . , 4 and θab = 1 for 1 ≤ a < b ≤ 4.

PROP MEDIAN DEV PROP MEDIAN DEV

CORR ρ
MVN γn CL-BIC BIC CL-BIC BIC

CORR ρ
MVN γn CL-BIC BIC CL-BIC BIC

. Eq . . . .(.) .(.) . Dec . . . −.(.) .(.)
. . . .(.) .(.) . . . .(.) .(.)

. Eq . . . .(.) .(.) . Dec . . . −.(.) .(.)
. . . .(.) .(.) . . . .(.) .(.)

. Eq . . . .(.) .(.) . Dec . . . −.(.) .(.)
. . . .(.) .(.) . . . −.(.) .(.)

measure GF(z, ẑk) calculates the proportion of pairs whose esti-
mated assignments agree with the correct labels in terms of
being assigned to the same or different communities, and is
commonly known as the Rand Index (Rand 1971) in the clus-
ter analysis literature.

The second measure is motivated from the “assortativity”
notion. The ratio of themedianwithin community edge number
to that of the between community edge number (MR) is defined
as

MR(ẑk) = mediana=1,...,k (maa)
/
mediana ̸=b (mab) , (11)

where k is the number of communities implied by ẑk and mab
is the total number of edges between communities a and b, as
given by the community assignment ẑk. It is clear that for both
measures, a higher value indicates a better community detection
performance.

As a final simulation example, we analyze the performance of
CL-BIC and BIC for a growing number of communities under
the degree-corrected blockmodel. While the reparameterized
vector θn = γnθ remains as in Simulation 4, theωi are now inde-
pendently generated from Uniform(1/5, 9/5). The results are
collected in Table 5, wherewe also record the performance of the
SCORE algorithmunder the trueK, alongwith the goodness-of-
fit (GF) and median ratio (MR) performance measures intro-
duced in (10) and (11), respectively.

The true community number and community sizes grow as
in the case for the standard blockmodel described in Figure 1.
AlthoughCL-BIC performs uniformly better than BIC across all
validating criteria and throughout all K, the procedure does not
appear to yield model selection consistent results in this exam-
ple. Aside from the fact that the introduced correlation is not
exponentially decaying, this poor performance as K increases

Figure . Comparisons between different methods for selecting the true community number K in the standard blockmodel settings of Simulations –. Along the y-axis,
we record the proportion of times the chosen number of communities for each of the different criteria for selecting K agrees with the truth.
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Table . Comparison of CL-BIC and BIC over 200 repetitions from the DCBM case in Simulation , with (ρEq = 0.2, γn = 0.03), where the individual effect parametersωi
are now generated from a Uniform(1/5, 9/5) distribution.

SCORE performance CL-BIC BIC

K Misc. R. Orac. Err. Est. Err. PROP MD RSD GF MR PROP MD RSD GF MR

 . . . .   . . .  . . .
 . . . .  . . . .  . . .
 . . . .   . . .  . . .
 . . . .   . . .  . . .
 . . . .  . . . .  . . .
 . . . .  . . . .  . . .
 . . . .  . . . .  . . .

NOTE: PROP, proportion; MD,median deviation; RSD, robust standard deviation; GF, goodness-of-fitmeasure; MR:median ratiomeasure. Misc. R. denotes themisclustering
rate of the SCORE algorithm. For1 = Eθ (A), Orac. Err. and Est. Err. are

∥∥1O −1
∥∥ / ∥1∥ and

∥∥1SC −1
∥∥ / ∥1∥, respectively, where ∥·∥ denotes Frobenius norm. Here,

1O denotes the estimate of1 under the oracle scenario where we know the true community assignment z ∈ {1, . . . , K}N , and1SC is the estimate of1 using the SCORE
labeling vector.

can also be explained by the difficulty in estimating the DCBM
parameters (θ,ω) in a scenario where several vertices have
potentially low degrees. Indeed, even in the oracle scenario
where we know the true community labels zi ahead of time, and
for a relatively small misclustering rate of the SCORE algorithm,
Table 5 exhibits the difficulty in obtaining accurate estimates
(θ̂C, ω̂C), and in evaluating the CL-BIC criterion functions (8),
under this increasing K scenario for the DCBM. Whether the
increased number of parameters in the DCBM has an effect on
the consistency results of CL-BIC as K increases is also an inter-
esting line of future work.

4.2 Real Data Analysis

.. International Trade Networks
We first study an international trade dataset originally analyzed
in Westveld and Hoff (2011), containing yearly international
trade data between N = 58 countries from 1981 to 2000. For
a more detailed description of this dataset, we refer the inter-
ested reader to the Appendix in Westveld and Hoff (2011). In
our numerical comparisons between CL-BIC and BIC paired
with the standard stochastic blockmodel log-likelihood (1), we
focus on data from year 1995. For this network, an adjacency
matrix A can be formed by first considering a weight matrix
W with Wij = Tradei, j + Trade j,i, where Tradei, j denotes the
value of exports from country i to country j. Finally, we define
Ai j = 1 if Wij ≥Wα , and Ai j = 0 otherwise; here Wα denotes
the αth quantile of {Wij}1≤i< j≤N . For the choice of α = 0.5,

Figure 2 shows the largest connected component of the result-
ing network. Panel (a) shows CL-BIC selecting three com-
munities, corresponding to countries with the highest GDPs
(dark blue), industrialized European and Asian countries with
medium-level GDPs (green), and developing countries in South
America with the smallest GDPs (yellow). Next, in panel (b)
we also show the variational Bayes solution corresponding to
k = 7, providing finer communities for some Central and South
American neighboring countries (yellow and pink, respectively)
but fragmenting the high- and medium-level GDP countries
into ambiguous communities. For instance, it is not clear why
countries like Bolivia and Nepal belong to the same commu-
nity (orange) or why the Netherlands, rather than Brazil or
Italy, joined the community of countries with the highest GDPs
(light blue). At last, panel (c) corresponds to the final BIC
model selecting 10 communities. Under this partition, South
American countries are now split into six “noisy” communities,
while high GDP countries are unnecessarily fragmented into
two.

We believe CL-BIC provides a better model than traditional
BIC, yielding communities with countries sharing similar GDP
valueswithout dividing an entire continent into six smaller com-
munities. On the contrary, BIC selects a model containing com-
munities of size as small as one, which are of little, if any, prac-
tical use. The variational Bayes approach provides a meaningful
solution in this example, exhibiting a similar performance as in
Latouche, Birmelé, and Ambroise (2012) in terms of providing
some finer community assignments.

Figure . Largest connected component of the international trade network for the year 1995.
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Figure . Largest connected component of the school friendship network. Panel (c) shows the “true” grade community labels: th (blue), th (yellow), th (green), 10th
(purple), 11th (red), and 12th (black).

.. School Friendship Networks
Now, we consider a school friendship network obtained
from the National Longitudinal Study of Adolescent Health
(http://www.cpc.unc.edu/projects/addhealth). For this network,
Ai j = 1 if either student i or j reported a close friendship
tie between the two, and Ai j = 0 otherwise. We focus on the
network of school 7 from this dataset, and our comparisons
between CL-BIC and BIC are done with respect to the degree-
corrected blockmodel log-likelihood (2). With 433 vertices,
Figure 3 shows the largest connected component of the result-
ing network. As shown in panel (a), CL-BIC selects the true
community number K = 6, roughly agreeing with the actual
grade labels, except for the black community. BIC, shown in
panel (b), selects nine communities, unnecessarily splitting the
7th and 8th graders. The “true” friendship network is shown in
panel (c).

We still conclude CL-BIC performs better than traditional
BIC. Except for the misallocation of the black community of
12th graders, the model selected by CL-BIC correctly labels
most of the remaining network. While BIC partially separates
the 10th graders and the 12th graders, a substantial portion
of the 10th graders are absorbed into the 9th grader commu-
nity (green). In addition, BIC further fragments 7th and 8th
graders into “noisy” communities. This is an extremely diffi-
cult community detection problem since, even for a “correctly”
specified k = 6, SCORE fails to assign all 12th graders to their
corresponding true grade. The black community selected by
SCORE in panel (a) mainly corresponds to female students
and Hispanic males, reflecting perhaps closer friendship ties
among a subgroup of students recently starting junior high
school.

Using the “goodness-of-fit” measure defined in (10),
we found that the CL-BIC community assignment leads
to (GF(z, ẑ6) = 0.811, which is slightly better than the
GF(z, ẑ9) = 0.810 obtained for BIC. For the MRmeasure given
in (11), the results for CL-BIC and BIC are MR(ẑ6) = 40.8 and
MR(ẑ9) = 33.3, respectively, again indicating the superiority of
the CL-BIC solution paired with SCORE.

In both examples, BIC tends to overestimate the “true” com-
munity number K, rendering very small communities that are
in turn penalized under the CL-BIC approach. This means CL-
BIC successfully remedies the robustness issues brought in by
spectral clustering, due to the misspecification of the underly-
ing stochastic blockmodels, and effectively captures the loss of
variance produced by using traditional BIC.

5. Discussion

There has been a tremendous amount of research in recover-
ing the underlying structures of network data, especially on the
community detection problem. Most of the existing work has
focused on studying the properties of the stochastic blockmodel
and its variants without looking at the possible model misspec-
ification problem. In this article, under the standard stochastic
blockmodel and its variants, we advocate the use of composite
likelihood BIC for selecting the number of communities due to
its simplicity in implementation and its robustness against cor-
related binary data.

Some extensions are possible. For instance, the proposed
methodology in this work is based on the spectral clustering
and SCORE algorithms, and it would be interesting to explore
the combination of the CL-BICwith other community detection
methods. In addition, most examples considered here are dense
graphs, which are common but cannot exhaust all scenarios in
real applications. Another open problem is to study whether the
CL-BIC approach is consistent for the degree-corrected stochas-
tic blockmodel, which is not necessarily true fromour numerical
studies.

Supplementary Materials

R Code and Trade Dataset: The R codes can be used to replicate the sim-
ulation studies and the real data analysis. The international trade network
dataset is also included.More details can be found in the file README con-
tained in the zip file. (CLBIC.zip)
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