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We introduce a semiparametric latent space model for analyzing longitu-
dinal network data. The model consists of a static latent space component and
a time-varying node-specific baseline component. We develop a semipara-
metric efficient score equation for the latent space parameter by adjusting for
the baseline nuisance component. Estimation is accomplished through a one-
step update estimator and an appropriately penalized maximum likelihood
estimator. We derive oracle error bounds for the two estimators and address
identifiability concerns from a quotient manifold perspective. Our approach
is demonstrated using the New York Citi Bike Dataset.

1. Introduction. Recent years have seen an increased availability of time-varying in-
teraction/network data (Butts (2008), Linderman and Adams (2014), Holme (2015)), with
examples such as email exchange history of coworkers (Klimt and Yang (2004)) and trans-
port records among bike-sharing stations (CitiBike (2019)). This type of data includes not
only counts of pairwise interaction events but also the timestamps of these interactions.

nonnetwork count data have been studied extensively in the survival analysis literature.
Andersen and Gill (1982) proposed a Poisson-type intensity-based regression model. For
extensions to handle non-Poisson count data, see Pepe and Cai (1993), Cook and Lawless
(2007), Lin et al. (2000), Sun and Zhao (2013).

For cross-sectional single network data, an important development is the latent space
model, in which each node is represented by a latent vector and the relationship between
two nodes is quantified through their inner product (Hoff, Raftery and Handcock (2002)).
The latent vectors may be treated as random (Hoff (2003, 2005), Bickel et al. (2013)) or fixed
(Athreya et al. (2018), Ma, Ma and Yuan (2020)).

Motivated by various scientific applications, multiple-network models and longitudinal
network models have also been developed; see, for example, Zhang, Sun and Li (2020) for
application in neuroscience and Butts (2008) for application in social science. Similar to
the single-network models, latent space modeling in the context of multiple-network set-
tings has been examined from different perspectives (Sewell and Chen (2015), Nielsen and
Witten (2018), Matias and Robin (2014)). One line of research views the latent vectors as
random (Hoff (2011), Salter-Townshend and McCormick (2017)), and another line considers
fixed latent vectors (Jones and Rubin-Delanchy (2020), Levin et al. (2017)). The latter often
leads to frequentist approaches, in which it is of common interest to study the estimation of
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shared structure across multiple networks, and in particular, how the information accumula-
tion across multiple networks improves the fitting quality (Arroyo et al. (2021), Zheng and
Tang (2022), MacDonald, Levina and Zhu (2022), Zhang, Xue and Zhu (2020)).

In this paper, we develop a semiparametric modeling framework for longitudinal networks
with interaction event counts. The model comprises a static latent space component, which
accounts for inherent node interactions, and a baseline component that accommodates hetero-
geneity across different time points and nodes. We introduce two semiparametric estimation
methods. The first method forms a generalized semiparametric one-step estimator by solving
a local linear approximation of the efficient score equation. We demonstrate that the estima-
tor automatically eliminates the identifiability issue through an interpretation in the quotient
manifold induced by orthogonal transformation equivalence classes. The second method op-
timizes a convex surrogate loss function based on the log-likelihood, relaxing the nonconvex
rank constraint of the latent space component. We establish that both methods achieve, up to
a logarithmic factor, the oracle estimation error rates for the latent space component.

The rest of the paper is organized as follows. Section 2 introduces the semiparametric
latent space model. Section 3 introduces the one-step estimator, provides its connection to
the quotient manifold theory, and establishes the error bound for the estimator. Section 4
introduces the penalized maximum likelihood estimator and establishes its error bound. Sim-
ulation results are presented in Section 5. Section 6 applies our framework to analyze the
New York Citi Bike Dataset (CitiBike (2019)). Section 7 concludes the main body of the
paper with some discussions. All the technical derivations are deferred to the Supplementary
Material (He et al. (2025)).

2. Semiparametric Poisson latent space model.

2.1. Notation and model specification. We consider longitudinal pairwise interaction
counts of n subjects (nodes) over T discrete time points. Specifically, for a time point
t ∈ {1, . . . , T } and nodes i, j ∈ {1, . . . , n}, At,ij denotes the number of i-j interactions at
the time point t . We propose a Poisson-based latent space model

At,ij =At,ji∼Poisson
{︁
𝔼(At,ij |z,α)

}︁
, independently with

𝔼(At,ij |z,α) = exp
(︁
αit + αjt + ⟨zi, zj ⟩)︁,(1)

which naturally adopts the exponential link function exp(·) to model the event counts. For
any two nodes i and j , their interaction effect is modeled through the inner product of two
corresponding latent vectors ⟨zi, zj ⟩ = z⊤

i zj , similarly to the inner product model of a single
network (Ma, Ma and Yuan (2020)). The latent vectors zi ’s do not change with respect to the
time point t and represent the shared latent structures across T heterogeneous networks. For
example, zi ’s can encode the time-invariant geographic information in multiple transportation
networks. At a given time point t , when αit increases and all the other parameters are fixed,
edges connecting the node i tend to have higher numbers of counts at the time point t , indi-
cating higher baseline activity levels. Therefore, αit ’s model the degree heterogeneity across
different nodes i ∈ {1, . . . , n} and time points t ∈ {1, . . . , T }, and are called baseline degree
heterogeneity parameters of nodes and time. In the hourly bike-sharing networks, αit ’s can
represent distinct baseline activity levels across different stations and hours.

Model specification (1) may be expressed in vector-matrix notation as

𝔼(At |Z,α) = exp
(︁
αt1

⊤
n + 1nα

⊤
t + ZZ⊤)︁

,(2)

where αt = (α1t , . . . , αnt )
⊤ ∈ ℝ

n×1, Z = (z1, . . . , zn)
⊤ ∈ ℝ

n×k , 1n = (1, . . . ,1)⊤ ∈ ℝ
n×1,

and exp(·) is the elementwise exponential operation. Throughout this paper, we consider the
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asymptotic regime in which the number of nodes n and the number of time periods T increase
to infinity while the dimension of the latent space k is fixed. Thus, αt1⊤

n + 1nα
⊤
t + ZZ⊤ is a

low-rank matrix. To ensure identifiability, we assume that column means of Z are zero, that
is, 1⊤

n Z/n = 0. This centering assumption is analogous to the classical two-way analysis of
variance (ANOVA) modeling with interaction (Scheffé (1999)). Additionally, since ZZ⊤ =
ZQQ⊤Z⊤ for any Q ∈ 𝒪(k), where 𝒪(k) = {Q ∈ ℝ

k×k : QQ⊤ = Ik}, Z is identifiable up
to a common orthogonal transformation of its rows.

Let λij,t = exp(αit + αjt ). Then 𝔼(At,ij ) = λij,t × exp(⟨zi, zj ⟩). This form resembles the
multiplicative counting process modeling in the analysis of recurrent event times (Cook and
Lawless (2007), Sun and Zhao (2013)). In particular, the λij,t corresponds to the baseline
rate/intensity function changing over time while the zi corresponds to the time-invariant pa-
rameters of interest. Note that the number of baseline (nuisance) parameters is nT , and the
size of the shared latent positions Z or number of parameters of interest is nk; the former
increases with both n and T , whereas the latter does not increase with T . Thus, we may be
able to estimate Z more accurately than the nuisance parameter.

Some notations used in this paper are summarized as follows. For a matrix X = [xij ] ∈
ℝ

n×n, tr(X) = ∑︁n
i=1 xii stands for its trace and σmin(X) represents its minimum eigenvalue.

For X,Y ∈ ℝ
n×m, ⟨X,Y ⟩ = tr(X⊤Y). If m ≥ n, for any matrix X with the singular value

decomposition X = ∑︁n
i=1 siuiv

⊤
i , we let ∥X∥∗ = ∑︁n

i=1 si , ∥X∥F =
√︂∑︁n

i=1 s2
i , and ∥X∥op =

maxi=1,...,n si stand for the nuclear norm, the Frobenius norm, and the operator norm of the
matrix, respectively. For a vector x ∈ℝ

n, ∥x∥2 = √
x⊤x.

For two sequences of real numbers {fn} and {hn}, fn ≲ hn and fn = O(hn) mean that
|fn| ≤ c1|hn| for a constant c1 > 0; fn ≍ hn means c2hn ≤ fn ≤ c1hn for some con-
stants c1, c2 > 0; fn = o(hn) and fn ≪ hn mean limn→∞ fn/hn = 0; fn ≫ hn means
limn→∞ hn/fn = 0. For a sequence of random variables Xn and a sequence of real
numbers fn, write Xn = Op(fn) if for any ϵ > 0, there exists finite M > 0 such that
supn Pr(|Xn/fn| > M) < ϵ (Xn/fn is stochastically bounded); write Xn = op(fn) if for any
ϵ > 0, limn→∞ Pr(|Xn/fn| > ϵ) = 0 (Xn/fn converges to 0 in probability).

2.2. Semiparametric oracle error rate and technical challenges. To gain insights into the
best possible error rate for estimating high-dimensional parameters, let’s consider a simpler
setting of the regular exponential family with a pn-dimensional natural parameter vector θn.
Suppose we have n independent observations from this family. Portnoy (1988) showed that
the MLE θ̂n satisfies ∥θ̂n − θn∥2

2 = Op(pn/n), where pn can increase with the sample size
n. For our problem of estimating Z, if the nuisance parameters α’s were known, then each
k-dimensional latent vector zi would be measured by nT independent edges: {At,ij : j =
1, . . . , n; t = 1, . . . , T }. The result of Portnoy (1988) indicates that the oracle estimation error
rate of each zi would be k/(nT ). When k is fixed, the aggregated estimation error of n latent
vectors Z = [z1, . . . , zn]⊤ is expected to be of the order of Op(n × k/(nT )) = Op(1/T ),
which is referred to as the oracle estimation error rate throughout this paper. Since the α’s are
unknown, the asymptotic theory for the classical semiparametric models (Bickel et al. (1993))
may be modified to yield efficient score equations (projections) so that the same error rate
can be achieved.

To achieve the above oracle bounds, several technical challenges remain. First, the baseline
parameters αit in (1) not only characterize the time-specific heterogeneity over t but also rep-
resent node-specific heterogeneity over i. Due to this two-way heterogeneity, the estimation
errors of αit ’s are intertwined with those of node-specific parameters zi’s in a complicated
way. In particular, the partial likelihood (Andersen and Gill (1982)) cannot eliminate the base-
line nuisance parameters. Second, the target parameter matrix Z is only identifiable up to an
orthogonal transformation. Therefore, given a true matrix Z⋆ and an estimate Ẑ, the ordinary
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Euclidean distance between the two matrices is not a proper measure for the estimation error
of Ẑ. Indeed, it is more natural to consider their distance defined up to an orthogonal group
transformation dist(Ẑ,Z⋆) = minQ∈𝒪(k) ∥Ẑ −Z⋆Q∥F. This distance metric indicates that the
intrinsic geometry of Z is non-Euclidean. Thirdly, the estimation of Z is further complicated
by the high-dimensionality of the parameters and nonlinearity of the transformation in (1).
Unlike classical semiparametric problems, the dimension of the parameters of interest also
grows with the sample size. Furthermore, the nonlinearity of the exponential link function
in (1) makes it difficult for the spectral-based analyses (Arroyo et al. (2021)) to deal with
the entanglement between Z and α and achieve the semiparametric oracle rates of Z. Lastly,
the different oracle rates for different parameters also render techniques under the single net-
work setting not easily applicable: in the single network setting zi and αi have the same
oracle rates, so it suffices to jointly control their overall error rates via the natural parame-
ter Θij = αi + αj + ⟨zi, zj ⟩ from a generalized linear model perspective. In contrast, in our
setting, each αit is measured by n independent edges: {At,ij : j = 1, . . . , n}, and the oracle
squared error rate of each αit would be Op(1/n), compared to the Op(1/(nT )) error rate of
each zi . Our goal is to attain the oracle estimation error rate of Z, which is a refinement of
the overall error rate dominated by α’s error.

To accurately estimate the latent space component Z, we next develop two methods: a
generalized semiparametric one-step estimator in Section 3, and a semiparametric penalized
maximum likelihood estimator in Section 4. We show that both methods achieve, up to a
logarithmic factor, the oracle estimation error rates for the target parameters Z.

3. Generalized semiparametric one-step estimator. In this section, we introduce our
generalized semiparametric one-step estimator of Z and provide theoretical guarantees. We
first introduce some notation. Model (1) leads to the following form for the log-likelihood
function:

L(Z,α) = L(Zv,αv)

=
T∑︂

t=1

∑︂
1≤i≤j≤n

{︁
At,ij

(︁
αit + αjt + ⟨zi, zj ⟩)︁ − exp

(︁
αit + αjt + ⟨zi, zj ⟩)︁}︁,(3)

where, for notational convenience in the differentiation of the likelihood, we use Zv and αv

to denote vectorizations of Z and α, respectively, that is, Zv = (z⊤
1 , . . . , z⊤

n )⊤ ∈ ℝ
nk×1 and

αv = (α⊤
1 , . . . , α⊤

T )⊤ ∈ℝ
nT ×1. Then we let L̇Z(Z,α) and L̇α(Z,α) denote the partial deriva-

tives of L(Z,α) with respect to vectors Zv and αv , respectively (see the precise formulae in
Section B.1 of the Supplementary Material, He et al. (2025)). Unless otherwise specified,
such vectorization is applied when considering partial derivatives (for both first and higher
orders) throughout the paper. Following the semiparametric literature (Tsiatis (2006)), the
efficient score and the efficient Fisher information matrix for Z can be expressed as

Seff(Z,α) = L̇Z −𝔼
(︁
L̇ZL̇⊤

α

)︁{︁
𝔼

(︁
L̇αL̇⊤

α

)︁}︁−1
L̇α ∈ ℝ

nk×1,

Ieff(Z,α) = 𝔼
(︁
Seff(Z,α)S⊤

eff(Z,α)
)︁ ∈ ℝ

nk×nk,
(4)

where, for notational simplicity, (Z,α) is omitted in L̇Z and L̇α , and 𝔼(·) refers to the expec-
tation taken when data follows (2) with parameters (Z,α). We have derived analytic formulas
for the expectation terms in (4), and express Seff(Z,α) and Ieff(Z,α) as close-form functions
of (Z,α) and the observed data; see Section B.1 of the Supplementary Material (He et al.
(2025)).

With the above preparations, we construct our generalized semiparametric one-step esti-
mator as

Ẑv = Žv + {︁
Ieff(Ž, α̌)

}︁+
Seff(Ž, α̌),(5)
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where (Ž, α̌) denotes an initial estimate, and B+ represents the Moore–Penrose inverse of a
matrix B , which is uniquely defined and also named pseudo inverse (Ben-Israel and Greville
(2003)). By the property of pseudo inverse, (5) can be equivalently written as

(6) Ẑv = Žv + 𝒰̌{︁𝒰̌⊤Ieff(Ž, α̌)𝒰̌}︁−1𝒰̌⊤Seff(Ž, α̌),

where 𝒰̌ is a matrix whose columns can be any set of basis of the column space of Ieff(Ž, α̌).
The estimator originates from the one-step estimator for semiparametric problems (van

der Vaart (1998), Section 25.8), which solves the efficient score equation in the presence of
nuisance parameters through a linear approximation at an initial estimate. However, different
from the classical one-step estimator, the efficient information matrix is singular in our set-
ting; see Remark 1. As a result, the corresponding linear approximation equations are under-
determined. Taking pseudo inverse corresponds to solving the linear approximation equation
with minimum ℓ2 norm; the solution lies in the column space of 𝒰̌ , as indicated in (6).

Owing to the intricate technical challenges outlined in Section 2.2 and the singularity of
Ieff(Ž, α̌), straightforward conclusions regarding the classical one-step estimator for (5) are
elusive. However, we have constructed a detailed semiparametric analysis and demonstrated
that our proposed one-step estimator nearly achieves the oracle error rate, given suitable
initial estimators. We will present the comprehensive theoretical results in the following Sec-
tion 3.1. Additionally, in Section 3.4, we will introduce an initial estimator that demonstrates
both statistical validity and computational efficiency.

REMARK 1. In effect, the singularity of the efficient information matrix Ieff(Z,α) is
caused by the redundancy and unidentifiability of parameters in Z (Little, Heidenreich and
Li (2010)). Particularly, we find that the rank of Ieff(Z,α) equals nk − k(k + 1)/2, which is
identical to the number of free parameters in the n × k matrix Z. Below, we provide a high-
level explanation, and please find a formal justification in Lemma B.3 in Section B.2.1. First,
recall that to avoid the mean shift issue in (2), we have imposed k linear constraints 1⊤

n Z = 0.
Second, even with the centering constraints, Z can only be identified up to an orthogonal
group transformation 𝒪(k). In particular, 𝒪(k) is the orthogonal Stiefel manifold, and its
dimension is k(k − 1)/2 (see, e.g., Absil, Mahony and Sepulchre (2008), Section 3.3.2).
Intuitively, k+k(k−1)/2 = k(k+1)/2 degrees of freedom are removed due to the constraints
and unidentifiability. This leads to nk − k(k + 1)/2 free parameters in Z.

3.1. Theory. Throughout the sequel, we use (Z⋆,α⋆) to denote the true value of (Z,α).
In other words, our observed data follow the model (1) with (Z,α) = (Z⋆,α⋆). Besides, we
denote Θt,ij = αit + αjt + ⟨zi, zj ⟩. We define the estimation error from the ith row of Ž as
disti (ži , z

⋆
i ) = ∥ži − Q̌⊤z⋆

i ∥2, where

Q̌ = arg min
Q∈𝒪(k)

⃦⃦
Ž − Z⋆Q

⃦⃦
F,(7)

so that dist2(Ž,Z⋆) = ∑︁n
i=1 dist2i (ži , z

⋆
i ). The goal in this subsection is to establish an error

bound for the proposed one-step estimator (5) in terms of the distance defined above. To do
so, we need the following regularity conditions.

CONDITION 1. Assume the true parameters α⋆’s and z⋆’s satisfy:

(i) There exist positive constants MZ,1, Mα , and MΘ,1 such that ∥z⋆
i ∥2

2 ≤ MZ,1, |α⋆
it | ≤

Mα , and Θ⋆
t,ij ≤ −MΘ,1 for 1 ≤ i, j ≤ n and 1 ≤ t ≤ T ;

(ii) There exists a positive constant MZ,2 such that σmin[(Z⋆)⊤Z⋆/n] ≥ MZ,2;
(iii) 1⊤

n Z⋆ = 0.
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CONDITION 2. Assume the initial estimates α̌’s and ž’s satisfy:

(i) There exist constants Mb > 0 and ϵ such that |α̌it − α⋆
it | + disti (ži , z

⋆
i ) ≤ Mbn

−1/2 ×
logϵ(nT ) for 1 ≤ i ≤ n and 1 ≤ t ≤ T ;

(ii) 1⊤
n Ž = 0.

Condition 1(i) assumes boundedness of the true parameters. It also implies −MΘ,2 ≤
Θ⋆

t,ij ≤ −MΘ,1 with MΘ,2 = MZ,1 + 2Mα . Condition 1(ii) excludes degenerate cases of Z⋆.

This, together with ∥z⋆
i ∥2

2 ≤ MZ,1, indicates ∥Z⋆∥op ≍ √
n. Condition 1(iii) is needed in or-

der to identify the interaction effects Z⋆(Z⋆)⊤ in (2). Condition 2(ii) requires Ž to be a
feasible estimator satisfying the centering constraint. With this condition, Ẑ is guaranteed
to be feasible, namely 1⊤

n Ẑ = 0. Condition 2(i) is analogous to the “
√

n-consistent initial
estimator” used in the classical one-step estimator (van der Vaart (1998)). It assumes that
the estimation errors of α̌it ’s and ži’s are uniformly bounded by Mb logϵ(nT )/

√
n. In Sec-

tion 3.4, we will construct an initial estimator satisfying Condition 2 with the error bound
of order log2(nT )/

√
n under high probability. Recall that the classical MLE theory indicates

that the optimal estimation errors for individual αit and zi would be of the orders of n−1/2

and (nT )−1/2, respectively. In this regard, the constructed initial α̌it achieves its optimal rate
up to a logarithmic factor. On the other hand, Condition 2(i) assumes that ži achieves the
same error rate as α̌it but not its own optimal rate (nT )−1/2. In this connection, Condition 2
imposes a mild assumption on the initial ži ’s. We also would like to point out that the de-
terministic upper bounds in Condition 2(i) may be relaxed to probabilistic upper bounds.
The current nonprobabilistic bounds are used to simplify the presentation. Theorem 1 below
establishes the near optimality of the proposed one-step estimator (5).

THEOREM 1. Assume Conditions 1–2. Let Ẑ be the generalized one-step estimator de-
fined as in (5). Let ς = max{ϵ,1/2}. For any constant s > 0, there exists a constant Cs > 0
such that when n/ log2ς (T ) is sufficiently large,

Pr
{︃

dist2
(︁
Ẑ,Z⋆)︁ >

1

T
× Csrn,T

}︃
= O

(︁
n−s)︁,

where rn,T = max{1, T
n
} log4ς (nT ).

Theorem 1 implies that with high probability, the estimation error dist2(Ẑ,Z⋆) is
O(rn,T /T ). For ease of understanding, we first ignore the logarithmic term in rn,T , that
is, set ς = 0. Then, the error order is reduced to

1

T
× max

{︃
1,

T

n

}︃
= max

{︃
1

T
,

1

n

}︃
.(8)

When T = 1, that is, for a single network, (8) = O(1) achieves the oracle error rate. This is
similar to Ma, Ma and Yuan (2020), which studied a single network; also see Section 3.2 for
a detailed discussion. When 1 < T ≲ n, (8) = O(1/T ), indicating that our proposed gener-
alized one-step estimator achieves the oracle estimation error rate in this case. When T ≫ n,
(8) = O(1/n), which unfortunately, is not exactly inverse proportional to T . Intuitively, when
T is very large, there is too much time heterogeneity, resulting in too many nuisance pa-
rameters αit ’s over time. In turn, this causes technical difficulty in analyzing the target Z.
Nevertheless, we still have (8) = O(1/n), which is smaller than the optimal error rate O(1)

for a single network. This suggests that given T > 1 networks, the estimation error of Z can
always be improved compared to using only a single network. This can be interpreted, in a
broad sense, as an “inverse proportional to T ” property. We call O(1/n) a sub-oracle rate
throughout the paper.
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Compared to (8), the established error bound rn,T /T contains an extra logarithmic term
log4ς (nT ), which comes from the uniform error control over high-dimensional parameters
(α,Z) and the initialization error in Condition 2(i). As an example, we propose an initial
estimator in Section 3.4 satisfying ς = ϵ = 2. For a finite ς , the error bound O(rn,T /T ),
similarly to (8), decreases as T increases. To sum up, up to logarithmic factors, Ẑ achieves
the oracle error rate O(1/T ), when 1 ≤ T ≲ n, and Ẑ achieves the sub-oracle error rate
O(1/n), when T ≫ n.

REMARK 2. The efficient Fisher information matrix Ieff in (6) can also be replaced by
the “observed efficient information matrix” defined as −Heff, where

Heff(Z,α) = L̈Z,Z(Z,α) − L̈Z,α(Z,α)L̈−1
α,α(Z,α)L̈α,Z(Z,α)

satisfies 𝔼{−Heff(Z,α)} = Ieff(Z,α) (an analytic expression for Heff(Z,α) is provided in
Section B.1.4 of the Supplementary Material, He et al. (2025)). Then, the one-step estimator
is given by

(9) Žv − 𝒰̌{︁𝒰̌⊤Heff(Ž, α̌)𝒰̌}︁−1𝒰̌⊤Seff(Ž, α̌),

and theoretically, we could establish the same rate as that in Theorem 1. More details on this
are provided in Section C.3 of the Supplementary Material (He et al. (2025)).

REMARK 3. To establish the near-oracle rate in Theorem 1, the key idea is to show that
through our semiparametric efficient construction, the estimation error of αit ’s would not
mask that of zi ’s. Intuitively, this is achievable due to the fact 𝔼{ ∂Seff(Z,α)

∂αit
} = 0. This shows

that a small perturbation error of αit ’s would not change the efficient score of zi ’s in terms of
the first-order expansion and therefore, its influence on estimating zi’s can be reduced (Bickel
et al. (1993)). Nevertheless, establishing the near-oracle rate of Z is still challenged by the
complex structures of α and Z under our model (1).

For the nuisance parameters α, we do not impose any structural assumptions, such
as smoothness or sparsity. Therefore, αit ’s can be completely heterogeneous over all i ∈
{1, . . . , n} and t ∈ {1, . . . , T }, and the free dimension of α is nT . Such two-way heterogene-
ity and high dimensionality of α make it difficult to separate the estimation error of α from
that of Z as discussed in Section 2.2. Technically, we reduce the influence of estimating α

by carefully investigating the semiparametric efficient score. But that influence cannot be
eliminated entirely, which causes a sub-oracle rate when T is very large, as shown in (8).

For the target parameters Z, the non-Euclidean geometry and identifiability constraints
of Z lead to the singularity of the efficient information matrix Ieff(Ž, α̌) as mentioned in
Remark 1. To address the issue, we explicitly characterize a restricted subspace of ℝnk on
which Ieff(Ž, α̌) has positive eigenvalues. The restricted eigenspace exhibits interesting prop-
erties for characterizing the estimation error of Ẑ and has fundamental connections with two
sources of identifiability constraints of Z in Remark 1. Please see details in Section B.2.1 of
the Supplementary Material (He et al. (2025)).

REMARK 4. To achieve the desired oracle rate, our constraint T ≲ n has fundamen-
tal connections to classical results in semiparametric analysis. We first elaborate on typical
rates in classical semiparametric analyses and explain the connections with our result. Con-
sider a canonical semiparametric problem with target parameters θ and nuisance parameters
η with their estimates denoted by θ̂ and η̂, respectively. Under suitable regularity condi-
tions, the contribution from the nuisance parameters to ∥θ̂ − θ∥2 can often be bounded by
O(∥η̂ − η∥2

2), a squared ℓ2-error of nuisance parameters; see, for example, Section 25.59 in
van der Vaart (1998). When θ is fixed-dimensional, its oracle estimation error rate is typically
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TABLE 1
Squared estimation error rates of shared latent vectors zi ’s in different models

Models with identity link Models with logit link

Model Arroyo et al. (2021) MacDonald et al. (2022) Ma et al. (2020) (T = 1) Zhang et al. (2020)

Error Order O( 1
T

+ 1
n ) O(nη

T
) (η ≥ 0, T ≪ n1/2 ) O(1) O(1 + 1

T
)

quadratic, that is, ∥θ̂ −θ∥2 = Op(n−1/2). Then for the contributed squared error O(∥η̂−η∥2
2)

to be no larger than ∥θ̂ − θ∥2, it is common to impose a quarter rate ∥η̂ − η∥2 = Op(n−1/4)

on estimating the nuisance parameters. Other examples include Section 7.6 in Bickel et al.
(1993), Section 3 in Murphy and van der Vaart (2000), and equation (3.8) in Chernozhukov
et al. (2018), etc. We next show that our constraint T ≲ n aligns with this classical quarter
rate. Specifically, as discussed in Section 2.2 of the main text, the oracle rates for estimating
each target parameter z⋆

i and each nuisance parameter α⋆
it are expected to be Op((nT )−1/2)

and Op(n−1/2), respectively. Following the above “squared contribution” idea, when each
squared oracle error rate of α⋆

it is no larger than the oracle error rate of z⋆
i , the constraint

T ≲ n is required. In this sense, our constraint on T aligns with the common quarter rate
requirement on nuisance parameters in the classical literature.

Furthermore, we would like to point out that similar error rates and constraints on T and n

exist in many other related network studies. In particular, we have provided a summary of
existing estimation error rates in Table 1 below, showing that all those studies require certain
constraints on the growth rate of T with respect to n to achieve the oracle rate for estimat-
ing Z. In terms of the error rate and the constraints on (n, T ), our result is consistent with or
more relaxed than the existing results in Table 1.

3.2. Related works. Various models have been proposed for multiple heterogeneous net-
works. We briefly review related works focusing on fixed-effect continuous latent vectors.

One class of multiple-network models generalizes the random dot product graphs (Young
and Scheinerman (2007), Athreya et al. (2018), Rubin-Delanchy et al. (2022)). For example,
Arroyo et al. (2021) considered settings with T layers of networks, and in the t th layer net-
work with 1 ≤ t ≤ T , each edge At,ij = At,ji ∼ Bernoulli{𝔼(At,ij )} independently for 1 ≤
t ≤ T and 1 ≤ i < j ≤ n, where 𝔼(At,ij ) = ⟨zi, zj ⟩Λt with ⟨zi, zj ⟩Λt = z⊤

i Λtzj . Here zi’s de-
note the common latent positions shared across T networks, and Λt ∈ ℝ

k×k characterizes the
layer-specific latent information. A similar model for directed random graphs has been stud-
ied in Zheng and Tang (2022) with nonsymmetric latent positions shared across T networks.
MacDonald, Levina and Zhu (2022) proposed models based on generalized random dot prod-
uct graphs and established theoretical results when At,ij ∼ Normal{𝔼(At,ij ), σ

2} indepen-
dently, where σ is a nuisance parameter, and 𝔼(At,ij ) = ⟨zi, zj ⟩Ip1,q1

+ ⟨ui,t , uj,t ⟩Ip2,t ,q2,t
.

Here zi ’s denote the shared latent vectors, whereas ui,t ’s denote the layer-specific latent vec-
tors, and ⟨·, ·⟩Ip,q defines an indefinite inner product, where Ip,q = diag(1, . . . ,1,−1, . . . ,−1)

with p ones followed by q negative ones on its diagonal for p ≥ 1 and q ≥ 0.
From the perspective of generalized linear models, the above models can be viewed as lin-

ear responses with the identity link function. Considering a single network with binary edges,
Hoff, Raftery and Handcock (2002) proposed models with the logit link function, and Ma,
Ma and Yuan (2020) proposed and analyzed two estimation methods. Generalizing the idea
to multilayer binary networks, Zhang, Xue and Zhu (2020) proposed the following model:
for t = 1, . . . , T layers of networks, each edge At,ij ∼ Bernoulli{𝔼(At,ij )} independently for
1 ≤ i, j ≤ n, where 𝔼(At,ij ) = logit−1(αit +αjt +⟨zi, zj ⟩Λt ) with logit−1(x) = ex/(1+ ex).
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Under the above models, one common interest is to estimate the latent vectors Z =
[z1, . . . , zn]⊤ shared across multiple heterogeneous networks. Table 1 summarizes the
squared estimation error rates for Z in four studies with a focus on the order of the error with
respect to n and T only. Our results and intuition on the oracle error rate are consistent with
some existing results. But establishing similar results under our model (1) requires nontrivial
technical developments due to various challenges, including two-way heterogeneity, high-
dimensionality, and nonlinearity of the link function as discussed in Section 2.2. To the best
of our knowledge, for multiple networks (T > 1) with nonlinear link functions in models,
there is no existing result that is comparable to our derived nearly optimal rate in Theorem 1.

Besides the aforementioned works, there are other models for analyzing longitudinal or
multiple networks that focus on different goals and challenges. For instance, a prevalent sub-
class within the latent space models is the stochastic block model (SBM) (Holland, Laskey
and Leinhardt (1983), Lee and Wilkinson (2019)). For a single network, our proposed la-
tent space model can reduce to SBM or degree-corrected block models (Karrer and Newman
(2011), Zhao, Levina and Zhu (2012), Jin (2015)) under suitable parametrizations. Notably,
the baseline component exp(αit ) for each vertex i is similar to degree-correction param-
eters in the degree-corrected block model, showing flexibility for accommodating degree
heterogeneity. Typically, SBM assumes that vertices form stochastically equivalent clusters,
which leads to low-rank expected adjacency matrix and discrete latent structures. The intrin-
sic discreteness of SBMs makes them structurally simple and helpful in identifying clusters.
Alternatively, the general latent space models are advantageous when there is no apparent
clustering structure, and the expected adjacency matrix violates low-rankness. As a result,
the model properties and analysis techniques under those two types of models can be quite
different. For multiple networks, various extensions based on block models have been pro-
posed (Pensky and Zhang (2019), Lei, Chen and Lynch (2020), Zhang and Chen (2020), Lei
and Lin (2023), Bazzi et al. (2020), Paul and Chen (2022), Agterberg, Lubberts and Arroyo
(2022), Cai et al. (2022)). They often assume the expected adjacency matrix is low-rank and
emphasize cluster recovery and community detection, which differs from the objectives and
challenges in this work.

Another line of research proposes to impose a low-rank tensor structure for modeling the
longitudinal network (Lyu, Xia and Zhang (2023), Zhang and Wang (2023)). Such models
differ from our model in terms of interpretation and complexity. In particular, under fixed
ranks, the total number of parameters under (1) is of the order of O(nT ), whereas that under
a tensor structure is often reduced to the order of O(n + T ) or even smaller. Under (1), nT

number of baseline parameters αit are used to flexibly model the degree heterogeneity of
different nodes and time points. This, as mentioned above, is similar to the use of degree-
correction parameters in degree-corrected block models and does not have a straightforward
counterpart in those related low-rank tensor models. Due to this difference in the number of
parameters, the model complexities are distinct, and thus, the estimation error rates are not
directly comparable.

3.3. Geometric interpretation on quotient manifold. The proposed (6) treats the n × k

matrix Z as an nk-dimensional vector Zv . This ignores the constraint of the space ℝ
n×k
0 =

{Z ∈ ℝ
n×k : 1⊤

n Z = 0,det(Z⊤Z) ≠ 0}. Moreover, viewing Z as an element of ℝ
n×k
0 ig-

nores that it is identified up to a rotation under our considered log-likelihood L(Z,α), as
L(Z,α) = L(ZQ,α) for any Q ∈ 𝒪(k). Interestingly, in our considered problem, we find
that (6) implicitly takes the underlying parameter structure into account.

To demonstrate this, we first show the intrinsic parameter space of Z is a quotient set.
In particular, the “rotation invariance” naturally induces an equivalence relation on ℝ

n×k
0 :

Z1 ∼ Z2 if and only if there exists Q ∈ 𝒪(k) such that Z2 = Z1Q. Given the equivalence re-
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lation ∼ on ℝ
n×k
0 and an element Z ∈ ℝ

n×k
0 , elements in ℝ

n×k
0 that are equivalent to Z form

an equivalence class of Z, denoted as [Z]. The set of equivalence classes of all elements in
ℝ

n×k
0 is called the quotient set, denoted as ℝ

n×k
0 / ∼. Equipped with the equivalence rela-

tion ∼, the quotient set ℝn×k
0 / ∼ naturally incorporates the rotation invariance of Z and thus

is the intrinsic parameter space to examine. For the simplicity of notation, we let ℳ denote
ℝ

n×k
0 / ∼ below.
We next show that (6) can be viewed as an approximation to the one-step Newton–Raphson

update of the log profile likelihood on the quotient set ℳ. Specifically, the log profile like-
lihood of Z is pL(Z) = L(Z, α̂(Z)) with α̂(Z) = arg maxα∈ℝn×T L(Z,α). The MLE of Z,
that is, the first component of (ẐMLE, α̂MLE) that maximizes L(Z,α), is also the maximizer
of pL(Z). Therefore, to investigate the MLE of the target parameter Z, it suffices to examine
pL(Z) (Murphy and van der Vaart (2000)). On the quotient set ℳ, pL(Z) naturally induces
a function pLQ : ℳ → ℝ with pLQ([Z]) = pL(Z) for any Z ∈ ℝ

n×k
0 . To incorporate the

rotation invariance relation, it is natural to search for the maximizer of pLQ on the quotient
set ℳ. Fortunately, a Newton–Raphson step for pLQ can be properly constructed given the
nice properties of ℳ and pLQ in Lemma 2.

LEMMA 2 (Lee, 2013, Chapter 21). On ℝ
n×k
0 , consider the canonical atlas φ :

ℝ
n×k
0 → ℝ

(n−1)k given by φ(Z) = (z⊤
1 , . . . , z⊤

n−1)
⊤, and the canonical Riemannian metric

gZ(Z1,Z2) = tr(Z⊤
1 Z2) for Z1 and Z2 in the tangent space to ℝ

n×k
0 at Z. (i) Endowed

with the differential structure and the Riemannian metric induced by that of ℝn×k
0 , the quo-

tient set ℳ is a smooth Riemannian quotient manifold of dimension nk − k(k + 1)/2. (ii)
pLQ : ℳ → ℝ is a smooth function.

In particular, consider the Riemannian manifold ℳ equipped with the Riemannian con-
nection and the exponential retraction R (Absil, Mahony and Sepulchre (2008), Section 5).
For a smooth function f : ℳ → ℝ, the Newton–Raphson update at an equivalence class
[Z] ∈ ℳ is given by R[Z](ν), where ν is a tangent vector in the tangent space T[Z]ℳ and
specified by Hessf ([Z])[ν] = −Gradf ([Z]), and Hessf ([Z]) and Gradf ([Z]) denote the
Hessian and gradient of f at [Z], respectively (Boumal (2023)). Conceptually, R[Z](ν) de-
fines a move in the direction of ν while staying on the manifold. Interestingly, for the function
pLQ, we prove that R[Z](ν) has an analytic (matrix) form in Proposition 3.

PROPOSITION 3. Under the same setting as Lemma 2, equip ℳ with the Riemannian
connection and the exponential retraction R. Consider an initial value Ž and its equivalence
class [Ž]. For pLQ at [Ž], the Newton–Raphson update R[Ž](ν) = [mat(Žv + ν̄

Ž
)], where

Žv is the vectorization of Ž, mat((z⊤
1 , . . . , z⊤

n )⊤) = (z1, . . . , zn)
⊤ ∈ ℝ

n×k , and

ν̄
Ž

= −𝒰̌[︁𝒰̌⊤Heff
{︁
Ž, α̂(Ž)

}︁𝒰̌]︁−1𝒰̌⊤Seff
{︁
Ž, α̂(Ž)

}︁
,

where 𝒰̌ is the same as that in (6), and Heff(Z,α) is defined same as in Remark 2.

Note that Žv + ν̄
Ž

is similar to (9) except that α̂(Ž) is replaced with α̌. Given initial values

(Ž, α̌) that are close to the true values (Z⋆,α⋆), we can show that α̂(Ž) and α̌ are close,
and thus Žv + ν̄

Ž
and (9) are close; see rigorous results in Section F.4 of the Supplementary

Material (He et al. (2025)). By Remark 2, (5), (6), and (9) can all be viewed as approxima-
tions to a one-step Newton–Raphson update on the quotient manifold ℳ, whose construction
implicitly incorporates the underlying geometric structures of the quotient manifold.

REMARK 5. We provide an intuitive explanation of Proposition 3. Motivated by the fact
that the log profile likelihood pL(Z) depends on parameters in Z only through ZZ⊤, we
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FIG. 1. Each circle represents one equivalence class of (z1, z2) giving the same value of f̄ (z1, z2). It suffices to
search for maximization along one given direction.

next focus on ZZ⊤. For ease of visualization, we first consider the parameter space 𝕊
2×2
0 =

{Z ∈ ℝ
2×2 : 1⊤

2 Z = 01×2}. For Z ∈ 𝕊
2×2
0 , ZZ⊤ = (z2

11 + z2
12)(1,−1)⊤(1,−1) depends on

Z only through the scalar z2
11 + z2

12. This suggests that the number of free parameters in
ZZ⊤ is 1, which equals nk − k(k + 1)/2 as analyzed in Remark 1. We visualize the function
f̄ (z11, z12) = −(z2

11 + z2
12) in Figure 1. The function has a constant value on each circle

of (z11, z12) in the contour plot. From this perspective, each circle is an equivalence class
giving the same value of f̄ . The set of all equivalence classes (circles) yields a quotient set,
denoted as ℳ2, and f̄ induces a function f : ℳ2 → ℝ given by f ([z]) = f̄ (z11, z12), where
[z] ∈ ℳ2 represents the equivalence class specified by (z11, z12).

Consider the problem of maximizing the function f on ℳ2. One natural idea is to search
for the maximizer of f across its domain ℳ2. In this case, an update step in ℳ2 yields a
move from one circle to another, for example, Cstart to Cend in Figure 1. Such an abstract
update can also be described in the Euclidean space ℝ

2. In particular, fix one direction that is
orthogonal to a tangent line of circles, for example, the dashed line in Figure 1, move along
the tangent line from the point pstart to the point pend in Figure 1, and map pend to the cor-
responding equivalence class Cend. The update from pstart to pend in ℝ

2 can be analytically
represented in a matrix form. Generalizing this idea, an update step on the quotient manifold
ℝ

n×k
0 / ∼ can be described through a fixed search space in the Euclidean space ℝ

n×k (anal-
ogous to the search direction in Figure 1), and a common choice is the so-called horizontal
space (Boumal (2023)). Interestingly, we prove that the horizontal space at Ž can be explic-
itly expressed through 𝒰̌ . This enables us to derive an analytic form ν̄

Ž
, which, after properly

aligned into a matrix, defines an update in the horizontal space. The retraction R maps the
post-update matrix mat(Žv + ν̄

Ž
) to an element in ℝ

n×k
0 / ∼, which gives the targeted one-step

estimator in the manifold.

3.4. Initial estimation. In this section, we construct an initial estimator (Ž, α̌) and prove
that it satisfies Condition 2 with ϵ = 2 and high probability. The proposed initialization al-
gorithm consists of two stages outlined below, while the implementation details are provided
in Section D.1 of the Supplementary Material (He et al. (2025)). In the following, we define
E⋆

t = 𝔼(At ), Θ⋆
t = log(E⋆

t ) for t = 1, . . . , T , and G⋆ = Z⋆(Z⋆)⊤. We note that

α⋆
t = H−1

n Θ⋆
t 1n, and G⋆ =

T∑︂
t=1

(︁
Θ⋆

t − α⋆
t 1⊤

n − 1n

(︁
α⋆

t

)︁⊤)︁
/T ,(10)

where Hn = nIn + 1n1⊤
n .
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Outline of the initialization algorithm.

(1) The first stage obtains an “initial of initial” estimator (Z̊, α̊) as follows. A similar
“double-SVD” idea has been introduced in Zhang, Chen and Li (2020).

(a) Construct an estimator E̊t for E⋆
t by applying the universal singular value thresh-

olding (Chatterjee (2015)) to each matrix At . Take Θ̊t = log(E̊t ) as an estimator for Θ⋆
t .

(b) Let α̊t = H−1
n Θ̊t1n, motivated by (10). Take α̊ = (α̊1, . . . , α̊T ).

(c) Let G̊ = ∑︁T
t=1(Θ̊t − α̊t1⊤

n − 1nα̊
⊤
t )/T , motivated by (10).

Let Z̊ = ŮkD̊
1/2
k , where ŮkD̊kŮ

⊤
k denote the top-k eigen-decomposition of G̊.

(2) The second stage utilizes the projected gradient descent method (Chen and Wainwright
(2015)) with L(Z,α) as an objective function to maximize, and (Z̊, α̊) from the first
stage as initial values. In particular:

(a) Update Z and α along their corresponding gradient directions with pre-specified
step sizes.

(b) Project the updated estimates to the constraint set 𝒮C induced by the conditions
of identifiability and boundedness of parameters in Condition 1. Specifically,

𝒮C =
{︂
(Z,α) : Z ∈ ℝ

n×k,1⊤
n Z = 0,max

i
∥zi∥2

2 ≤ MZ,1, α ∈ℝ
n×T ,max

i,t
|αit | ≤ Mα

}︂
.

(c) Repeat (a) and (b) until convergence. The resulting values, denoted as (Ž, α̌), are
used as the initial estimator in the proposed one-step estimator.

In Theorem 4, we establish an elementwise error bound of (Ž, α̌) obtained through the
proposed initialization algorithm above.

THEOREM 4. Assume Conditions 1 and 3. For any constant s > 0, there exists a constant
Cs > 0 such that when n/ logk+3(T ) is sufficiently large,

Pr
[︃

max
1≤i≤n,1≤t≤T

{︁⃓⃓
α̌it − α⋆

it

⃓⃓ + disti
(︁
ži , z

⋆
i

)︁}︁
>

Cs log2(nT )√
n

]︃
= O

(︁
(nT )−s)︁.

Theorem 4 implies that with high probability, the initial estimator (Ž, α̌) satisfy Condi-
tion 2 with ϵ = 2.

4. Semiparametric penalized maximum likelihood estimator. The log-likelihood
L(Z,α) is nonconvex in Z, and also requires specification of the dimension of each zi . On
the other hand, when the log-likelihood (3) is reparametrized through G = (Gij )n×n with
Gij = ⟨zi, zj ⟩, the log-likelihood function

l(G,α) =
T∑︂

t=1

∑︂
1≤i≤j≤n

[︁
At,ij (αit + αjt + Gij ) − exp(αit + αjt + Gij )

]︁

is convex in α and G. Nevertheless, G = ZZ⊤ itself overparameterizes the model, and the
dimension of zi corresponds to the rank of G in this model specification. Subject to the rank
constraint, solving MLE of G is a nonconvex optimization problem, even though l(G,α) is
convex. To overcome this issue, we construct a penalized maximum likelihood estimator of G

with a nuclear norm penalization that relaxes the exact rank constraint on G. We further show
that the proposed estimator can achieve the corresponding almost-oracle error rate.

We first characterize the parameter space of G and its relationship with Z. From the per-
spective of likelihood functions, matrices G and Z such that L(Z,α) = l(G,α) can be viewed
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as equivalent parameters. Accordingly, any Z ∈ ℝ
n×k
0 uniquely defines G = ZZ⊤ ∈ 𝕊

n,k
0,+,

where 𝕊
n,k
0,+ represents the class of all n × n positive semidefinite symmetric matrices with

rank k and G1n = 0n. Moreover, any matrix G ∈ 𝕊
n,k
0,+ induces G1/2 = UkD

1/2
k ∈ ℝ

n×k
0 ,

where UkDkU
⊤
k is the top-k eigenvalue components of G. Then G uniquely identifies an

equivalence class {G1/2Q : Q ∈ 𝒪(k)} = {Z ∈ ℝ
n×k
0 : ZZ⊤ = G}.

The penalized maximum likelihood estimator is defined as the solution (Ĝ, α̂) to the fol-
lowing convex optimization problem:

max
G,α

l(G,α) − λn,T ∥G∥∗

subject to G ∈ 𝕊
n+, G1n = 0n, |Gij | ≤ MZ,1,

(11)

where 𝕊
n+ represents the class of n × n positive semidefinite matrices, MZ,1 is a constant

same as in Condition 1, and λn,T is a prespecified tuning parameter.
To scale the error of G to the error of Z, we present the estimation error of G in terms of

∥Ĝ − G⋆∥2
F/n; see Remark 6. The following Theorem 5 shows that the penalized MLE Ĝ

solved from (11) almost achieves the oracle rate, similarly to Theorem 1.

THEOREM 5. Assume G⋆ = Z⋆Z⋆⊤ with Z⋆ ∈ ℝ
n×k
0 satisfying Condition 1. Suppose we

choose λn,T ≍ √
nT log(nT ). Then for any constant s > 0, there exists a constant Cs > 0

such that when n/ log(T ) is sufficiently large,

Pr
{︃⃦⃦

Ĝ − G⋆
⃦⃦2

F/n >
1

T
× Csr

′
n,T

}︃
= O

(︁
n−s)︁,

where r ′
n,T = max{1, T

n
} log2(nT ).

Theorem 5 implies that with high probability, the estimation error ∥Ĝ − G⋆∥2
F/n is

O(r ′
n,T /T ). Similarly to Theorem 1, when ignoring the logarithmic term in r ′

n,T /T , the er-
ror order reduces to (8). Therefore, up to the logarithmic term, the penalized MLE achieves
the oracle estimation error rate O(1/T ) when 1 ≤ T ≲ n, and it achieves the sub-oracle rate
O(1/n) when T ≫ n.

REMARK 6. Intuitively, n2 parameters in G⋆ are redundant and essentially determined
by only nk parameters in Z⋆. To align with the error rate in Theorem 1, we consider the
estimation error of Ĝ with a scaling factor 1/n in Theorem 5. When the rank k is known,
the one-step estimator Ẑ induces the estimator ẐẐ⊤ for G⋆ satisfying ∥ẐẐ⊤ − G⋆∥2

F/n ≍
dist2(Ẑ,Z⋆) ≍ 1/T ; see Lemmas G.3 and G.4 in the Supplementary Material (He et al.
(2025)). When k is unknown, Theorem 5 suggests the penalized MLE Ĝ achieves the same
error rate as that of ẐẐ⊤.

REMARK 7. The idea of using the nuclear norm penalization as a convex relaxation of
the exact rank constraint originates from the low-rank matrix recovery literature (Candès and
Tao (2010), Candès and Recht (2012), Davenport et al. (2014)). It was also utilized by Ma,
Ma and Yuan (2020) to fit the latent space model for a single network. But different from
these studies, we have two components G and α in our model with different but entangling
oracle error rates. To establish a sharp error rate for Ĝ, we develop a novel semiparametric
analysis for the penalized MLE through the profile likelihood (Murphy and van der Vaart
(2000)).
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In particular, we note that Ĝ is also the penalized MLE of the log profile likelihood
pl(G) = l(G, α̂(G)), where α̂(G) = arg maxα∈ℝn×T l(G,α). Let l̇α and l̈αα represent the first-
order derivatives and the second-order derivatives of l(G,α) with respect to αv , respectively.
We can obtain α̂(G)−α = (l̈αα)−1 l̇α + high-order terms, and 𝔼(l̇α) = 0. Intuitively, this sug-
gests that the perturbation error from α̂(G) can be small in terms of the first-order expansions,
so its impact on the profile likelihood of G can be reduced.

Despite the wide use of the profile likelihood method (Murphy and van der Vaart (2000),
Severini and Wong (1992)), our analysis is faced with unique technical challenges. First, not
only are the nuisance parameters α high-dimensional but also they encode two-way hetero-
geneity over both nodes and time. As a result, to separate the estimation error of G from
that of α requires delicate analysis that differs significantly from the existing studies. Sec-
ond, the target parameter G is high-dimensional and intrinsically redundant with a low-rank
structure. The redundancy of parameters in G, as explained in Remark 1, leads to singular-
ity issues when analyzing the likelihood function and calls for new technical developments.
Meanwhile, the low-rank structure of G motivates the use of the nuclear norm penalization,
which needs to be properly taken care of in our semiparametric analysis.

REMARK 8 (Relationship between the two estimators). The two estimators are fun-
damentally connected as they are both motivated by maximizing the semiparametric pro-
file likelihood. In particular, the penalized MLE is a convex relaxation of maximizing the
log-likelihood function l(ZZ⊤, α), which is equivalent to maximizing the log profile like-
lihood pL(Z). The one-step estimator solves the maximization of the quadratic function
q(x) = pL(Ž) + (x − Žv)

⊤Seff(Ž, α̌) − 1
2(x − Žv)

⊤Ieff(Ž, α̌)(x − Žv). In settings with
fixed-dimensional target parameters, the log profile likelihood is approximated by its local
quadratic expansion similar to q(x) (Murphy and van der Vaart (2000)). From an alterna-
tive point of view, the one-step estimator gives an approximate solution to the efficient score
equation, which, in general, is equivalent to maximizing the profile likelihood. Therefore, we
expect that the two proposed estimators are similar up to the convex relaxation, and they can
achieve the oracle error rate as the nuisance α is eliminated through the profile likelihood.

In practice, the penalized MLE differs from the nonconvex one-step estimator since it
adopts a convex relaxation and does not require a prespecification of the true latent dimension
k. Nevertheless, the computation of the one-step estimator is more efficient than solving
penalized MLE, and it can achieve a better performance when oracle k is specified. Both
convex and nonconvex estimators are widely examined in the related literature (Ma, Ma and
Yuan (2020)), and their theoretical properties are of interest to study.

REMARK 9. Given Ĝ solved from (11), we can further construct an estimator for Z⋆. If
the true k is given, we let Ẑk = ÛkD̂

1/2
k , where ÛkD̂kÛ

⊤
k is the top-k eigenvalue components

of the penalized MLE Ĝ. When k is unknown, we can consistently estimate k. Intuitively,
since k equals the rank of G⋆, we can estimate k as the number of significant eigenvalues of
an estimator Ĝ0 that approximates G⋆ sufficiently well. For instance, we can set Ĝ0 to be the
penalized MLE Ĝ in (11) or the “double-SVD” estimator G̊ in Section 3.4, both of which
can be obtained without prespecifying k. We have developed rigorous theoretical guarantees
and conducted numerical experiments in Section I of the Supplementary Material (He et al.
(2025)). Notably for the one-step estimator in Section 3, we can also consistently estimate k

when it is unknown.

5. Simulation studies. We conduct simulation studies to examine how the estimation
errors vary with respect to n and T . To this end, we consider the following two scenarios of
(n, T ):
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(a) fixing n = 200 and varying T ∈ {5,10,20,40,80};
(b) fixing T = 20 and varying n ∈ {100,200,400,800}.

In each scenario, we allow varying k ∈ {2,4,8}. Given (n, T , k), we generate the shared
latent vectors Z⋆ as follows: independently sample wi following a uniform distribution on
𝔹

k
2 = {x ∈ ℝ

k : ∥x∥2 ≤ 1}, let W = [w̃1, . . . , w̃n]⊤ where w̃j = wj − ∑︁n
l=1 wl/n, and set

Z⋆ = √
nW/∥WW⊤∥1/2

F . In this way, Z⋆ has zero column means, and G⋆ = Z⋆Z⋆⊤ satisfies
∥G⋆∥F/n = 1. For the baseline heterogeneity parameters α⋆, we consider two cases:

(I) α⋆
it are independently sampled from U(−2,0);

(II) α⋆
it = t/T + βit with βit independently sampled from U(−3,−1) for 1 ≤ i ≤ ⌊n/2⌋,

and α⋆
it = −2t/T + βit with βit independently sampled from U(−2,0) for ⌊n/2⌋ < i ≤ n.

Intuitively, α⋆’s in Cases (I) and (II) represent different types of heterogeneity; the former is
uniform over i, whereas the latter has a two-block structure over i.

Under each model configuration and for each estimator, we estimate the error dist2(Ẑ,Z⋆)

over 50 Monte Carlo simulations. We compute dist2(Ẑ,Z⋆) = ∥Ẑ − Z⋆V U⊤∥2
F where

UΣV ⊤ is the singular value decomposition of Ẑ⊤Z⋆; see Schönemann (1966). For the pe-
nalized MLE, we obtain Ẑ following Remark 9 given true k; the corresponding errors of Ĝ

follow similar patterns and are provided in Section H.1 of the Supplementary Material (He
et al. (2025)).

Under Case (I), we present the empirical estimation errors of the one-step estimator and
the penalized MLE in Figures 2 and 3, respectively. In each figure, panel (a) suggests that
dist2(Ẑ,Z⋆) is inverse proportional to T when n is fixed. Furthermore, panel (c) shows that
all the fitted slopes are close to −1. In addition, panel (b) shows that dist2(Ẑ,Z⋆) does not
change too much as n increases. In conclusion, the numerical results are consistent with the
oracle theoretical rate O(1/T ) for the estimation error of Z⋆. Comparing Figures 2 and 3,
we find that under the same (n, T , k), the one-step estimator can achieve a slightly smaller
estimation error than the penalized MLE. This might be because biases are introduced with
the convex relaxation. However, the penalized MLE could be more flexible and robust when
the true k is unknown in applications. Under Case (II), we present the empirical estimation
errors dist2(Ẑ,Z⋆) of the one-step estimator and the penalized MLE in Figures 4 and 5,

FIG. 2. Case (I): Empirical estimation errors of the one-step estimator. Panel (a) presents dist2(Ẑ,Z⋆) (averaged
over 50 repetitions) versus T in the scenario (a). Panel (b) presents dist2(Ẑ,Z⋆) (averaged over 50 repetitions)
versus n in the scenario (b). In (a) and (b), axes are in the log scale, three lines correspond to results under
k ∈ {2,4,8}, respectively, and error bars are obtained by ± the standard deviation from 50 repetitions. Panel (c)
presents the slopes from regressing log dist2(Ẑ,Z⋆) on logT with fixed (n, k) ∈ {200} × {2,4,8} in the 50 repeti-
tions under the scenario (a).
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FIG. 3. Case (I): Empirical estimation errors of the penalized MLE. Panels (a)–(c) are presented similarly to
Figure 2.

respectively. We can see that the patterns are similar to those in Figures 2–3. The results
suggest the oracle theoretical rate O(1/T ) can hold under a variety of types of heterogeneity
of α⋆.

FIG. 4. Case (II): Empirical estimation errors of the one-step estimator. Panels (a)–(c) are presented similarly
to Figure 2.

FIG. 5. Case (II): Empirical estimation errors of the penalized MLE. Panels (a)–(c) are presented similarly to
Figure 2.



1422 Y. HE ET AL.

REMARK 10. When estimating latent vectors with the penalized MLE, we set the tuning
parameter λn,T = cλ

√︁
nT μ̂ with a fixed constant cλ = 0.5 and μ̂ = ∑︁

t,i,j At,ij /(n
2T ) being

the average over all entries. In general applications, practitioners may also choose cλ using
the network cross-validation (Chen and Lei (2018), Li, Levina and Zhu (2020)) or based on
their data interpretation. Notably, when focusing on the aggregation effect over T networks,
that is, how the estimation error changes with respect to T , we find that this phenomenon is
not sensitive to the choice of cλ. See more discussions in Section H.4 of the Supplementary
Material (He et al. (2025)).

6. Analysis of New York Citi Bike dataset. We illustrate the use of the proposed meth-
ods by analyzing the New York Citi Bike data (CitiBike (2019)). The data set contains over
2.3 million rides between bike stations in New York in August 2019. Each ride is identified
by two stations and a time stamp (the hire starting time). We focus on a weekday, August 1st,
2019, and keep the rides that last between one minute and 3 hours. The processed data con-
tains 85,854 rides between 782 stations over 24 hours. The 782 bike stations form a common
set of nodes across hours. A pair of stations defines a network edge, and the number of events
between them in each hour gives the hourly edge weight. We provide exploratory data vi-
sualization in Figure 6. Panels (b) and (c) of Figure 6 show that the number of ride events
is very heterogeneous across different bike stations and hours, respectively, motivating the
application of the model (1).

We next fit the model (1) with 2-dimensional latent vectors zi ’s. The choice of k = 2 is for
the ease of interpretation below and is consistent with the strategy in Remark 9. Figure 7(a)
visualizes the estimated positions ẑi ’s obtained by the one-step estimator, while the results of
the penalized MLE are similar and deferred to the Supplementary Material (He et al. (2025)).

To interpret the results, we compare the estimated latent space vectors ẑi’s, visualized in
Figure 7(a), with true geographic locations (in latitudes and longitudes) of stations, visual-
ized in Figure 6(a). We can see that, overall, the estimated latent positions can match the true
geographic positions. Particularly, the stations located in Manhattan are well separated from
those in Brooklyn and Queens. This could be because the borough of Manhattan is separated
from the other two boroughs by the East River, and it is less common to use shared bikes to
travel between Manhattan and the other two boroughs. On the other hand, the estimated sta-
tion locations in Brooklyn and Queens overlap. This could be because Queens and Brooklyn
are not physically divided by a river, and it is easier to travel between these two boroughs by
biking. In the meantime, some bike stations were estimated to be in the Central Park area.

FIG. 6. Illustration of Citi Bike Data: Panel (a) presents true locations of bike stations on Google Maps, colored
by three boroughs of New York City. Panel (b) presents the histogram of the total number of rides by nodes (bike
stations). Panel (c) presents the total number of rides over the 24-hour period.
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FIG. 7. Estimation Results: Panel (a) shows the estimated latent positions ẑi ∈ ℝ
2 using all the data across the

24-hour period. Each point is colored based on which borough the corresponding bike station is located, and we
present the results after a rotation for better visualization. Panel (b) shows the estimated latent positions ẑi ∈ ℝ

2

using one-hour data during 21:00-22:00 on the selected day, where points are similarly colored and rotated
to those in the panel (a). Panel (c) presents the mean of estimated baseline levels

∑︁n
i,j=1 exp(α̂it + α̂j t )/n2

for t = 1, . . . ,24, that is, across the 24-hour period under the model (1). Panel (d) presents the estimated two-
dimensional shared latent vectors under COSIE with 24-hour data.

This could be because people would ride through Central Park frequently, so two stations that
are far away geographically might be viewed as close to each other based on the interactions.
Besides the latent vectors, we visualize the estimated baseline levels across the 24-hour pe-
riod in Figure 7(c). The results show a time-varying pattern that is consistent with the true
changing pattern of the total number of rides across the 24-hour periods, visualized in Fig-
ure 6(c). In summary, the fitted parameters ẑi’s and α̂it ’s under the model (1) are reasonable
and interpretable.

In addition, comparing panels (a) and (b) in Figure 7, we can see that the alignment be-
tween the estimated latent space vectors and the true geographic locations improves as we
utilize observations over more hours. The results suggest that the proposed methods can ef-
fectively extract static latent space information and accommodate time heterogeneity simul-
taneously.

As a comparison, we fit the data by the common subspace independent edge (COSIE)
model in Arroyo et al. (2021) with two-dimensional shared latent vectors. We estimate the
model by the multiple adjacency spectral embedding (MASE) method in Arroyo et al. (2021).
We present the estimated latent vectors in Figure 7(d). Compared to Figure 7(a), Figure 7(d)
does not appear to show a direct connection between the estimated latent positions and the
geographic positions of bike stations. This may be because Arroyo et al. (2021) targeted at
At ’s that are adjacency matrices with binary edges. We present the results by COSIE only to
illustrate the differences between different mean models of At ’s.

REMARK 11. The analyzed networks are undirected and mainly encode the total usage of
bike rides between stations. The learned embeddings zi ’s can be easy to interpret and useful
for understanding the usage of shared bikes and for guiding the design of stations. Alterna-
tively, one may examine bike rides with directional information, giving directed networks.
Then the model (1) may be generalized as exp(αit +βjt +⟨zi,wj ⟩), where for each vertex i,
αit and βit characterize the “leave” and “arrival” baseline activity levels at the time point t ,
and zi and wi are time-invariant latent vectors characterizing the out-degree and in-degree
properties, respectively. It would be an interesting future research direction to extend this
study to directed networks.
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7. Discussion. In this work, we propose a longitudinal latent space model tailored for
recurrent interaction events. We develop two novel semiparametric estimation techniques,
that is, the generalized semiparametric one-step updating and the penalized maximum likeli-
hood estimation, and show that the resulting estimators attain the oracle estimation error rate
for the shared latent structure. The first approach utilizes the semiparametric efficient score
equation to construct a second-order updating estimator. We show that the estimator pos-
sesses a geometric interpretation on the quotient manifold, which automatically overcomes
the nonuniqueness issue due to overparametrization. The second approach corresponds to a
convex relaxation of the low-rank static latent space component.

By separating the (primary) parameters of interest associated with the static latent space
from the dynamic nuisance parameters, a strategy commonly found in semiparametrically
efficient parameter estimation, we are able to delineate the oracle rates of convergence for the
primary and the nuisance parameters according to their dimensions. This strategy also helps
us to untangle the static and time-heterogeneous components inherent in the network model
and construct the oracle estimators.

There are a few other interesting future works. First, the ability to accurately estimate latent
structures could enable important downstream analysis such as prediction, hypothesis testing,
and change-point detection. For instance, it may be useful to ascertain a change point in the
structure of the latent space (Bhattacharjee, Banerjee and Michailidis (2020), Enikeeva and
Klopp (2021), Madrid Padilla, Yu and Priebe (2022)). The achievement of oracle estimation
error rates could facilitate the quantification of uncertainty in estimators, which in turn lays a
strong foundation for conducting reliable statistical inference.

Second, this paper focuses on the variance in estimation error rates as a function of n

and T , while treating the latent dimension k and network sparsity level as fixed. Extending
the current methodology and theory to the cases when k grows (Choi, Wolfe and Airoldi
(2012)) as well as sparse networks (Qin and Rohe (2013), Le, Levina and Vershynin (2017))
are important topics.

Third, this work aims to unveil the fundamental relationship between the estimation er-
rors and the degree of baseline heterogeneity. We focus on the most challenging scenario
where the degree of baseline heterogeneity increases linearly with respect to n and T . It is
possible to impose additional structures to reduce baseline heterogeneity, such as assuming
{αi1, . . . , αiT } to be piecewise constants. Nevertheless, as T increases, the intrinsic number
of parameters would eventually become large to keep up with the increasing data complexity.
The developed results would also provide us with techniques for investigating such scenar-
ios. Which structural assumptions are appropriate may vary across different applications and
require case-by-case analyses in future research.

Fourth, the proposed model has the potential for further extensions to capture more com-
plex network structures. Currently, heterogeneity across networks is only characterized at the
first-order baseline levels αit ’s, while the second-order interaction terms are modeled by the
time-invariant components zi ’s. We find that this model adequately describes the analyzed
dataset. But more generally, it may also be of interest to incorporate time-varying interaction
terms, which would further increase the model complexity and pose new theoretical chal-
lenges. Moreover, the proposed model adopts the Euclidean inner product to describe the
interactions between nodes, which can be limited to capturing homophilic network struc-
tures. Recently, researchers proposed to use indefinite inner products to capture heterophilic
structures (Rubin-Delanchy et al. (2022), Lei (2021), MacDonald, Levina and Zhu (2022)).
We discuss the feasibility of generalizing the proposed analysis to heterophilic products in
Section J of the Supplementary Material (He et al. (2025)). While developing comprehensive
results would require careful consideration of specific model properties, the foundational re-
sults and techniques developed under (1) pave the way for studying more general models.
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Finally, it would be worthwhile to generalize our results to other models, including various
distributions for weighted edges, continuous time stamps, or additional covariates influencing
the network structure (Hoff, Raftery and Handcock (2002), Vu et al. (2011), Perry and Wolfe
(2013), Hoff (2015), Kim et al. (2023), Sit, Ying and Yu (2021), Weng and Feng (2021),
Huang, Sun and Feng (2023)). We believe that the proposed semiparametric analysis frame-
work can function as a valuable building block for establishing sharp estimation error rates
under those models.

APPENDIX: DETAILS FOR THE INITIALIZATION ALGORITHM

We present the details of the initialization Algorithm 1 below. More explanations on the
details can be found in Section D of the Supplementary Material (He et al. (2025)).

Stage 1. Stage 1 utilizes the universal singular value thresholding (USVT) method in
Chatterjee (2015) to obtain an “initial of initial” estimator. In particular, for t = 1, . . . , T ,
lines 3–4 of Algorithm 1 finds the singular value decomposition of At and retains the top
singular components with the singular values st,l > τt . Line 5 applies fMΘ,2 : ℝn×n → ℝ

n×n

to ˜︁Et to ensure that all elements in E̊t are in [e−MΘ,2,1]. Specifically, given a matrix X =
(Xij )1≤i,j≤n ∈ ℝ

n×n, the (i, j)th element of fMΘ,2(X) is defined as

(︁
fMΘ,2(X)

)︁
ij =

⎧⎪⎪⎨
⎪⎪⎩

Xij if e−MΘ,2 ≤ Xij ≤ 1;
e−MΘ,2 if Xij < e−MΘ,2;
1 if Xij > 1.

(12)

Line 10 projects ˜︁G into 𝕊
n+ and obtain G̊. In particular, 𝒫𝕊

n+(·) represents the projection
mapping onto 𝕊

n+, that is, for X ∈ℝ
n×n, we define

𝒫𝕊
n+(X) = arg min

Y∈𝕊n+
∥X − Y∥,(13)

where ∥ · ∥ represents the Euclidean norm. In line 11, we define Uk = (u1, . . . , uk) ∈ ℝ
n×k

and Dk = diag(d1, . . . , dk) ∈ ℝ
k×k , where d1 ≥ · · · ≥ dk are the largest k eigenvalues of G̊,

and uj ∈ ℝ
n is the eigenvector of G̊ corresponding to dj for j = 1, . . . , k.

Stage 2. Stage 2 sets (Z̊, α̊) obtained in Stage 1 as the initial estimator (line 13) and
consists of two iterative sub-stages.

Stage 2-1 (lines 14–18). For r = 1, . . . ,R1 − 1, let (Zr,αr) denote the updated parameters
along gradients after the r th iteration. Lines 15–16 of Algorithm 1 updates the parameters
(Zr,αr) along the directions

gZ

(︁
Zr,αr)︁ =

T∑︂
t=1

(︁
At − exp

(︁
Θr

t

)︁)︁
Zr ∈ℝ

n×k,(14)

gαt

(︁
Zr,αr)︁ = (︁

At − exp
(︁
Θr

t

)︁)︁
1n ∈ ℝ

n×1(15)

with Θr
t = αr

t 1⊤
n + 1n(α

r
t )

⊤ + Zr(Zr)⊤ for t = 1, . . . , T . Lines 17–18 projects the updated
estimator (˜︁Zr+1,˜︁αr+1) onto the following sets:

𝒞Z =
{︂
Z ∈ ℝ

n×k : 1⊤
n Z = 0, max

1≤i≤n
∥zi∥2

2 ≤ MZ,1

}︂
,(16)

𝒞α =
{︂
α ∈ ℝ

n×T : max
1≤i≤n,1≤t≤T

|αit | ≤ Mα

}︂
,(17)

𝒞′
Z =

{︂
Z ∈ ℝ

n×k : max
1≤i≤n

∥zi∥2
2 ≤ MZ,1

}︂
.(18)
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Algorithm 1: Initialization algorithm for the semiparametric one-step estimator

Input: Data: A1, . . . ,AT ∈ ℝ
n×n; thresholds: τ1, . . . , τT ; latent space dimension: k;

step sizes: ηZ , ηα ; number of iterations: R1, R2.
Output: (α̌, Ž).

1 Stage 1:
2 for t = 1, . . . , T do
3 Find the singular value decomposition of At = ∑︁n

l=1 st,lut,lv
⊤
t,l , where for

l = 1, . . . , n, st,l ∈ ℝ, ut,l ∈ℝ
n, and vt,l ∈ ℝ

n represent the singular values, the
left singular vectors, and the right singular vectors of At , respectively.

4 Let ˜︁Et = ∑︁
{l:st,l>τt } st,lut,lv

⊤
t,l .

5 Let E̊t = fMΘ,2(
˜︁Et), where fMΘ,2(x) is defined in (12).

6 Let Θ̊t = log(E̊t ).
7 Let α̊t = arg minα ∥Θ̊t − α1⊤

n − 1nα
⊤∥2

F = (nIn + 1n1⊤
n )−1Θ̊t1n.

8 end
9 Let ˜︁G = ∑︁T

t=1(Θ̊t − α̊t1⊤
n − 1nα̊

⊤
t )/T .

10 Let G̊ = 𝒫𝕊
n+(˜︁G), where 𝒫𝕊

n+(·) is defined in (13).

11 Let Z̊ = ŮkD̊
1/2
k where ŮkD̊kŮ

⊤
k is the top-k eigen components of G̊.

12 Stage 2:
13 Let Z0 = Z̊ and α0 = α̊ = (α̊1, . . . , α̊T ).
14 for r = 0,1, . . . ,R1 − 1 do
15 ˜︁Zr+1 = Zr + ηZgZ(Zr,αr) with gZ(Zr,αr) in (14).
16 ˜︁αr+1

t = αr
t + ηαgαt (Z

r,αr) with gαt (Z
r,αr) in (15) for t = 1, . . . , T .

17 Zr+1 =𝒫𝒞Z
(˜︁Zr+1) with 𝒞Z defined in (16).

18 αr+1 = 𝒫𝒞α (˜︁αr+1) with 𝒞α in (17).
19 end
20 for r = R1, . . . ,R2 − 1 do
21 ˜︁Zr+1 = Zr + ηZgZ,R1(Z

r,αr) with gZ,R1(Z
r,αr) in (19).

22 ˜︁αr+1
t = αr

t + ηαgαt ,R1(Z
r,αr) with gαt ,R1(Z

r,αr) in (20) for t = 1, . . . , T .
23 Zr+1 =𝒫𝒞′

Z
(˜︁Zr+1) with 𝒞′

Z defined in (18).

24 αr+1 = 𝒫𝒞α (˜︁αr+1) with 𝒞α defined in (17).
25 end

26 Let α̌ = αR2 and Ž = JZR2 , where J is defined in (21).

Similarly to (13), for 𝒞 ⊆ ℝ
m×q and X ∈ ℝ

m×q , let 𝒫𝒞(X) = arg minY∈𝒞 ∥Y − X∥. The pro-
jection mapping is uniquely defined as 𝒞Z , 𝒞α , and 𝒞′

Z are closed and convex sets (Section 8.1,
Boyd and Vandenberghe (2004)).

Stage 2-2 (lines 20–25). The second part of Stage 2 utilizes an alternating version of the
projected gradient descent to obtain the error bound of individual rows of Z and individual
elements in α. In particular, in lines 21–22, we define

gZ,R1

(︁
Zr,αr)︁ =

T∑︂
t=1

(︁
At − exp

(︁
Θ

r,R1
t

)︁)︁
ZR1 ∈ ℝ

n×k,(19)
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gαt ,R1

(︁
Zr,αr)︁ = (︁

At − exp
(︁
Θ

r,R1
t

)︁)︁
1n ∈ℝ

n×1,(20)

where Θ
r,R1
t = αr

t 1⊤
n + 1n(α

R1
t )⊤ + Zr(ZR1)⊤ with α

R1
t and ZR1 = (z

R1
1 , . . . , z

R1
n )⊤ being

estimates from Stage 2-1. Compared to Θr
t in (14)–(15), Θ

r,R1
t is defined with part of the

parameters fixed at α
R1
t and ZR1 .

The final output of Algorithm 1 is α̌ = αR2 and Ž = JZR2 with

J = In − 1

n
1n1⊤

n .(21)

We call J the centering matrix as 1⊤
n J = 0, which gives 1⊤

n Ž = 0.

CONDITION 3. Assume the tuning parameters in Algorithm 1 satisfy the following:

(i) Thresholds τt = τn1/2 for some large enough constant τ > 0.
(ii) Step sizes ηZ = η/(T ∥Z0∥2

op) and ηα = η/(2n) for some small constant η > 0.
(iii) Numbers of iterations R1 and R2 are sufficiently large.

REMARK 12. In simulations, we choose parameters following Remark D.2 in the Sup-
plementary Material (He et al. (2025)). Condition 3 on parameters are imposed for the conve-
nience of proofs. It essentially requires that the tuning parameters satisfy certain orders with
respect to n and T and can be approximated by the practical choices in Remark D.2.
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data.” (DOI: 10.1214/25-AOS2506SUPP; .pdf). Due to space limitation, additional results
and proofs are deferred to the supplementary material. The codes are published at He et al.
(2025).
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