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We propose herein a new portfolio selection method that switches between two distinct asset allocation
strategies. An important component is a carefully designed adaptive switching rule, which is based on
a machine learning algorithm. It is shown that using this adaptive switching strategy, the combined
wealth of the new approach is a weighted average of that of the successive constant rebalanced
portfolio and that of the 1/N portfolio. In particular, it is asymptotically superior to the 1/N portfolio
under mild conditions in the long run. Applications to real data show that both the returns and the
Sharpe ratios of the proposed binary switch portfolio are the best among several popular competing
methods over varying time horizons and stock pools.

Keywords: Aggregating algorithm; Asset return; Bayesian analysis; Portfolio selection; Supervised
learning; Universal portfolio

JEL Classification: C11, C38, C44, G11

1. Introduction

Portfolio selection is an important subject in economics and
finance.Among a variety of methods proposed in academia and
implemented in practice, Markowitz’s mean–variance portfo-
lio (Markowitz 1952) has become an industry standard and
Cover’s Universal Portfolio (CUP) (Cover 1991) is one of the
most competitive methods. Both methods have been further
extended and improved in the past decades. On the other hand,
the naive 1/N rule, which invests equally in each of the N
assets, serves as a benchmark for evaluating portfolio per-
formance. Empirical studies support that this naive 1/N rule
outperforms many sophisticated portfolios; see, for example,
DeMiguel et al. (2009). And it has been shown (Pflug et al.
2012) that the 1/N investment strategy is optimal under high
model ambiguity, which means, for a broad class of risk mea-
sures, as the uncertainty concerning the probabilistic model
increases, the optimal decisions tend to the uniform (1/N)
investment strategy.

Markowitz’s mean–variance portfolio, despite its popularity,
relies on the assumption about the statistical stationarity of
the asset returns as well as the knowledge of the underlying
distribution (mean and covariance matrix). In practice, one
first estimates the mean and covariance from historical data
and then plugs in the resulting estimators. It has been found

∗Corresponding author. Email: yangfeng@stat.columbia.edu

that Markowitz’s portfolio usually underperforms the naive
1/N rule, both in simulations and in practical implementations
(DeMiguel et al. 2009, Tu and Zhou 2011). On the other hand,
Cover (1991) showed that his universal portfolio approach
has the advantage of not relying on statistical assumptions
of the underlying returns and thus can be implemented with-
out parameter estimation. He demonstrated that the CUP is
very stable in terms of its performance and the method is
universally applicable. Further extensions of the CUP can be
found in Jamshidian (1992), Cover (1996), Ordentlich and
Cover (1996), Cover and Ordentlich (1996), Kalai and Vem-
pala (2003) and Cross and Barron (2003), among many others.
However, it is worth noting that the 1/N method can outperform
the CUP in many situations (Belentepe and Wyner 2005).

In the area of online prediction in computer science, the
aggregating algorithm (AA) proposed by Vovk (1990) general-
izes the weighted majority algorithm (Littlestone and Warmuth
1989) to a much wider class of outcome and action spaces.
Vovk and Watkins (1998) applied the AA to portfolio selection.
That application can be shown (see section 2) to result in
a generalization of the CUP that includes an extra learning
rate parameter η, with the CUP being just a special case with
η = 1. Ignoring the cases with η > 1, they focused on the
cases with η ≤ 1 and obtained a bound on the extra loss, as
compared with the best constant rebalanced portfolio (BCRP)
(Belentepe and Wyner 2005). Furthermore, Gaivoronski and
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764 T. Li et al.

Stella (2000) proposed what they called the successive con-
stant rebalanced portfolio (SCRP) method, which is a typical
follow-the-leader rule. We note that the AA approximates the
SCRP when the learning rate η is large (approaches infinity).
In summary, the AA method contains, as special cases, the 1/N,
the CUP and the SCRP with η being equal to 0, 1 and +∞,
respectively.

In this paper, we propose a method called binary switch port-
folio (BSP). We first investigate how to adaptively make use
of the AA with different values of η. We found that switching
between the 1/N rule, which is the most conservative constant
rebalanced portfolio (CRP), and the SCRP, which is the most
aggressive one, provides a simple and approximately optimal
investment strategy. A key ingredient in the BSP is the deter-
mination of when to switch between the two opposing strate-
gies. Our approach is to apply machine learning techniques to
develop a stable switching mechanism. Applications of such
machine learning techniques to the description of market
regimes and prediction of future returns have given rise to a
broad interest; Huang et al. (2005), Qian and Rasheed (2006)
and Patel et al. (2015).

Because the SCRP adopts the follow-the-leader rule and
therefore can be viewed as momentum-based strategy, while
the 1/N rule seeks to increase (decrease) the holdings of those
stocks that perform relatively worse (better) than the remaining
ones and therefore can be viewed as mean reversion-oriented,
the BSP may be interpreted as an investment strategy that
alternates between the momentum and mean reverting trading
strategies. The intuition for the existence of separate blocks
of securities and time ranges in which either a momentum-
based strategy or a mean reversion-based one performs
better can also be found in Hwang and Rubesam (2015). We
provide here further evidence that such blocks not only
exist, but also can be identified via machine learning
techniques.

This paper provides theoretical justification as well as
empirical evidence for the proposed BSP strategy. It first
applies the BSP to a data-set that contains 59 stocks from the
Hong Kong Stock Exchange from 2008 to 2013. For com-
parison with existing methods, two additional data-sets, one
containing the stocks from the New York Stock Exchange
from 1962 to 1984 (Cover 1991), and the other containing
the Fama–French 30 industries portfolios (Fama and French
1997), are also analysed. The results show that the BSP signif-
icantly outperforms the AA with a fixed learning rate, includ-
ing the 1/N rule, the CUP and the SCRP, under various time
horizons.

The rest of the paper is organized as follows. Section 2
provides a technical background by reviewing the AA ap-
proach and establishing a bound on the extra loss of the AA
as compared with the BCRP under any fixed learning rate.
In section 3, the BSP is introduced and its properties studied.
The BSP is applied to several data-sets in section 4 where
comparisons with other methods are also given. Some con-
cluding remarks are given in section 5. All the regularity con-
ditions and technical proofs are relegated to Appendices 1
and 2.

2. The AA approach

2.1. Commonly used portfolios
We are concerned with a market containing p stocks in which
discrete time points t0 < t1 < · · · < tn < · · · are under
consideration. Let sn, j be the price of the j th stock at time tn .
We assume that there is no dividend or transaction cost and
that short selling is not allowed. Define xn, j = sn, j/sn−1, j ,
the simple gross return (price relative) of stock j for the nth
time period (tn−1, tn]. Let xn = (xn,1, . . . , xn,p)T be the corre-
sponding vector. Here and in the sequel, xT denotes the trans-
pose of a vector x. A portfolio corresponds to a p-vector b =
(b1, . . . , bp)T , where b j ≥ 0 ( j = 1, . . . , p) and

∑
j b j = 1.

The set of such portfolios is denoted by B. Let bn = (bn,1, bn,2,

. . . , bn,p)T be the portfolio used in the nth time period (tn−1, tn].
Thus, Bn = (b1, b2, . . . , bn) can be viewed as an investment
strategy (portfolio sequence). Furthermore, let Wn be the total
(cumulative) wealth at time tn and assume, for simplicity, W0 =
1 (unit initial wealth). Therefore, the cumulative wealth under
strategy Bn is

Wn = Wn−1xT
n bn . (1)

The portfolio construction has to be non-anticipating, meaning
that it cannot use information from future stock prices. Let
Fn = σ {x1, . . . , xn} be the σ -field generated from random
variables x1, . . . , xn , representing the information accumula-
tion up to time tn . Then, bn ∈ Fn−1, meaning that bn is Fn−1
measurable (adapted to Fn−1).

A particularly simple class of investment portfolios is the
so-called CRP; see Cover (1991). For such portfolios, alloca-
tion proportions remain the same over the entire investment
horizon, i.e. b1 = b2 = · · · = bn . A special case is the
naive and widely used ‘1/N portfolio’, also known as uniformly
constant rebalanced portfolio, which takes form bn,1 = · · · =
bn,p = 1/p. We shall denote the 1/N portfolio by b(0), i.e.

b(0) =
(

1
p ,

1
p , . . . ,

1
p
)T

.

In general, for a CRP b, let

Wn(b) =
n∏

i=1

xT
i b

represent the total wealth at tn . Let

b∗
n = arg max

b∈B
Wn(b).

Since Wn(b) ≤ Wn(b∗
n), it follows that b∗

n would be the BCRP
if x1, . . . , xn were known in advance. We note that the BCRP
is not implementable in practice since the xi are not known
in advance and it serves only as a benchmark for purpose of
comparison.

Cover (1991) proposed what he called the universal portfolio
and showed that such a portfolio achieves asymptotically the
same growth rate as that of the BCRP. CUP is defined as
follows:

b(1)
n =

∫ bWn−1(b)π(db)∫ Wn−1(b)π(db)
, (2)
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Binary switch portfolio 765

where π is a pre-specified prior distribution on B.Acommonly
used prior, to be denoted here by π0, is the uniform distribution
on B.

TheAAwas introduced in the context of prediction strategies
by Vovk (1990) for general outcome and action spaces. Using
the AA, a general class of portfolios has the form

b(η)
n =

∫ b[Wn−1(b)]ηπ(db)∫
[Wn−1(b)]ηπ(db)

, (3)

where η ≥ 0 is a pre-chosen constant. In general, η may be
viewed as the ‘learning rate’ of the AA: a larger value of η

implies that among all portfolios, we put more weight on those
with better historical performances, and less weight on those
with poorer performances. As such, it can be understood as
a measure of the momentum level. In particular, the special
case of η = 1 corresponds to the CUP, whereas that of η = 0
corresponds to the 1/N rule when π is the uniform distribution.

To compare performances among different portfolios, we
need to consider the corresponding cumulative wealths and, in
particular, their growth rates. Denote by W (η)

n the cumulative
wealth at tn achieved by the AA with learning rate η. Cover
(1991) compared the log-wealth of the CUP, log W (1)

n , with
the log-wealth of the BCRP, log Wn(b∗

n), and showed that they
are of the same order. Vovk and Watkins (1998) further proved
that, when the prior π has a finite or countable support,

log W (η)
n ≥ log[Wn(b∗

n)]

− (p − 1) log n
2η

(1 + o(1)), for any η ∈ (0, 1].
(4)

On the other hand, we know that log W (η)
n ≤ log[Wn(b∗

n)] by
the definition of b∗

n . Since log W (η)
n is of order n, it is seen from

(4) that as η gets larger, the performance of the AA is closer to
that of the BCRP, i.e. the bound becomes tighter. However, (4)
does not hold for η > 1. In the next subsection, a systematic
study will be conducted for the case with η > 1.

2.2. A general bound for AA
In this subsection, we develop a general inequality that covers
all positive values of η and also extends (4). First, we need the
following regularity conditions.

(A.1) There exists a constant δ > 0, such that

lim
n

λmin

(
1
n

n∑

i=1

xi xT
i

xT
i xi

)

> δ,

where λmin(M) (λmax(M)) of matrix M denotes its
minimum (maximum) eigenvalue.

(A.2) There exist 0 < c1 < c2, such that, for i = 1, 2, . . . ,

n, each element of the vector xi falls in [c1, c2].
(A.3) The density of the prior π , denoted by f , exists and

is bounded away from 0, i.e. inf B f (b) > 0.

Conditions (A.1) and (A.2) are also assumed in
Gaivoronski and Stella (2000). Note that the trace of the non-
negative definite matrix in Condition (A.1), which always dom-
inates its maximum eigenvalue, is always 1. Thus, Condition
(A.1) implies that the matrix is well conditioned. Condition
(A.2) requires that the values of gross returns are bounded

away from 0 and ∞, i.e. price fluctuations of stocks cannot be
extreme. Condition (A.3) is a technical assumption, which is
common for a prior on a compact support.

The following lemma quantifies the difference between the
AA and the BCRP in terms of their corresponding asset allo-
cation vector at time n + 1 and n, respectively. Its proof will
be provided in appendix 2.

Lemma 2.1 Suppose Conditions (A.1)–(A.3) are satisfied.
Then, for any given constant η0 > 0, there exists N > 0
such that, for all n > N and η ∈ [η0,+∞),

∥b(η)
n+1 − b∗

n∥ ≤
√

2p
δη

log n
n .

Remark 1 From lemma 2.1, for a fixed η, the asset allocation
vector of the AA at time n + 1 is close to that of the BCRP at
time n in L2 norm when the time period is large. On the other
hand, for a fixed n, the conclusion also holds as the learning
rate η → ∞.

From lemma 2.1, we immediately have the following propo-
sition, showing that the SCRP (Gaivoronski and Stella 2000),
is the limiting case of the AA with η = ∞. As a result, we use
the notation b(∞)

n to represent the portfolio of the SCRP.

Proposition 2.2 Under Conditions (A.1)–(A.3), there exists
N > 0 such that, for all n > N,

lim
η→∞ b(η)

n = b(∞)
n .

Using lemma 2.1, the following theorem provides a lower
bound of the cumulative wealth W (η)

n for η ≥ η0, with the
proof given in appendix 2.

Theorem 2.3 Under Conditions (A.1)–(A.3), for any given
η0 > 0, there exists N > 0 such that, for all n > N and
η ∈ [η0,+∞),

log W (η)
n ≥ log[Wn(b∗

n)]

− min

{
(2

√
2c2 p

c1
√

δη

√
n log n + 2c2

2 p
c2

1δ
log n), (p − 1) log n

2ηI{η≤1}

}

,

(5)

where c1 and c2 are those defined in Condition (A.2), and
I{η≤1} = 1 if η ≤ 1 and 0 otherwise.
Remark 2 Theorem 2.3 generalizes the results in Vovk and
Watkins (1998) for η ≤ 1, Gaivoronski and Stella (2000) for
η → ∞ and extends to the case of η ∈ (1,+∞).

Remark 3 When η → ∞, (5) reduces to

log W (∞)
n ≥ log[Wn(b∗

n)] − 2c2
2 p log(n − 1)

c2
1δ

(1 + o(1)),

which was proved in Gaivoronski and Stella (2000).

Remark 4 The AA defines a class of portfolios indexed by the
learning rate η. The naive 1/N rule, the CUP and the SCRP
correspond to the AA with η = 0 (when π = π0), η = 1 and
η = ∞, respectively. Except for the 1/N rule, they have the
following asymptotic property,

1
n [log W (η)

n − log Wn(b∗
n)] → 0, (6)

as n → ∞.
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766 T. Li et al.

3. The switching method

In this section, we first study the behaviour of the oracle learn-
ing rate of theAA, and then propose a switching method, whose
asymptotic behaviour is delineated.

3.1. Oracle learning rate of the AA
At each time point tn , there exists a learning rate η∗n , which max-
imizes the returns during [tn−1, tn), n = 1, 2, . . ..
Specifically,

η∗
n = arg max

η∈[0,+∞]
yn(η), where yn(η) = xT

n b(η)
n , n ≥ 2,

and η∗
1 = 0. (7)

We call η∗n the ‘oracle learning rate’ as it leads to the maximum
return if one were given the information during [tn−1, tn),
which is unknown at time tn−1. As a result, it is desirable to
develop a strategy that can approximate this ‘oracle learning
rate’.

We recognize that η∗n is not adapted to Fn−1, i.e. it is not
known before tn . If it were known for n = 1, 2, . . ., then the
cumulative wealth W ∗n would then be achieved by the strategy

B∗
n = (b(η∗

1)

1 , b(η∗
2)

2 , . . . , b(η∗n)
n ).

Next we search for the η∗n in [tn−1, tn), n = 1, 2, . . . , to get
the cumulative wealth as close to W ∗n as possible. This W ∗n ,
instead of Wn(b∗

n), is our new benchmark in this section. It is
larger than W (η)

n for any fixed η. Actually, it turns out that it
is far larger than Wn(b∗

n), the benchmark we used in the last
section, in our numerical experience.

The following list is a segment of η∗n in 1974 based on daily
return data-set of Arcos Dorados Holdings Inc. and Ashford
Hospitality Prime Inc. in 1962–1984; see the data-set of New
York Stock Exchange analysed in section 4. We optimize η that
ranges among η ∈ A ={0, η1,1, η1,2, . . . , η1,100, η2,1, η2,2,
. . . , η2,400}, where η1,i , i = 1, 2, . . . , 100 is a geometric se-
quence with η1,1 = .0001, η1,100 = .9999, and η2,i , i =
1, 2, . . . , 400 is an equal-spaced sequence with η2,1 = 1,
η2,400 = 5000. Here, η∗n is calculated as follows. We first
evaluate b(η)

n using (3) for each n = 1, 2, . . . , and each η
in set A, where the set A is chosen to ensure the search area is
dense in both [0, 1] and [1, C], where C is sufficiently large.
Then we set η∗n = arg maxη∈A yn(η) where yn(η) is defined in
(7). Note that if η∗n = C , we set it as ∞. The list is

0 0 0 0 0 0 0 641 0 561 561 0 ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ 0 0 0 0

∞ 0 0 ∞ ∞ ∞ 0 ∞ 0 0 61 0 ∞ ∞ 61 0 0 ∞ 0 0 ∞ 0 ∞ 0 0 21 0
(8)

We observe in (8) that 0 and ∞ take a large proportion among
all possible η∗n, n = 1, 2, . . . . In fact, the rate of η∗n = 0 or ∞
is 84%.

The following lemma characterizes the derivative ∂ log[yn
(η)]/∂η, which will be used in Theorem 3.2 to quantify the
oracle learning rate η∗n under different scenarios.

Lemma 3.1 Let b
η
n−1 be a random variable that induces the

probability Pn,η on B. Then,
∂ log[yn(η)]

∂η
= Covη

(xTn b
η
n−1, log Wn−1(b

η
n−1)

)
/Eη(xTn b

η
n−1),

where Covη and Eη are covariance and expectation with re-
spect to b

η
n−1, conditioning on all xi , i = 1, 2, . . .

We note that bη
n and b(η)

n are different: the former is Random,
while the latter is its expectation, i.e. b(η)

n = Eηb
η
n−1. Using

lemma 3.1 we have the following theorem.

Theorem 3.2 Suppose that the prior π = π0.
(a) In general, we have

⎧
⎪⎪⎨

⎪⎪⎩

η∗n = 0, if Covη

(xTn b
η
n−1, log Wn−1(b

η
n−1)

)

< 0 for all η ∈ (0,+∞);
η∗n = +∞, if Covη

(xTn b
η
n−1, log Wn−1(b

η
n−1)

)

> 0 for all η ∈ (0,+∞).

(b) Suppose that Conditions (A.1), (A.2), and (A.4)–(A.6)
in appendix A hold. Then, for any constant α > 1 and
any sequence η1,n satisfying

n
(log n)α

η1,n −→ ∞,

there exists a constant N > 0 such that, for any n > N,
η∗

n ∈ [0, η1,n] ∪ {+∞}.
In addition , if Condition (A.7) also holds, then

η∗
n ∈ [η2,n, η1,n] ∪ {0,+∞}

for all large n provided nη2,n → 0.

Remark 5 The above theorem shows us the range of possible
values for η∗n . Part (a) provides a sufficient condition for η∗n ∈
{0,∞} and it follows directly from lemma 3.1. An intuitive
explanation is that the covariance term is a measure of agree-
ment between the future returns xTn b and the historical returns
log Wn−1(b). If the covariance term is always positive, then it
indicates that we should choose the SCRP. On the other hand,
if the term is always negative, it implies that one may need
to choose the more conservative 1/N portfolio. In particular,
suppose the prior π(db) has a discrete support. For example,
suppose π(b1) + π(b2) = 1 with positive π(b1) and π(b2).
Then, we have

Covη

(xT
n b

η
n−1, log Wn−1(b

η
n−1)

)

∝
[∫

xT
n b log Wn−1(b)W η

n−1(b)π(db)

][∫
W η

n−1(b)π(db)

]

−
[∫

xT
n bW η

n−1(b)π(db)

][∫
log Wn−1(b)W η

n−1(b)π(db)

]

∝ (xT
n b1 − xT

n b2)(log Wn−1(b1) − log Wn−1(b2)). (9)

Remark 6 Part (b) tells us that, under some regularity condi-
tions, [η2,n, η1,n]∪{0,∞} is the area to search for η∗n asymptot-
ically, where 1/n ≪ η2,n < η1,n ≪ (log n)α/n. Besides Con-
ditions (A.1)–(A.3) that are explained following lemma 2.1,
(A.4) can be found in lemma 4.1 of Cover (1991). Condition
(A.5) imposes a limit on the growth rate of the optimal portfolio
and this condition is generally satisfied. To see this, the optimal
portfolio is obviously better than the risk-free asset, which has
an exponential growth rate (positive interest rate). On the other
hand, in the long run, the average log-return of any stock should
be bounded from above.As a result, limiting the log-return to an
interval is reasonable. Condition (A.6) is a technical condition
which should be satisfied in most situations. In addition, it can
be relaxed by taking a higher order term in the Taylor series
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Binary switch portfolio 767

expansion in the proof, details of which are omitted. Condition
(A.7) assumes that xn b and log Wn−1(b) are correlated in
terms of non-vanishing correlation when n → ∞, as b is
random with distribution π(b).

It is also seen in (8) that usually there is a momentum for the
choice of η∗n, or a coherence of the η∗n and its neighbours η∗

n−1
and η∗

n+1. This motives us to derive a data-driven method of
choosing ηn to approximate η∗n in the next subsection.

3.2. The BSP
From theorem 3.2(b), one only needs to search the area {0,∞}
∪[η2,n, η1,n] for the optimal η. Note that if η1,n → 0, any fixed
learning rate in (0,∞) will be suboptimal in the long-time
horizon. To enhance stability and expedite computation, we
propose to restrict our search to only 0 and ∞, which we would
call a ‘binary switch’algorithm. Throughout the subsection, we
redefine

η∗
n = arg max

η∈{0,+∞}
yn(η) and W ∗

n = W ∗
n−1xT

n b(η∗n)
n ,

n = 1, 2, . . . . (10)

Define

C1 =
{n ≥ 2|η∗

n = η∗
n−1

}
and C2 =

{n ≥ 2|η∗
n ̸= η∗

n−1
}
.

(11)
Since η∗

n−1 is available at time tn , we will have an accurate
estimator of η∗n as long as the unknown sets C1 and C2 can
be precisely predicted. Now suppose a random function κ is a
classifier defined on N+\{1} that satisfies

κ : N+\{1} .→ {1, 2}, and κ(n) ∈ Fn−1,

for any n ∈ N+\{1}. (12)

Here, the value of κ(n) = i indicates that we estimate n ∈
Ci , for i = 1, 2. Based on the fact that there is a coherence
between η∗n and its neighbours, a binary switch procedure is to
be specified in the following. Here, we use #A to denote the
cardinality of the set A.

Definition 3.3 Let

En(κ) = #{k = 3, 4, . . . , n|κ(k) = 2, k ∈ C1 or κ(k) = 1,

k ∈ C2}/(n − 2), (13)

which is the empirical classification error up to time tn . Also,
let

η̃n =
{

η∗
n−1, if κ(n) = 1 and En−1(κ) ≤ u;

0, otherwise,

where u is a pre-specified positive threshold, and η∗n is defined
in (10). We call the AA with learning rate η̃n BSP. In addition,
B̃n = (b(0)

1 , b(η̃2)
2 , b(η̃3)

3 , . . . , b(η̃n)
n ) is called the binary switch

strategy.

Remark 7 The BSP is a conservative procedure in the sense
that it will follow the 1/N unless it is confident about the
assignments and η∗

n−1 = ∞.

Remark 8 Although risk is not being explicitly considered
in the CUP and its extensions, there is a strong connection
between CUP and the Markowitz portfolio, which balances
the return and risk, as being pointed out in Belentepe and

Wyner (2005). In fact, by the Taylor series expansion, when
x = op(1),

E[log(1 + x)] ≈ E(x) − 1
2

E[(x − E(x))2],

which can be viewed as a mean-variance rule or the well-
known Kelly’s rule (Kelly 1956). Consequently, the risk is
also controlled in the CUP and its variants including BSP.

To study the theoretical properties of the BSP, we define the
concept of compressed cumulative wealth.

Definition 3.4 Let {Gi , i ≥ 1} be a filtration. The correspond-
ing Gn−compressed cumulative wealth achieved by strategies
Bn = (b1, b2, . . . , bn) is defined by

exp

{ n∑

i=1

E[log xT
i bi |Fi−1,Gi ]

}

.

In particular, we will use W (0)
n|Gn , W̃n|Gn , and W ∗

n|Gn to denote

the Gn−compressed cumulative wealth using strategies B(0)
n

(1/N) , B̃n (BSP), and B∗n (oracle), respectively.

Remark 9 It is obvious that

W (0)
n|Fn = W (0)

n , W ∗
n|Fn = W ∗

n .

The compressed cumulative wealth compresses the informa-
tion of returns by conditional expectation on a filtration smaller
than Fn .

Define

C0,0 = {k = 2, 3, . . . , n|η∗
k−1 = 0, η∗

k = 0},
C∞,∞ = {k = 2, 3, . . . , n|η∗

k−1 = +∞, η∗
k = +∞},

C0,∞ = {k = 2, 3, . . . , n|η∗
k−1 = 0, η∗

k = +∞},
C∞,0 = {k = 2, 3, . . . , n|η∗

k−1 = +∞, η∗
k = 0}.

Then, C1 = C0,0 ∪ C∞,∞, C2 = C0,∞ ∪ C∞,0, and we have the
following result for the wealth achieved by the BSP.

Theorem 3.5 If Conditions (B.1) and (B.2) in appendix A
holds, then, as n → ∞,

P
{

log W̃n|Gn ≥ ϒ0,∞
ϒ∞,∞ + ϒ0,∞

log W (0)
n|Gn

+ ϒ∞,∞
ϒ∞,∞ + ϒ0,∞

log W ∗
n|Gn − u(ϒ∞,∞ + ϒ∞,0)

}
→ 1,

whereGk = σ (η∗
1, η∗

2, . . . , η∗
k )andϒi, j = ∑

E[| log xT
k b(∞)

k −
log xT

k b(0)
k |
∣∣Fk−1,Gk], for i = 0,∞, j = 0,∞, and the

summation over k ∈ Ci, j . Moreover, if both Conditions (B.1)
and (B.2) hold, then P

{
W̃n|Gn ≥ W (0)

n|Gn

}
→ 1 as n → ∞.

Remark 10 Condition (B.1) says the classification error rate is
less than u, while Condition (B.2) says the bound u should not
be too large. Thus, Conditions (B.1) and (B.2) provide an upper
bound for the classification error rate of the BSP strategy. If the
classification error is 0, then (B.1) and (B.2) hold automatically.
The classification error could be interpreted as a risk measure
and Conditions (B.1) and (B.2) indicate the risk should be
carefully controlled; see also below on measure of risk. It is
certainly desirable not to impose structural assumptions on the
returns.
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768 T. Li et al.

Remark 11 Theorem 3.5 shows that, when the classification
error is small, the Gn−compressed cumulative wealth using
the BSP is asymptotically larger than the weighted average of
the compressed wealth of the oracle aggregating algorithm, i.e.
the AA using the oracle learning rate, and the one using the 1/N
portfolio. Under additional assumptions, the BSP is uniformly
better than the 1/N in terms of compressed cumulative wealth.

To this end, we recommend using the K -nearest neighbour
method, which is model free. Specifically, for a given K , let

κ(n)

=
{

1, if n > K + 1, and
#
{
{n−K ,n−K+1,...,n−1}∩C1

}

#{n−K ,n−K+1,...,n−1} > 0.5,

2, else.

The description of the BSP algorithm is given as follows:

Algorithm 1 For a given threshold u > 0, η1 = 0, η2 =
∞, classification rule κ that satisfies (12), n ≥ 3, xi , i =
1, 2, . . . , n − 1,

Step 1 Calculate b(∞)
i according to (3), i = 1, 2, . . . , n;

Step 2 Calculate η∗
i according to (10), i = 1, 2, . . . , n − 1,

and C j ∩{2, 3, . . . , n−1} according to (11), j = 1, 2;
Step 3 Calculate κ(i), i = 2, 3, . . . , n and the empirical

classification error En−1(κ) according to (13).
Step 4 We have the output portfolio at tn,

b(η̃n)
n =

{
b(η∗

n−1)n , if κ(n) = 1 and En−1(κ) ≤ u;
b(0), otherwise.

4. Empirical studies

In this section, we show the empirical performance of the BSP
for three data-sets, and compare it with those of the 1/N, the
CUP, the SCRP and other portfolio construction methods. To
evaluate the overall performance of all methods, we calculate
and compare the ending cumulative wealth and Sharpe ratio
using all methods to select portfolios from each combination of
two stocks. We use (i, j) ∈ {(i, j)|i ̸= j, i, j = 1, 2, . . . , p},
to represent the combination of the i th and j th stocks. Note
that there are p(p − 1)/2 different combinations. The corre-
sponding returns at tn could be denoted by (xn,i , xn, j )T for the
(i, j) combination. For each method, calculate b⟨i, j⟩

n at tn as
the portfolio for (xn,i , xn, j )T , where b⟨i, j⟩

n ∈ {b ∈ B|bn,k =
0,∀k ̸∈ {i, j}}. The corresponding cumulative wealth and the
empirical Sharpe ratio using combination (i, j) are denoted by

W ⟨i, j⟩
n =

n∏

i=1

xT
n b⟨i, j⟩

n ,

S⟨i, j⟩ =
En
[(

xT
1 b⟨i, j⟩

1 , . . . , xTn b⟨i, j⟩
n

)]
− 1

√
Varn

[(
xT

1 b⟨i, j⟩
1 , . . . , xTn b⟨i, j⟩

n
)] , (14)

where En, and Varn indicate the sample mean and variance.

4.1. Hang seng index data-set
The first data-set includes the daily returns of the 59 constituent
stocks of the Hong Kong Hang Seng Index (HSI), from 13
March 2008 to 16 April 2013. For each method, a boxplot or

a quantile-probability plot of {log W ⟨i, j⟩
n , i, j = 1, . . . , p, i <

j} or {S⟨i, j⟩, i, j = 1, . . . , p, i < j} is used to characterize the
overall performance for each method. Figure 1(a) and (b) show
boxplots that compare the cumulative log-wealth and Sharpe
ratio defined by (14), using four different methods i.e. the AA
with η = 0, η = 1, η = ∞ and the BSP.

We find that, in general, the performance of the AA with
η = 0 (1/N portfolio) and the BSP are better than that of the
AA with η = 1 or ∞. To further compare AA with η = 0 and
the BSP, the quantile-probability plots are shown in figure 2(a)
and (b). We find that, for most of α ∈ [0, 1], the corresponding
α quantile of log-wealth and Sharpe ratio of the BSP are above
those of the 1/N portfolio; see the exact quantile value and the
mean value in table 1, where ‘Log-W’ and ‘SR’ represent the
log-wealth and empirical Sharpe ratio, respectively.

We also report the median of the annual Sharpe ratios in
table 2 for the AA with η = 0, 0.05, 0.1, 0.5, 1, ∞ and the
BSP. Here, results using the 1/N method are considered to be
the baseline. We observe that the BSP has the largest annual
Sharpe ratio for virtually every year. The results of the AA with
other learning rates are omitted as they all underperform the
BSP.

Lastly, we study the investment on multiple stocks where the
BSP is compared with the buy-the-winner strategy (Jegadeesh
and Titman 1993). Following Jegadeesh and Titman (1993),
we employ the ‘J -month/K−month’ trading strategy, denoted
by ‘(J, K )’, and buy the 6 stocks with largest average returns
(top decile). At the beginning of each month we invest 1/K of
current wealth on the six winner stocks. From table 3, we see
that among different trading strategies, buy-the-winner with
3-month/3-month strategy has the largest average returns for
the first four years, but performs poorly in 2012–2013. On
the other hand, the BSP performs competitively and is stable
throughout all the periods considered. In this sense, the BSP
can be a viable investment strategy.

4.2. New York Stock Exchange data-set
The second data-set contains the daily returns of 36 stocks in
the New York Stock Exchange for the period of 1962–1984.
This data-set was used by Cover (1991), Helmbold et al. (1998)
and Gaivoronski and Stella (2000). We compare the resulting
using four portfolios, i.e. the AA with η = 0, 1 and ∞ and the
BSP. The corresponding boxplot and the quantile-probability
plot are rendered in figure 1(c), (d), 2(c) and (d), with values
given in table 4. The annual Sharpe ratio values are reported
in table 5. From these results, we arrive at the same conclusion
as in the previous subsection that the overall performance of
the BSP is the best among the four portfolios in terms of both
Sharpe ratio and the cumulative log-wealth.

To gain insights, we now use three representative stock
pairs to show the working mechanism of the BSP. The first
pair Ford and Schlum tends to be a ‘follow-the-leader’ type,
since more of its η∗n are ∞. The observation can be verified by
examining figure 3, which displays the proportion of Ford in
the BSP over time. It is also clear that the cumulative wealth
of BSP is much larger than that of others. The pair Fischer and
Morrison tends to be a ‘half-1/N-half-follow-the-leader’ type.
Figure 4(b) displays the proportion of Fischer over time
using the BSP, which demonstrates that there exist blocks of
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Figure 1. Boxplot comparison of the AA with η = 0, 1, ∞ and the BSP in terms of cumulative log-wealth and Sharpe ratio. Panels (a) and
(b): Hong Kong HSI; Panels (c) and (d): NYSE; Panels (e) and (f): Fama–French 30 Industry Classification.

time for the same type of portfolios, including the 1/N.
See figure 5 for stocks Iroquois and Kinark. Figure 5(b) shows
the proportion of Iroquois over time using the BSP, which is
a constant 0.5. The BSP coincides with the 1/N in figure 5(a).
Thus, we can conclude, at least for this data-set, the BSP is
indeed an adaptive portfolio selection method that can pick
the ‘optimal’ portfolio in all three very different scenarios.

4.3. Fama–French 30 Industry Classification data-set
The third data-set is the monthly return data-set of Fama–
French 30 Industry Classifications (Fama and French 1997),
which is available from Kenneth French’s webpage. The time
period is from July 1926 to December 2011. From tables 6
and 7 and figures 1(e), (f), 2(e) and (f), we again observe
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Figure 2. Quantile plot comparison of the AA with η = 0 and the BSP in terms of cumulative log-wealth and Sharpe ratio. Panels (a) and
(b): Hong Kong HSI; Panels (c) and (d): NYSE; Panels (e) and (f): Fama–French 30 Industry Classification.
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Binary switch portfolio 771

Table 1. Comparison of the logarithm of cumulative wealth and empirical Sharpe ratio using Hong Kong HSI.

Log-W Min .25 quantile Median Mean .75 quantile Max

η = 0 −1.5774 −0.1914 0.0985 0.0709 0.3418 1.9029
η = 1 −1.6867 −0.1922 0.0745 0.0591 0.3115 1.8022
η = ∞ −2.4567 −0.4017 −0.1480 −0.1148 0.1066 1.6769
BSP −1.7405 −0.1295 0.1392 0.1240 0.3934 1.7222

SR
η = 0 −0.0258 0.0065 0.0155 0.0156 0.0239 0.0679
η = 1 −0.0290 0.0062 0.0148 0.0149 0.0227 0.0662
η = ∞ −0.0443 0.0000 0.0082 0.0094 0.0163 0.0615
BSP −0.0283 0.0083 0.0168 0.0172 0.0254 0.0625

Table 2. Comparison of the increment over the 1/N portfolio on the median of the annual Sharpe ratios using Hong Kong HSI data-set.

Year η = 0 η = 0.05 η = 0.1 η = 0.5 η = 1 η = ∞ BSP

2008–2009 0 −0.0010 −0.0021 −0.0180 −0.0327 −0.1800 0.0549
2009–2010 0 −0.0005 −0.0011 −0.0140 −0.0299 −0.3609 −0.0109
2010–2011 0 0.0002 0.0031 0.0072 0.0081 0.0528 −0.0075
2011–2012 0 −0.0006 −0.0005 −0.0058 −0.0122 −0.0890 0.0048
2012–2013 0 0.0011 0.0051 0.0147 0.0250 0.0702 0.0296

Table 3. Comparison of the increment over the 1/N portfolio on the median of the annual returns and annual Sharpe ratios using the BSP
and other approaches with Hong Kong HSI data-set.

Ann. return WSCRP(.9995) SP(.45) EG(.05) (3,3) (6,3) (6,6) (12,6) BSP

2008–2009 −0.0005 0.0068 −0.0022 0.0741 0.1996 0.2108 −0.1216 0
2009–2010 0.1327 −0.0034 −0.0015 0.0480 0.0914 0.0589 −0.2592 0.0129
2010–2011 −0.1461 −0.0005 −0.0006 0.0982 0.2082 0.1874 0.1590 0.0011
2011–2012 0.0284 0.0019 0.0003 0.1026 −0.0428 −0.0443 −0.0585 0.1158
2012–2013 0.0527 0.0006 0.0017 −0.1802 −0.0966 −0.0056 0.0733 0.0513

SR
2008–2009 −0.0063 0.0170 −0.0093 0.0704 0.2830 0.2033 −0.3803 0
2009–2010 0.2590 −0.0079 −0.0014 −0.3296 −0.2423 −0.2146 −0.6285 0.0264
2010–2011 −0.6959 −0.0020 −0.0032 0.2304 0.5367 0.5030 0.3459 −0.0528
2011–2012 0.1257 0.0064 0.0010 0.3596 −0.0525 −0.0194 −0.0021 0.3999
2012–2013 0.2285 0.0032 0.0096 −0.8590 −0.4734 −0.0484 0.3139 0.2286

Table 4. Comparison of the logarithm of cumulative wealth and empirical Sharpe ratio using NYSE data-set.

Log-W Min .25 quantile Median Mean .75 quantile Max

η = 0 1.4459 2.3658 2.8133 2.8535 3.3255 4.7765
η = 1 1.3874 2.3071 2.6855 2.7354 3.1901 4.3311
η = ∞ 0.5884 1.6902 2.1819 2.2289 2.6914 3.9290
BSP 1.4595 2.4238 2.9731 2.9943 3.4853 5.5021

SR
η = 0 0.0274 0.0384 0.0427 0.0431 0.0475 0.0624
η = 1 0.0256 0.0367 0.0416 0.0416 0.0462 0.0603
η = ∞ 0.0144 0.0268 0.0329 0.0326 0.0369 0.0546
BSP 0.0267 0.0384 0.0431 0.0443 0.0496 0.0777
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772 T. Li et al.

Table 5. Comparison of the increment over the 1/N portfolio on the median of the annual Sharpe ratios using Cover’s 62–84 data-set.

Year η = 0 η = .05 η = .1 η = .5 η = 1 η = ∞ BSP

1962–1963 0 −0.0003 −0.0007 −0.0074 −0.0155 −0.4656 −0.0083
1963–1964 0 −0.0004 −0.0008 −0.0026 −0.0026 −0.1078 −0.0085
1964–1965 0 −0.0018 −0.0035 −0.0151 −0.0285 −0.3493 0.0122
1965–1966 0 −0.0014 −0.0028 −0.0101 −0.0205 −0.2943 0.0148
1966–1967 0 −0.0004 −0.0023 −0.0063 −0.0310 −0.4214 0.0058
1967–1968 0 0.0002 −0.0012 −0.0211 −0.0310 −0.2536 0.0069
1968–1969 0 0.0007 −0.001 −0.0228 −0.0471 −0.1754 0.0264
1969–1970 0 −0.0018 −0.0037 −0.0073 −0.0183 −0.0128 −0.0067
1970–1971 0 0.0022 0.0002 −0.0109 −0.0197 −0.3461 −0.0039
1971–1972 0 0.0202 0.0349 0.0143 0.1521 0.3254 0.1333
1972–1973 0 0.0036 0.0078 0.0068 0.0108 −0.0860 0.0271
1973–1974 0 −0.001 −0.0019 −0.0088 −0.0295 −0.0650 0.0392
1974–1975 0 −0.0037 −0.0082 −0.0262 −0.0477 −0.2384 0.0661
1975–1976 0 −0.001 −0.003 −0.0169 −0.0484 −0.2881 0.0354
1976–1977 0 −0.0039 −0.0028 −0.0336 −0.0988 −0.1485 0.0919
1977–1978 0 0.0004 −0.0001 0.0075 0.0222 0.0706 0.0212
1978–1979 0 −0.0039 −0.0062 −0.0105 −0.0234 −0.0331 −0.0043
1979–1980 0 −0.002 −0.003 0.0161 0.0222 −0.0017 −0.0001
1980–1981 0 −0.0025 −0.0057 −0.0179 −0.0116 −0.0939 0.0362
1981–1982 0 −0.0055 −0.0107 −0.024 −0.0505 −0.1367 0.0341
1982–1983 0 −0.0005 0.0012 −0.019 −0.0342 −0.2701 0.0093
1983–1984 0 −0.0013 −0.0027 −0.0105 −0.0275 −0.0886 0.0083

Table 6. Comparison of the logarithm of cumulative wealth and empirical Sharpe ratio using FF30 data-set.

Log-W Min .25 quantile Median Mean .75 quantile Max

η = 0 7.6302 9.6011 10.2181 10.1843 10.7737 12.6007
η = 1 7.4838 9.5927 10.1805 10.1581 10.7351 12.4157
η = ∞ 6.7220 9.3893 9.9754 9.9103 10.4905 12.1894
BSP 7.1960 9.7343 10.3770 10.3957 11.0318 13.3515

SR
η = 0 0.1281 0.1559 0.1671 0.1678 0.1780 0.2224
η = 1 0.1270 0.1569 0.1668 0.1677 0.1771 0.2197
η = ∞ 0.1186 0.1542 0.1627 0.1630 0.1698 0.2076
BSP 0.1234 0.1581 0.1683 0.1699 0.1810 0.2198

Table 7. Comparison of the increment over the 1/N portfolio on the median of the annual Sharpe ratios using FF30 monthly return data-set.

Year η = 0 η = 0.05 η = 0.1 η = 0.5 η = 1 η = ∞ BSP

1926–1936 0 −0.0001 −0.0004 −0.0018 −0.0038 −0.0237 −0.0025
1936–1946 0 −0.0002 −0.0003 −0.0025 −0.0075 −0.0394 0.0008
1946–1956 0 0.0004 −0.0003 −0.0023 −0.0030 0.0057 0.0188
1956–1966 0 0.0001 −0.0014 −0.0129 −0.0183 −0.1022 −0.0003
1966–1976 0 0.0005 0.0005 0.0006 −0.0003 0.0080 0.0101
1976–1986 0 0.0001 −0.0003 0.0028 −0.0020 −0.0672 0.0016
1986–1996 0 0.0009 0.0018 0.0080 0.0096 0.0412 0.0158
1996–2006 0 0.0001 −0.0004 −0.0038 −0.0039 −0.0241 0.0109
2006–2011 0 −0.0002 0.0010 0.0043 0.0060 0.0343 0.0173

similar results that the BSP outperforms the AA with a fixed
learning rate η for a range of different η values. Using this
data-set, we also compare the BSP with other methods, i.e. the
weighted successive constant rebalanced portfolios (WSCRP)
of Gaivoronski and Stella (2000), the switching portfolios (SP)

of Singer (1997) and the exponential gradient method (EG)
of Helmbold et al. (1998). Note that the three methods con-
tain a tuning parameter γ . We see clearly from table 8 that
the BSP attains the largest annual Sharpe ratios in most
cases.
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Figure 3. The stock pair Ford and Schlum.
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Figure 4. The stock pair Fisch and Morris.
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Figure 5. The stock pair Iroqu and Kinark.
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Table 8. Comparison of the increment over the 1/N portfolio on the median of the annual Sharpe ratios using FF30.

Year

WSCRP γ = .999 γ = .9995 γ = .9999 γ = .99995 γ = .99999 BSP

1926–1936 0.0013 0.0009 −2.43e−05 1.69e−04 −3e−05 −0.0025
1936–1946 −0.0043 −0.003 −2.14e−04 −1.47e−04 −5.17e−06 0.0008
1946–1956 0.0119 0.013 2.56e−03 9.52e−04 −2.51e−04 0.0188
1956–1966 −0.0182 −0.0066 −1.71e−03 −6.94e−04 −4.46e−04 −0.0003
1966–1976 0.0076 0.0023 2.88e−04 −3e−04 −6.22e−05 0.0101
1976–1986 −0.0285 −0.013 −2.85e−03 −9.38e−04 −3.59e−04 0.0016
1986–1996 0.0154 0.009 2.17e−03 9.5e−04 1.76e−04 0.0158
1996–2006 −0.032 −0.013 −5.75e−04 −7.34e−05 3.89e−04 0.0109
2006–2011 0.001 0.0034 −8.56e−04 −3.66e−04 5.24e−04 0.0173

SP γ = .025 γ = .045 γ = .06 γ = .075 γ = .1

1926–1936 0.00065 0.0024 0.0025 0.0013 0.0008 −0.0025
1936–1946 0.0016 0.0026 0.0021 0.0021 0.0015 0.0008
1946–1956 0.0023 0.0057 0.0055 0.0049 0.0026 0.0188
1956–1966 0.0068 0.0076 0.008 0.0066 0.0045 −0.0003
1966–1976 0.0078 0.0075 0.0067 0.0062 0.0057 0.0101
1976–1986 0.0023 0.0071 0.0044 0.004 0.0044 0.0016
1986–1996 0.0068 0.009 0.0081 0.0067 0.0044 0.0158
1996–2006 −0.0038 0.00074 0.0007 0.0017 0.0021 0.0109
2006–2011 −0.0026 −0.00057 0.001 0.001 0.0034 0.0173

EG γ = .02 γ = .035 γ = .05 γ = .065 γ = .08

1926–1936 0.00027 0.00047 0.00051 0.00022 −0.00007 −0.0025
1936–1946 −0.00015 −0.00011 −0.00007 −0.00034 −0.00028 0.0008
1946–1956 0.00002 0.00298 0.00314 0.00328 0.00233 0.0188
1956–1966 −0.00124 −0.00229 −0.00328 −0.00426 −0.00550 −0.0003
1966–1976 −0.00037 −0.00052 −0.00066 −0.00189 −0.00188 0.0101
1976–1986 −0.00014 −0.00057 −0.00185 −0.00453 −0.00593 0.0016
1986–1996 −0.00004 −0.00007 −0.00010 0.00088 0.00203 0.0158
1996–2006 −0.00157 −0.00275 −0.00393 −0.00513 −0.00406 0.0109
2006–2011 0.00071 0.00134 0.00197 0.00260 0.00196 0.0173

5. Concluding remarks

This paper proposes a new portfolio construction method that
switches between two opposing investment strategies: one
momentum-based and the other mean reverting-oriented. It is
motivated by the intuition that there exist blocks of periods
in which either the momentum-based or the mean reverting
approach is preferred and that the blocks may be identified via
suitable machine learning algorithms. Theoretical justification
as well as empirical evidence show the superiority of the new
method.

In practice, there may exist related macro- and micro-
variables. It would be interesting to see how such variables
can be incorporated into the learning algorithms. Furthermore,
our analysis here does not take into account transaction costs,
which could make the situation considerably more
complicated.
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Appendix 1. Conditions

We introduce several additional conditions that are used to prove the
theoretical results.

(A.4) All stocks are strictly active: there exist positive constants N
and c3, such that for any n > N , b∗

n, j ≥ c3, j = 1, 2, . . . , p.

(A.5) There exist positive constants N , c4 and c5, such that for any
n > N , log Wn(b∗n)/n ∈ [c4, c5].

(A.6) There exist positive constants N , c6, such that for any n > N ,
∣∣u′T

0 J̃−1
1 u′

0 − (p −2)trace(J̃−1
1 J̃0)−γn(p −1)2/2

∣∣ > c6

where

J̃0 =
(x′

n+1 − xn+1,p1p)(x′
n+1 − xn+1,p1p)T

(xT
n+1b∗n)2

;

J̃1 = 1
n

n∑

i=1

(x′
i − xi,p1p)(x′

i − xi,p1p)T

(xT
i b∗n)2

,

u′
0 =

(
u′

0,1, . . . , u′
0,p−1

)
, γn = n

log Wn(b∗n)
,

where x′
i = (xi,1, . . . , xi,p−1)T and u′

0, j = (xn+1, j −
xn+1,p)/(xT

n+1b∗
n+1), i = 1, 2, . . . , n, j = 1, 2, . . . ,

p − 1.

(A.7) There exist positive constants N and c7, such that, for any
n > N ,

1
n
∣∣∣
∫

B
xTn b log Wn−1(b)dπ(b) −

∫

B
log Wn−1(b)dπ(b)

×
∫

B
xTn bdπ(b)

∣∣∣ > c7.

(B.1) E(κ) ≤ u, where

E(κ) = lim P
(n ∈ C1, κ(n) = 2 or n ∈ C2, κ(n) = 1

)

represents the upper limit of the classification error as n →
∞.

(B.2)

limn→∞ P
{

ϒ∞,∞
ϒ∞,∞ + ϒ∞,0

≥ u
}

= 1.

Appendix 2. Proofs

Proof of Lemma 2.1 For any δ0 > 0, denote

Bδ0(b∗) = {b ∈ B∣∣∥b − b∗∥ < δ0}.
Let

b̃n(δ0) = arg max
b∈B\Bδ0 (b∗n)

Wn(b) and ζn =
√

2p
(1 − 2ϵ)ηδ

log n
n ,

(B1)
where ϵ is an arbitrary constant in (0, 0.5). Note that B\Bδ0(b∗n) is
the compact complement of Bδ0(b∗n) within B. From theorem 2 and
equation (16) in Gaivoronski and Stella (2000), we have

1
n log Wn

(b̃n(ζn)
)
− 1

n log Wn(b∗n)

≤
∂
[

1
n log Wn(b∗n)

]

∂bT (b̃n(ζn) − b∗n) − δ∥b̃n(ζn) − b∗n∥2

2
. (B2)

If b∗n is an inner point of B,
∂[ 1

n log Wn(b∗n)]
∂b = 0. On the other hand,

if b∗n is on the boundary of B,

∂
[

1
n log Wn(b∗n)

]

∂bT (b̃n(ζn) − b∗n)

=
∂
[

1
n log Wn

(
b∗n + β

(b̃n(ζn) − b∗n
))]

∂β

= lim
β→0+

1
n log Wn

(
b∗n + β

(b̃n(ζn) − b∗n
))

− 1
n log Wn

(b∗n
)

β
≤ 0,

due to the optimality of b∗n . Continue with (B2), we have

log Wn
(b̃n(ζn)

)
− log Wn(b∗n) ≤ −nδ∥b̃n(ζn) − b∗n∥2

2
≤ −nδζ 2n

2
.

(B3)

Choose ςn = (δζ 2n c1ϵ)/(2c2
√p). Then, ςn → 0 as n → ∞ by

the definition of ζn in (B1). For any b ∈ Bςn (b∗n), it follows from
the mean value theorem and Cauchy inequality that there exists some
b1 ∈ B, such that

log Wn
(b)− log Wn(b∗n) = ∂ log Wn(b1)

∂bT (b − b∗n)

≥ −ςn

√
∂ log Wn(b1)

∂bT
∂ log Wn(b1)

∂b .

Condition (A.2) ensures ∥∂ log Wn(b)/∂b∥ ≤ nc2
√p/c1. Then

log Wn
(b)− log Wn(b∗n) ≥ −nc2

√p
c1

ςn = −nδζ 2n ϵ

2
. (B4)

From (B3) and (B4), we have ςn < ζn, and for any b ∈ Bςn (b∗n),

log Wn
(b) − log Wn(b̃n(ζn)) = [log Wn

(b) − log Wn
(b∗n

)
]

+ [log Wn
(b∗n

)
− log Wn(b̃n(ζn))] ≥ nδζ 2n (1 − ϵ)/2.
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By some straightforward calculation,

limn→∞

∫
B\Bζn (b∗n)(b j )i [Wn(b)]ηπ(db)
∫

Bζn (b∗n)(b j )i [Wn(b)]ηπ(db)

≤ limn→∞[Wn(b̃n(ζn))]η
∫

B\Bζn (b∗n)(b j )i π(db)
∫

Bζn (b∗n)(b j )i [Wn(b)]ηπ(db)

= limn→∞

∫
B\Bζn (b∗n)(b j )i π(db)

∫
Bζn (b∗n)(b j )i [Wn(b)/Wn(b̃n(ζn))]ηπ(db)

≤ limn→∞

∫
B(b j )i π(db)

∫
Bςn (b∗n)(b j )i [Wn(b)/Wn(b̃n(ζn))]ηπ(db)

≤
∫

B(b j )i π(db)

limn→∞ exp(
nδζ 2n (1−ϵ)η

2 )
∫

Bςn (b∗n)(b j )i π(db)
! /, (B5)

which is related to the power i = 0, 1 and subscript j = 1, 2, . . . , p.
For the uniform prior π = π0,

/ ≤ 1

limn→∞ exp(
nδζ 2n η

2 (1 − ϵ))h(ςn)
= O(n−p 1−ϵ

1−2ϵ n p) → 0

(B6)

holds uniformly in η, where h(ςn) = ς
p
n /p2p−1. To understand why,

we assume, without loss of generality, j = p. Observe

min
b∗

∫

Bςn (b∗)
(bp)i π0(db) ≥ min

b∗

∫

Bςn (b∗)
bpπ0(db),

which could be seen as the volume of an approximate cylinder with
the top in the area of B, and with the minimum value achieved at the
boundary of B. That is,

min
b∗

∫

Bςn (b∗)
bpπ0(db) ≥

∫

Bςn (e1)
bpπ0(db)

≥
∫ 1− p−2

p2 ςn

1− ςn
p

⎡

⎣1 −
p−1∑

j=1

b j

⎤

⎦ db1

∫ ςn
p2

0
db2

∫ ςn
p2

0
db3

. . .

∫ ςn
p2

0
dbp−1 = ς

p
n

p2p−1 .

where e j is a p × 1 vector with the j th element being 1 and all the
rest being 0. It is straightforward to show that the above inequality
holds for i = 0, 1 and p substituted by j = 1, 2, . . . , p − 1.

For a general continuous prior π, let f (·) be the density function of
π(·). Since the support of the prior is the compact set B, there exists
a constant C2 > 0 with inf b∈B f (b) ≥ C2. Then,

/ ≤
∫

B(b j )0π(db)

limn→∞ exp(
nδζ 2n η

2 (1 − ϵ))
∫

Bδ1 (b∗n)(b j )i π(db)

≤
∫

B(b j )0π(db)

limn→∞ exp(
nδζ 2n η

2 (1 − ϵ))C2
∫

Bδ1 (b∗n)(b j )i π0(db)
.

It follows from (B6) that, / = O(n−p ϵ
1−2ϵ ) → 0. Recall the defini-

tion of bη
n+1 in (3), we have

limn→∞ ∥bη
n+1 − b∗n∥

= limn→∞

∥∥∥∥

∫ b[Wn(b)]ηπ(db)∫
[Wn(b)]ηπ(db)

− b∗n
∥∥∥∥

=
∥∥∥∥ limn→∞

∫
Bζn (b∗n) b[Wn(b)]ηπ(db) +

∫
B\Bζn (b∗n) b[Wn(b)]ηπ(db)

∫
Bζn (b∗n)[Wn(b)]ηπ(db) +

∫
B\Bζn (b∗n)[Wn(b)]ηπ(db)

− b∗n
∥∥∥∥

=
∥∥∥∥∥ limn→∞

∫
Bζn (b∗n) b[Wn(b)]ηπ(db)
∫

Bζn (b∗n)[Wn(b)]ηπ(db)
− b∗n

∥∥∥∥∥

= limn→∞

∥∥∥∥∥

∫
Bζn (b∗n)(b − b∗n)[Wn(b)]ηπ(db)
∫

Bζn (b∗n)[Wn(b)]ηπ(db)

∥∥∥∥∥ . (B7)

Since / → 0 uniformly in η, (B7) holds uniformly in η. The conclu-
sion then follows from the fact that

∥∥∥∥∥

∫
Bζn (b∗n)(b − b∗n)[Wn(b)]ηπ(db)
∫

Bζn (b∗n)[Wn(b)]ηπ(db)

∥∥∥∥∥ ≤ ζn .

"
Proof of Lemma 3.1 The derivative of log yn(η) is

∂ log yn(η)

∂η
=

∂ log
∫ xTn bWη

n−1(b)π(db)

∂η

−
∂ log

∫ Wη
n−1(b)π(db)

∂η

=
∫ xTn bWη

n−1(b) log Wn−1(b)π(db)
∫ xTn bWη

n−1(b)π(db)

−
∫ Wη

n−1(b) log Wn−1(b)π(db)
∫ Wη

n−1(b)π(db)

=
∫ Wη

n−1(b)π(db)
∫ xTn bWη

n−1(b)π(db)

[∫ xTn bWη
n−1(b) log Wn−1(b)π(db)
∫ Wη

n−1(b)π(db)

−
∫ Wη

n−1(b) log Wn−1(b)π(db)
∫ Wη

n−1(b)π(db)

∫ xTn bWη
n−1(b)π(db)

∫ Wη
n−1(b)π(db)

]

= Covη
(xTn b

η
n−1, log Wn−1(b

η
n−1)

)
/Eη(xTn b

η
n−1).

As a result, the conclusion holds. "
Proof of Theorem 2.3 Define

/n = log W (η)
n − log Wn(b∗n).

Then,

/n+1 = /n + log xT
n+1b(η)

n+1 −
[
log Wn+1(b∗

n+1) − log Wn(b∗n)
]

= /n +
[
log xT

n+1b(η)
n+1 − log xT

n+1b∗
n+1

]

+ log Wn(b∗n) − log Wn(b∗
n+1)

≥ /n +
[
log xT

n+1b(η)
n+1 − log xT

n+1b∗
n+1

]

≥ /n − c2
√p
c1

∥∥∥b(η)
n+1 − b∗

n+1

∥∥∥ .

With lemma 2.1 and lemma 1 in Gaivoronski and Stella (2000), one
can write

/n ≥ /n−1 − c2
√p
c1

∥b(η)
n − b∗n∥

≥ /n−1 − c2
√p
c1

[
∥b(η)

n − b∗
n−1∥ + ∥b∗

n−1 − b∗n∥
]

≥ /n−1 − c2
√p
c1

[√
2p
δη

log(n − 1)

n − 1
+ 2c2

√p
c1δ

1
n − 1

]

≥ /1 − c2 p
c1

√
2
δη

n−1∑

k=1

√√√√ log k
k − 2c2

2 p
c2

1δ

n−1∑

k=1

1
k .

Since the summation of the second term on the right side of the
inequality above can be approximated by

∫ n
0 (log t/t)1/2dt , and

∫ n
0

(log t/t)1/2dt = 2(n log n)1/2(1 + o(1)) as n → ∞, it follows that

/n ≥ −[2
√

2c2 p
c1

√
δη

√
n log n + 2c2

2 p
c2

1δ
log n](1 + o(1)).

Proof of part (b) of the theorem is analogous and is thus omitted. "
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Proof of Theorem 3.2 We only need to prove part (b). We use the
notation h(n) ∼ g(n) to represent that

limn→∞
h(n)

g(n)
= 1

for sequences h(n) and g(n). Using Taylor expansion at b∗n up to the
sixth order, we have

log
[

xT
n+1b

]
∼ log

[
xT

n+1b∗n
]

+ uT
0
(b − b∗n

)

− 1
2

(b − b∗n
)T J0

(b − b∗n
)

+
∑

j1, j2, j3
w

(1)
j1, j2, j3

(
b j1 − b∗

n, j1
) (

b j2 − b∗
n, j2

) (
b j3 − b∗

n, j3
)

+ · · ·

+
∑

j1,..., j6
w

(1)
j1,..., j6

6∏

k=1

(
b jk − b∗

n, jk
)

! V1,

log[Wn(b)] ∼ log
[Wn(b∗n)

]
− n

2

(b − b∗n
)T J1

(b − b∗n
)

+
∑

j1, j2, j3
w

(2)
j1, j2, j3

(
b j1 − b∗

n, j1
) (

b j2 − b∗
n, j2

) (
b j3 − b∗

n, j3
)

+ · · ·

+
∑

j1,..., j6
w

(2)
j1,..., j6

6∏

k=1

(
b jk − b∗

n, jk
)

! V2,

log log[Wn(b)] ∼ log log
[Wn(b∗n)

]
− 1

2

(b − b∗n
)T J2

(b − b∗n
)

+
∑

j1, j2, j3
w

(3)
j1, j2, j3

(
b j1 − b∗

n, j1
) (

b j2 − b∗
n, j2

) (
b j3 − b∗

n, j3
)

+ · · ·

+
∑

j1,..., j6
w

(3)
j1,..., j6

6∏

k=1

(
b jk − b∗

n, jk
)

! V3,

where

u0 = xn+1

xT
n+1b∗n

, J0 =
xn+1xT

n+1
(

xT
n+1b∗n

)2 , J1 = 1
n

n∑

i=1

xi xT
i(

xT
i b∗n

)2 ,

and J2 = γ ∗n J1 with

γ ∗n = n
log2 Wn(b∗n)

+ n
log Wn(b∗n)

∼ γn = n
log Wn(b∗n)

.

Notice that γn is bounded from 0 and ∞ under Condition (A.5).
The rest of the proof is divided into three parts.

(I) In the first part, we will prove that, given any sequence

ζn =
√

2p
(1 − 2ϵ)δηn

log n
n , ηn = O(1),

(log n)α

n = o(ηn),

where α ∈ (1, 7] is a constant, we have

∫
Bζn (b∗n)(bT xn+1)Wηnn (b) log Wn(b)db ∫Bζn (b∗n) Wηnn (b)db

∫
Bζn (b∗n)(bT xn+1)Wηnn (b)db ×

∫
Bζn (b∗n) Wηnn (b) log Wn(b)db − 1 ∼ Un (B8)

!
∫

Bζn (b∗n) e− n
2 (b−b∗n)T (

J0
n +ηnJ1+ J2

n )(b−b∗n)+uT
0 (b−b∗n)db ∫Bζn (b∗n) e− n

2 (b−b∗n)T ηnJ1(b−b∗n)db
∫

Bζn (b∗n) e− n
2 (b−b∗n)T (

J0
n +ηnJ1)(b−b∗n)+uT

0 (b−b∗n)db ∫Bζn (b∗n) e− n
2 (b−b∗n)T (ηnJ1+ J2

n )(b−b∗n)db
− 1,

and

Un = γn[u′T
0 J̃−1

1 u′
0 − (p − 2)trace(J̃−1

1 J̃0)] − γ 2n (p − 1)2/2

2n2η2n
× (1 + o(1)), (B9)

as n → ∞.
We prove (B9) first. Let b′ = (b1, . . . , bp−1)T , b′∗n = (b′∗

n,1, . . . ,

b′∗
n,p−1)T , u′

0 = (u0,1 − u0,p, . . . , u0,p−1 − u0,p)T , x′
i =

(xi,1, . . . , xi,p−1)T , b̃ = √n(b′ − b′∗n ), and ũ0 = ( J̃0n + ηn J̃1 +
J̃2n )−1u′

0, where (u0,1, . . . , u0,p)T = u0. Observe that
∫

Bζn (b∗n)
exp

[
− n

2
(b − b∗n)T

(
J0
n + ηnJ1 + J2

n
) (b − b∗n

)

+ uT
0 (b − b∗n)

]
db

=
∫

∥b−b∗n∥≤ζn ,b∈B
exp

[
− n

2
(b′ − b′∗n )T

(
J̃0
n + ηn J̃1 + J̃2

n

)

× (b′ − b′∗n ) + u′T
0 (b′ − b′∗n )

]
db′

= 1√n
∫

Rp−1
exp

[

−1
2

b̃T
(

J̃0
n + ηn J̃1 + J̃2

n

)

b̃ + 1√n u′T
0 b̃

]

db̃

= 1√n e−
u′T

0

(
J̃0n +ηn J̃1+ J̃2n

)−1
u′

0
2n

∫

Rp−1
exp

[
− 1

2

(
b̃ − ũ0√n

)T

×
(

J̃0
n + ηn J̃1 + J̃2

n
)(

b̃ − ũ0√n

)]

= 1√n e−
u′T

0

(
J̃0n +ηn J̃1+ J̃2n

)−1
u′

0
2n (2π)−

p−1
2

∣∣∣∣∣
J̃0
n + ηn J̃1 + J̃2

n

∣∣∣∣∣

− 1
2

,

where

J̃0 =
(x′

n+1 − xn+1,p1p)(x′
n+1 − xn+1,p1p)T

(xT
n+1b∗n)2

;

J̃1 = 1
n

n∑

i=1

(x′
i − xi,p1p)(x′

i − xi,p1p)T

(xT
i b∗n)2

; J̃2 = γn J̃1.

It follows that

Un =

exp

⎛

⎜⎝−
u′T

0

(
J̃0
n +ηn J̃1+ J̃2

n

)−1
u′

0

2n

⎞

⎟⎠

exp

(

− u′T
0 (

J̃0
n +ηn J̃1)−1u′

0
2n

)

×

∣∣∣∣
J̃0n + ηn J̃1|0.5|ηn J̃1 + J̃2n

∣∣∣∣
0.5

∣∣∣∣
J̃0n + ηn J̃1 + J̃2n

∣∣∣∣
0.5

|ηn J̃1|0.5

− 1

= (1 + A)(1 + B)(1 + C) − 1 = ABC + AB + BC
+ C A + A + B + C, (B10)

where

A =
exp(− u′T

0 (
J̃0
n +ηn J̃1+ J̃2

n )−1u′
0

2n )

exp(− u′T
0 (

J̃0
n +ηn J̃1)−1u′

0
2n )

− 1,
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778 T. Li et al.

B = | J̃0n + ηn J̃1|0.5

| J̃0n + ηn J̃1 + J̃2n |0.5
− 1, and C = |ηn J̃1 + J̃2n |0.5

|ηn J̃1|0.5
− 1.

Note that

J̃1 = −∂2 log Wn(b)

∂b′∂b′T = (Ip−1, −1p−1)

× −∂2 log Wn(b)

∂b∂bT (Ip−1,−1p−1)T ,

and from Theorem 2 of Gaivoronski and Stella (2000), J̃1 is positive
definite and

λmin(J̃1) ≥ δ > 0.

From Taylor expansion, we have
(

1 + ar + br2 + O(r3)

1 + a′r + b′r2 + O(r3)

)0.5

= 1 + ar
2

+
(

b
2

− a2

8

)

r2 + o(r2)

for constants a, b, a′, b′, and

|I + Xr | = 1 + trace(X)r +
[
trace(X)2 − trace(X2)

]

× r2

2
+ o(r2), (I + rX)−1 = I − rX + o(r),

for an invertible matrix X , and identity matrix I, as scalar r → 0. As
a result, we have the following expansions.

C =
(

1 + γn
nηn

) p−1
2 − 1

∼ p − 1
2

γn
nηn

+ (p − 1)(p − 3)

8
γ 2n

(nηn )2 + o
(

1

(nηn )2

)

B ∼

⎛

⎜⎝1 −
(p−1)γnnηn + 1

2n2ηn 2 M

1 + trace(J3)+(p−1)γn
nηn + 1

2n2ηn 2

[
trace2(J3) − trace(J2

3) + M
]

⎞

⎟⎠

0.5

− 1

∼ − (p − 1)γn
2nηn

−
(

M
4

+ (p − 1)2γ 2n
8

)
1

n2ηn 2 + o(
1

(nηn )2

)

,

A ∼ u′T
0

⎡

⎣
(

J̃0
n + ηn J̃1

)−1

−
(

J̃0
n + ηn J̃1 + J̃2

n

)−1
⎤

⎦ u′
0/2n

= u′T
0

⎡

⎣I −
(

I +
(

J̃0nηn + J̃1

)−1
J̃1

γnnηn

)−1
⎤

⎦
[

J̃0nηn + J̃1

]−1

2nηn
u′

0

= u′T
0

[
J̃0nηn + J̃1

]−1
J̃1

γnnηn

[
J̃0nηn + J̃1

]−1

2nηn
u0

∼
γn u′T

0 J̃−1
1 u′

0

2n2ηn 2 + o
(

1

(nηn )2

)
,

where M = γ 2n (p−1)(p−2)+2γn trace(J3)(p−2) and J3 = J̃0J̃−1
1 .

Continue with (B10), from Condition (A.6),

Un ∼ ABC + AB + BC + C A + A + B + C

∼ γn[u′T
0 J̃−1

1 u′
0 − (p − 2)trace(J̃−1

1 J̃0)] − γ 2n (p − 1)2/2

2n2η2n
.

Thus (B9) holds.
Next, we prove (B8). It follows from the integral mean value

theorem that

∫
Bζn (b∗n )(bT xn+1)W ηnn (b) log Wn(b)db ∫Bζn (b∗n ) W ηnn (b)db

∫
Bζn (b∗n )(bT xn+1)W ηnn (b)db ×

∫
Bζn (b∗n ) W ηnn (b) log Wn(b)db − 1

=
exp(O(nηnζ 7n ))

∫
Bζn (b∗n ) exp(V1 + ηn V2 + V3)db ∫Bζn (b∗n ) exp(ηn V2)db

exp(O(nηnζ 7n ))
∫

Bζn (b∗n ) exp(V1 + ηn V2)db ×
∫

Bζn (b∗n ) exp(V3 + ηn V2)db − 1

∼ exp(O(nηnζ 7n ))

exp(O(nηnζ 7n ))
− 1 + D − 1,

where

D =
∫

Bζn (b∗n) exp(V1 + ηn V2 + V3)db ∫Bζn (b∗n) exp(V2)db
∫

Bζn (b∗n) exp(V1 + ηn V2)db ×
∫

Bζn (b∗n) exp(V3 + ηn V2)db .

From Taylor expansion, if α = 7, or (log n)7/n = o(ηn), we have

exp(O(nηnζ 7n ))

exp(O(nηnζ 7n ))
− 1 = O(nηnζ 7n ) = O

(
(log n)3.5

(nηn)2.5

)

= o
(

1

(nηn)2

)
.

In addition,

D − 1 ∼ γn[u′T
0 J̃−1

1 u′
0 − (p − 2)trace(J̃−1

1 J̃0)] − γ 2n (p − 1)2/2

2n2η2n
,

based on the fact that, for any kind of scalar sequences
(an

)
,
(bn

)
,(cn

)
, and

(dn
)
,

an + cn
bn + dn

− 1 ∼ an
bn

− 1

holds, as long as cn − dn = o(bn( anbn − 1)
)
, where cn = o(an), dn =

o(bn). Then (B8) holds.
If α ∈ (1, 7), take the integer

K = min
{

k ∈ Z | k ≥ 6α

α − 1

}
.

Using Taylor expansion of each term in (B8) up to the (K − 1)th
order, we have

exp(O(nζ Kn ))

exp(O(nζ Kn ))
− 1 = O(nζ Kn ) = o

(
1

n2η2n

)
,

and (B8) can be proved along similar lines. In conclusion both (B8)
and (B9) hold.

(II) In this part, we prove the first statement of part (b). Choose
any

ϵ ∈
(

3
2p + 6

, 0.5
)

,

and ηn and ζn the same as in Part (I).
Next similar to (B3) of lemma 2.1, using Condition (A.5)

1
n log Wn(b∗n) ∈ [c4, c5],

we have
∫

B\Bζn (b∗n)(bT xn+1)Wηnn (b) log Wn(b)db
∫

Bζn (b∗n)(bT xn+1)Wηnn (b)db
= nO

(
n− pϵ

1−2ϵ

)

and
∫

B\Bζn (b∗n) Wηnn (b)db
∫

Bζn (b∗n) Wηnn (b) log Wn(b)db = 1
n O(n− pϵ

1−2ϵ ).

Then we have,
∫

B\Bζn (b∗n)(bT xn+1)Wηnn (b) log Wn(b)db ∫B\Bζn (b∗
n) Wηn

n (b)db
∫

Bζn (b∗n)(bT xn+1)Wηnn (b)db ×
∫

Bζn (b∗n) Wηnn (b) log Wn(b)db

= O(n− 2pϵ
1−2ϵ ) = o

(
1

n2η2n

)
,

and
∫

B\Bζn (b∗n)(bT xn+1)Wηnn (b)db ∫B\Bζn (b∗n) Wηnn (b) log Wn(b)db
∫

Bζn (b∗n)(bT xn+1)Wηnn (b)db ×
∫

Bζn (b∗n) Wηnn (b) log Wn(b)db

= O(n− 2pϵ
1−2ϵ ) = o

(
1

n2η2n

)
.
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Hence,

CovB\Bζn (b∗n)

(xTn b
η
n−1, log Wn−1(b

η
n−1)

)

CovBζn (b∗n)

(xTn b
η
n−1, log Wn−1(b

η
n−1)

)

=
EB\Bζn (b∗n)

(xTn b
η
n−1 log Wn−1(b

η
n−1)

)
− EB\Bζn (b∗n)

(xTn bη
)
EB\Bζn (b∗n)

(
log Wn−1(b

η
n−1)

)

EBζn (b∗n)

(xTn b
η
n−1 log Wn−1(b

η
n−1)

)
− EBζn (b∗n)

(xTn b
η
n−1

)
EB\Bn−1,ζn (b∗n)

(
log Wn−1(b

η
n−1)

)

=

EB\Bζn (b∗n )

(
xTn bη

n−1 log Wn−1(b
η
n−1)

)

EBζn (b∗n )

(
xTn bη

n−1 log Wn−1(b
η
n−1)

) −
EB\Bζn (b∗n )

(
xTn bη

n−1

)
EB\Bζn (b∗n )

(
log Wn−1(b

η
n−1)

)

EBζn (b∗n )

(
xTn bη

n−1 log Wn−1(b
η
n−1)

)

1 −
EBζn (b∗n )

(
xTn bη

n−1

)
EB\Bζn (b∗n )

(
log Wn−1(b

η
n−1)

)

EBζn (b∗n )

(
xTn bη

n−1 log Wn−1(b
η
n−1)

)
= 0.

In the end, there exists N > 0, for any n > N ,

Cov
(xTn b

η
n−1, log Wn−1(b

η
n−1)

)

= CovBζn (b∗n)

(xTn b
η
n−1, log Wn−1(b

η
n−1)

)

=
∫

Bζn (b∗n)(bT xn)Wηnn (b)db ×
∫

Bζn (b∗n) Wηnn (b) log Wn(b)db
[
∫

Bζn (b∗n) Wηnn (b)db]2

× γn[u′T
0 J̃−1

1 u′
0 − (p − 2)trace(J̃−1

1 J̃0)] − γ 2n (p − 1)2/2

2n2η2n
× (1 + o(1)),

which keeps its sign uniformly for ηn ∈ [η1,n, +∞). Part (a) of the
theorem is proved.

(III) We now prove the second statement of Part (b) when Condition
(A.7) holds. Using Taylor expansion, as nη → 0,

Wη
n (b) = exp

[
1
n log Wn(b)(nη)

]
∼ 1 + η log Wn(b).

Asymptotically,
∫

Wη
n (b)xT

n+1bπ(db)

∼
∫

xT
n+1bπ(db) + (nη)

∫
1
n log Wn(b)xT

n+1bπ(db)

≤
∫

xT
n+1bπ(db) + (nη)

∫
1
n log Wn(b∗n)xT

n+1bπ(db)

≤
∫

xT
n+1bπ(db) + (nη)c5

∫
xT

n+1bπ(db).

Similarly, for k = 0, 1,
∫

log Wn(b)Wη
n (b)(xT

n+1b)kπ(db)

∼
∫

log Wn(b)(xT
n+1b)kπ(db) + O(nη).

Then
∫

log Wn(b)Wη
n (b)xT

n+1bπ(db) −
∫

Wη
n (b)xT

n+1bπ(db)

×
∫

log Wn(b)Wη
n (b)π(db)

=
∫

log Wn(b)xT
n+1bπ(db) −

∫
xT

n+1bπ(db)

×
∫

log Wn(b)π(db) + o(1).

With Condition (A.5), it follows that,

Cov
(xTn b

η
n−1, log Wn−1(b

η
n−1)

)
= Cov

(xTn b0
n−1, log Wn−1(b0

n−1)
)

(
1 + o(1)

)
.

We get the conclusion from b0
n−1 = b(0) and Condition (A.7). "

Proof of Theorem 3.5 Write

E
[

log xT
i b(η∗

i )

i − log xT
i b(η̃i )

i |Fi−1, i ∈ C0,0

]

= E
[

log xT
i b(η∗

i )

i − log xT
i b(η∗

i )

i ; κ(i) = 1|Fi−1, i ∈ C0,0

]

× P
(
κ(i) = 1|Fi−1, i ∈ C0,0

)

+ E[log xT
i b(η∗

i )

i − log xT
i b(0)

i ; κ(i) = 2|Fi−1, i ∈ C0,0]
× P

(
κ(i) = 2|Fi−1, i ∈ C0,0

)

= 0, (B11)

and

E[log xT
i b(η∗

i )

i − log xT
i b(η̃i )

i |Fi−1, i ∈ C∞,∞]

= E[log xT
i b(η∗

i )

i − log xT
i b(η∗

i )

i ; κ(i) = 1|Fi−1, i ∈ C∞,∞]
× P

(
κ(i) = 1|Fi−1, i ∈ C∞,∞

)

+ E[log xT
i b(η∗

i )

i − log xT
i b(0)

i ; κ(i) = 2|Fi−1, i ∈ C∞,∞]
× P

(
κ(i) = 2|Fi−1, i ∈ C∞,∞

)

= E[log xT
i b(∞)

i − log xT
i b(0)

i ; κ(i) = 2|Fi−1, i ∈ C∞,∞]
× P

(
κ(i) = 2|Fi−1, i ∈ C∞,∞

)

≤ uE[log xT
i b(∞)

i − log xT
i b(0)

i |Fi−1, i ∈ C∞,∞]. (B12)

Similar to (B11) and (B12),

E
[

log xT
i b(η∗

i )

i − log xT
i b(η̃i )

i |Fi−1, i ∈ C0,∞
]

= E
[
log xT

i b(∞)
i − log xT

i b(0)
i |Fi−1, i ∈ C0,∞

]
,

and

E
[

log xT
i b(η∗

i )

i − log xT
i b(η̃i )

i |Fi−1, i ∈ C∞,0

]

≤ uE
[
log xT

i b(0)
i − log xT

i b(∞)
i |Fi−1, i ∈ C∞,0

]
.

Then,

log W∗
n|(η∗)n − log W̃n|(η∗)n

=
n∑

i=1

E
[

log xT
i b(η∗

i )

i − log xT
i b(η̃i )

i |Fi−1, η∗
i
]

≤ u
{ ∑

i∈C∞,∞

E
[
log xT

i b(∞)
i − log xT

i b(0)
i |Fi−1, η∗

i = ∞
]

+
∑

i∈C∞,0

E
[
log xT

i b(0)
i − log xT

i b(∞)
i |Fi−1, η∗

i = 0
]}

+
∑

i∈C0,∞

E
[
log xT

i b(∞)
i − log xT

i b(0)
i |Fi−1, η∗

i = ∞
]

= u(ϒ∞,∞ + ϒ0,∞) + ϒ∞,0. (B13)
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Again, analogous to the derivation of (B11) and (B12), we
have

E
[
log xT

i b(η̃i )
i − log xT

i b(0)
i |Fi−1, i ∈ C j,1

]
= 0, j = 1, 2,

E
[
log xT

i b(η̃i )
i − log xT

i b(0)
i |Fi−1, i ∈ C∞,∞

]
≥ (1 − u)

× E
[
log xT

i b(∞)
i − log xT

i b(0)
i |Fi−1, i ∈ C∞,∞

]
,

E
[
log xT

i b(η̃i )
i − log xT

i b(0)
i |Fi−1, i ∈ C∞,0

]
≥ −u

E
[
log xT

i b(0)
i − log xT

i b(∞)
i |Fi−1, i ∈ C∞,0

]
.

Hence,

log W̃n|(η∗)n − log W (0)
n|(η∗)n

=
n∑

i=1

E
[
log xT

i b(η̃i )
i − log xT

i b(0)
i |Fi−1, η∗

i
]

≥ (1 − u)
∑

i∈C∞,∞

E
[
log xT

i b(∞)
i − log xT

i b(0)
i |Fi−1, η∗

i = ∞
]

− u
∑

i∈C∞,0

E
[
log xT

i b(0)
i − log xT

i b(∞)
i |Fi−1, η∗

i = 0
]

= ϒ∞,∞ − u(ϒ∞,0 + ϒ∞,∞). (B14)

Combining (B13) and (B14) leads to the desired conclusion. "
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