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In a linear model where the data is contaminated or the
random error is heavy-tailed, least absolute deviation (LAD)
regression has been widely used as an alternative approach
to least squares (LS) regression. However, it is well known
that LAD regression is not robust to outliers in the ex-
planatory variables. When the data includes some leverage
points, LAD regression may perform even worse than LS
regression. In this manuscript, we propose to improve LAD
regression in a penalized weighted least absolute deviation
(PWLAD) framework. The main idea is to associate each
observation with a weight reflecting the degree of outlying
and leverage effect and obtain both the weight and coeffi-
cient vector estimation simultaneously and adaptively. The
proposed PWLAD is able to provide regression coefficients
estimate with strong robustness, and perform outlier detec-
tion at the same time, even when the random error does not
have finite variances. We provide sufficient conditions under
which PWLAD is able to identify true outliers consistently.
The performance of the proposed estimator is demonstrated
via extensive simulation studies and real examples.

AMS 2000 subject classifications: Primary 62F35,
62F12; secondary 62P35.
Keywords and phrases: Lasso, Leverage points, Outlier
detection, Robust regression, Weighted least absolute devi-
ation.

1. INTRODUCTION

Given n observation pairs (xi, yi), i = 1, · · · , n, where
xi = (xi1, · · · , xip)

′ is a p-dimensional predictor and yi is the
response, we consider the following linear regression model

(1) yi = x′
iβ

∗ + εi, 1 ≤ i ≤ n,

where β∗ = (β∗
1 , · · · , β∗

p)
′ is the true coefficients and {εi, i =

1, · · · , n} are independent random errors such that εi/w
∗2
i

are identically distributed with maxi w
∗2
i = 1. Here, for 1 ≤

i ≤ n, the weights 0 < w∗2
i ≤ 1 represent the heterogeneity
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of the errors with wi < 1 representing an outlier and wi = 1
representing a “normal” observation. Let O = {1 ≤ i ≤
n : 0 < w∗

i < 1} be the true outlier set and the goal of
outlier detection is to recover the set O accurately. Here,
it is assumed the size of O is smaller than n/2, i.e., the
majority of the observations are “normal” observations. We
set xi1 = 1 for 1 ≤ i ≤ n if an intercept is included in the
regression model.

Least squares (LS) regression is often used when {εi, i =
1, · · · , n} are well behaved and w∗

i = 1 for all i. It is well
known that LS is lack of robustness and strongly sensitive
to outliers. When the data is contaminated or the random
error is heavy tailed, least absolute deviation (LAD) regres-
sion is considered to be a good alternative to LS regression.
An LAD regression estimates the coefficient vector by min-
imizing the �1 loss,

(2) β̃ = argmin
β

{
n∑

i=1

|yi − x′
iβ|

}
,

where y = (y1, · · · , yn)′ and β = (β1, · · · , βp)
′. However, it

is well known that LAD regression is also lack of robustness
when the data include outliers in the explanatory variables
[28] (i.e., there exist leverage points). In this scenario, LAD
regression may perform even worse than LS regression.

One global measure of an estimator’s robustness is the
breakdown value [19]. The finite-sample breakdown value is
the minimum proportion of observations that, if arbitrar-
ily modified, can cause the estimates to increase above any
bound. The range of possible value of breakdown value is
between 1/n and 1/2. The higher, the more robust a regres-
sion approach can be. The LAD estimator has a smallest
breakdown value of 1/n. This is mainly due to the fact that
the LAD estimator is not robust to leverage points. One can
refer [14] for a detailed discussion on the breakdown value
of the LAD estimator.

There are many robust procedures with high breakdown
value. See for example, the least median of squares [29], the
least trimmed squares [25], S-estimates [24], Generalized S-
estimates [7], MM-estimates [36], the robust and efficient
weighted least squares estimators [13], and forward search
[2]. One can refer to [19] and [15] for broader reviews of some
recent robust regression procedures.

In the framework of LAD regression, the robustness can
also be improved by down-weighting those leverage points
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which are detected in advance. For example, [14] proposed
a weighted LAD (WLAD) regression to improve the break-
down value of LAD regression. In WLAD regression, each
observation is assigned a weight in advance, and the final
estimation is expected be robust to the outliers in x direc-
tion if those pre-assigned weights correctly reflect the outly-
ing information among all covariates. The idea of including
weight under the �1 loss is also considered for dealing with
possibly infinite variances in several time series models such
as [18, 23, 22].

As pointed out by [34] and to be demonstrated by our
simulation studies, the robustness of WLAD can be signif-
icantly deteriorated by a high percentage of outliers, espe-
cially when multiple covariates exist and the outlying per-
centage is high, even in the case of no leverage points. An
alternative approach to robust LAD regression is to adopt
the trimming procedure during the LAD regression, such as
the Least Trimmed Absolute Deviation (LTAD) estimator
studied by [16, 32, 33]. The LTAD was also extended to least
trimmed quantile regression [21], where the robust proper-
ties of LTAD were discussed as a special case under different
trimming percentages. LTAD can also be interpreted as one
special type of WLAD by assigning some observations with
weight 0 and most others with weight 1.

However, none of the above robust LAD procedures are
designed for simultaneous detection of the outliers and ro-
bust estimation. On one hand, the WLAD estimator is based
upon a pre-assigned weight parameter depending upon a
pre-selected clean subset. If a large amount of leverage
points exist, the clean subset and the produced weight as-
signment can be misleading, which cause the WLAD esti-
mates to be severely biased. On the other hand, the perfor-
mance of LTAD methods also depends closely on the chosen
trimming percentage. As pointed in [21], the LTAD can be
strongly biased if the assigned trimming rate is less than
the true contamination rate. On the contrary, if the trim-
ming percentage is higher than the contamination rate, the
estimation can have a large variation even though the bias
can be corrected. Thus, having the information on the true
trimming rate plays an important role in obtaining an LTAD
estimate with strong robustness. An ideal approach should
take into account the weight estimation (or outlier detec-
tion) simultaneously with the coefficients estimation.

The study of outlier detection has a long history. See
[8, 4, 30], among others. In this paper, we propose a new
method named penalized weighted least absolute deviation
regression (PWLAD) for simultaneous outlier identification
and robust LAD estimation. PWLAD borrows ideas from
recent work on penalized weighted least squares regression
(PWLS) models [11, 12] to deal with the scenarios where the
random error may have certain heteroscedasticity or infinite
variances.

PWLAD associates each observation with a weight and
obtain both the weight and regression coefficient estimates
simultaneously using a lasso-type penalty on the weight vec-
tor. It leads to estimators with potentially strong robustness,

and at the same time, produces the observations’ outlying
information. Even under the scenario where the data include
both contaminated observations (in both y and x directions)
and the random errors may not have finite variance, the pro-
posed PWLAD is still able to detect corresponding outliers
and provide robust regression coefficient estimates.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the PWLAD estimator. A correspond-
ing Bayesian interpretation and model implementation are
also presented in Section 2. In Section 3, we investigate the
theoretical properties of the model regarding outlier detec-
tion. In particular, we provide sufficient conditions under
which PWLAD estimator is able to separate outliers from
normal observations with high probability. In Section 4, we
present extensive simulation studies and two real data ex-
amples by comparing the proposed approach with some pop-
ular methods. We conclude the paper with a discussion in
Section 5 and provide all proofs in Section 6.

2. PWLAD: METHOD AND
IMPLEMENTATION

In the linear model specified in (1), a penalized weighted
least absolute deviations (PWLAD) estimator of β =
(β1, · · · , βp)

′ and w = (w1, · · · , wn)
′, is to minimize a pe-

nalized objective function consisting of weighted �1 loss and
a penalty on the weight vector,

(β̂, ŵ)(λ)= argmin
β,w

{
1

2

n∑
i=1

w2
i |yi −x′

iβ|+λ

n∑
i=1

�i|1−wi|
}
,

(3)

where 0 < w2
i ≤ 1 represent the weights quantifying the

outlying effects for each observation, and
n∑

i=1

λ�i|1−wi| is

a penalty shrinking all weight to the direction of 1. Here �is
include some prior information on the outlying status of all
observations, and λ is a tuning parameter in (0,∞). Ide-
ally, this penalty term is expected to generate small weights
for those leverage points (outliers in the x direction) or y-
outliers (outliers in the y direction) and large weight for
normal observations.

Remark 1: The non-differentiability of penalty �i|1−wi|
at wi = 1 implies that some of the components of ŵ may
be exactly equal to one, the corresponding observations of
which are called “normal” observations. The other observa-
tions with ŵi < 1 are “abnormal”, with possible outlying
in the x and/or y direction. In this regards, the estimated
weights provide an automatic way to conduct outlier de-
tection. When λ is sufficiently large, all observations have
ŵi = 1, and no outlier is claimed. When λ is sufficiently
small, all ŵi are close to zero. Therefore, the tuning param-
eter selection plays an important role in determining the
proportion of outlying observations. In Section 2.3, we will
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Figure 1. Left panel: Curves of prior distribution of weight, fλi(wi) for λi = 2, 4, and 6; Middle panel: a simulated data with
t(2) random error and 30% data contamination under Simulation Example 2 in Section 4.1 (normal observations and outliers
are plotted using gray and black dots); Right panel: the κ(λ) curve (for tuning parameter selection introduced in Section 2.3)

produced for the sample data in the middle panel.

introduce a random weighting technique to select the opti-
mal λ.

Remark 2: If some outlying information is incorporated
into �i, the outlier detection accuracy can be significantly
improved. For example, suppose an initial value on weight

w
(0)
i is obtained, we can set �i = 1/| log(w(0)

i )|. A larger

0 < w
(0)
i ≤ 1 produces a larger penalty λ�i on |1 − wi|,

which pushes ŵi more to 1. If w
(0)
i = 1, then we have

�i = ∞, which would leads to ŵi = 1. On the other

hand, when w
(0)
i → 0, ŵi is usually much smaller than 1

since �i → 0 leads to very small penalty being imposed
for the i-th observation. This resembles the idea of adaptive
lasso [38].

We would like to point out a Bayesian interpretation of
PWLAD estimator in (3). Suppose yi follows a Laplace dis-
tribution (LD) with mean x′

iβ and scale parameter 2/w2
i

with 0 < wi ≤ 1,

f(yi|xi,β, wi) = (w2
i /4) exp

{
−(w2

i /2)|yi − x′
iβ|

}
.

If we assume wi follows a prior distribution with hyper-
parameter λi ≥ 1,

(4) fλi(wi) ∝ w−2
i e−λi|1−wi|, 0 < wi ≤ 1,

and βj ∝ 1, then a posterior distribution of those parameters
is

f(β,w|yi,xi) ∝ exp[−
n∑

i=1

(w2
i /2)|yi −x′

iβ| −
n∑

i=1

λi|1−wi|].

Thus for each λi = λ�is, PWLAD in (3) is a posterior mode
of w = (w1, · · · , wn)

′.

It is easy to check fλi(wi) in (4) decreases when wi <
2/λi and increases when wi > 2/λi. Three shapes of fλi(wi)
regarding under λi = 2, 3, and 5 are plotted in the left
panel of Figure 1. Those curves show that the larger λi is,
the higher prior probability for wi being close to 1.

2.1 Model implementation

For any tuning parameter λ and �is, the penalized objec-
tive function in (3) is convex in w when β is fixed, it is also
convex in β ifw is fixed. Therefore, we are facing a bi-convex
optimization problem in (3). Thus, once an initial β(0) and

w(0) are available, (β̂, ŵ) can be solved alternatively via the
following algorithm.

Algorithm 1 PWLAD Solution for a given λ

Given initial estimates β(0), � and w(0)

Let j = 1 and λi = λ�i

While not converged do
[Update β]

yadj = w(j−1) ·w(j−1) · y,
Xadj = w(j−1) ·w(j−1) ·X,

let β(j) = argmin
β

{‖yadj −Xadjβ‖1}

[Update w]
r(j) = y −Xβ(j),

If |r(j)i | > λi, let w
(j)
i ← λi/|r(j)i |, otherwise w

(j)
i ← 1

converged ← ‖w(j) −w(j−1)‖∞ < ε
j ← j + 1

end while

output β̂ = β(j) and ŵ = w(j).

Here “a ·B” in Algorithm 1 is a special product between
vector a and matrix B. In particular, if a = (a1, · · · , an) is
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a vector and B is a n× p matrix with bi being its ith row,
then “a ·B” is obtained by multiplying each element of bi

by ai for 1 ≤ i ≤ n.

2.2 Choice of initial weight

If all �i = 1 in (3), then the penalty in PWLAD be-
comes a lasso penalty on 1 − w. It is well known that the
lasso penalty needs stringent conditions to achieve variable
selection consistency, which would translate to the difficulty
in detecting the outliers consistently. To improve the robust-
ness of PWLAD regarding the leverage points, we suggest

to choose �i = 1/| log(w(0)
i )| in (3), where w

(0)
i is an initial

estimate of wi for 1 ≤ i ≤ n associated with high-breakdown
measures of leverage. In particular, we compute the lever-
age values from a clean data set [3] and the corresponding
squared Mahalanobis distance [5] as suggested in [14]. Before
the leverage value computation, each predictor is required
to be scaled to be between 0 and 1 by subtracting its mini-
mum value and then dividing by its maximum value. After
denoting the scaled design matrix as X̆ = (x̆1, · · · , x̆n)

′, and

letting d̆ be the vector consists of median value of each of p
columns in X̆, the clean subset S consists of all m observa-
tions with the smallest distances between x̆i and d̆. Thus,
the leverage values for observation i relative to the clean
subset S is computed from hi = x′

i(X
′
SXS)

−1xi.
Some other leverage value computation approaches are

also provided in [27] and [26]. Once all leverage values are
obtained, we quantify the severity of the data contamina-

tion (among xi’s) by a ratio, L =
max1≤i≤n hi

min1≤i≤n hi
≥ 1. If

the data produce a large L, there is a good chance that
the data is contaminated by leverage points. In this case, a
pre-screening step based upon hi’s tends to improve the ro-
bustness. If L is close to 1, the chance of having the leverage
points is small, then the weighting procedure in WLAD re-
gression may cause unnecessary bias during the estimation.
Therefore, we only use the high-breakdown leverage value
information selectively based upon a cutoff value L0 > 1. If

L > L0, we let w
(0)
i = w0 
 1 for all those (n −m) obser-

vations with smallest his and w
(0)
i = 1 for the rest obser-

vations. If L ≤ L0, we compute w
(0)
i s from a non-adaptive

PWLAD obtained from Algorithm 1 in Section 2.1 under
�i = 1 and an initial β(0) from LAD regression.

Remark 3: [14] provided detailed discussions on the choice
of clean dataset size m and suggested to use m = 0.6n. The
clean subset should be large enough to include much of the
data, but not too large so that it does not include outlying
observations. Our results are not sensitive to the choice of
clean dataset size since the procedure is designed to be data-
adaptive. The leverage point information is only used if the
leverage severity ratio is large enough (L > L0).

Remark 4: The cutoff value L0 > 1 is user-defined. It
is used to decide whether the above leverage screening ap-
proach is worthwhile to be used in the PWLAD approach. A

smaller L0 gives more chance on using the measured leverage
information. A larger L0 is more conservative. In general, L0

is chosen based upon what ratio is big enough to quantify
some observations among all xi’s to be significantly differ-
ent from others. We suggest to use log(n) based upon the
universal threshold value idea in the lasso variable selection
[9, 37]. The PWLAD estimator is robust to the choice of w0

during the pre-screening approach as long as w0 
 1. In our
numerical results, we set w0 = 0.01.

2.3 Tuning parameter selection

The selection of tuning parameter λ plays an important
role in the performance of both outlier identification and
parameter estimation. We propose to use the stability se-
lection method [20, 31] to select an “optimal” λ̂ from a fine
grid of λ. This method is referred as the random weight-
ing method in [11]. One important by-product of random
weighting method is that it can produce an estimate of the
outlying probability of all observations. Here we only intro-
duce random weighting steps briefly with detailed discus-
sions available in [11].

Following [10], let ω1, · · · , ωn be some i.i.d. random
weights with E(ωi) = V ar(ωi) = 1, and ω = (ω1, · · · , ωn)

′.
With these random weights, we obtain the corresponding
perturbed estimates,

(β̂(λ;ω), ŵ(λ;ω))(5)

= argmin
β,w

{
1

2

n∑
i=1

ωiw
2
i |yi − x′

iβ|+
n∑

i=1

λ�i|1− wi|
}
.

Via (5), any two sets of random weights, ω1 and ω2,
give two perturbed weight estimates ŵ(λ;ω1) and ŵ(λ;ω2),
which lead to two sets of suspected outliers, O(λ;ω1) and
O(λ;ω2). The agreement of these two sets of suspected
outliers can be measured by Cohen’s kappa coefficient [6],
κ(λ) ≡ κ(O(λ;ω1),O(λ;ω2)). A sample κ(λ) curve (pro-
duced for a sample data in Example 2 in Section 4.1) along
a sequence of tuning parameter λ is plotted in the right
panel of Figure 1.

Finally, if we repeatedly generate B pairs of random
weights, ωb1 and ωb2, b = 1, · · · , B, we can estimate the
stability of the outlier detection by

(6) Ŝ(λ) =
1

B

B∑
b=1

κ (O(λ;ωb1),O(λ;ωb2)) ,

and then select λ̂ that maximizes Ŝ(λ). In addition, for each
observation, the proposed method can provide an estimate
for the probability of it being an outlier as λ changes,

(7) P̂ o
i (λ) =

1

2B

B∑
b=1

2∑
k=1

I {i ∈ O(λ;ωbk)} .
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3. OUTLIER DETECTION CONSISTENCY

In this section, we investigate the outlier detection prop-
erties of the PWLAD estimator. In particular, we want to
know whether the proposed PWLAD is able to detect all
the true outliers with high probability. First, we introduce
several notations.

Recall that O = {1 ≤ i ≤ n : 0 < w∗
i < 1} is the true

outlier set with cardinality qn, and Ô = {1 ≤ i ≤ n : 0 <
ŵi < 1} be the estimated outlier set. Denote ān = max

i∈O
w∗

i .

Let bn = max
1≤i≤n,1≤j≤p

|xij |. Intuitively, as the qn gets larger,

the problem is more difficult. In addition, w∗
i in the outlier

set should be considerably smaller than 1. We list the precise
conditions as follows.

(A1) The random error εi/w
∗2
i are i.i.d. with cumulative

distribution function F , where F is twice differentiable
and f(0) = F ′(0) > 0, 0 < w∗

i ≤ 1 for 1 ≤ i ≤ n.
(B1) There exists �n > 0 and �̄n > 0 satisfying

P

(
{max
i∈O

�i ≤ �n} ∩ {min
i∈Oc

�i ≥ �̄n}
)

= 1− o(1).

(B2) (i) �n = o
(
(qnλā

2
n)

−1
)

and (ii) 1/�̄n =

o
(
λ/

√
log(n)

)
.

The error distribution of εi in Condition (A1) is weaker
than that assumed under regular LAD regression since some
w∗

i are allowed to be very small. Conditions (B1) and (B2)
imply that�is in the true outlier set should be small enough
and �is in normal data set should be large enough. This is
reasonable since the penalty in PWLAD is to shrink all wis
from 0 to 1: larger penalties (λ�i) on |1 − wi| for i ∈ Oc

encourages ŵi to be 1, and smaller penalties on |1−wi| for
i ∈ O encourages ŵi to be close to 0. (B2) also indicates that

�n/�̄n = o
(
(qnā

2
n

√
log(n))−1

)
. Thus if ā4n = c/ log(n) for

some constant c > 0, then �n/�̄n = o(q−1
n ). It provides a

rate requirement on �n/�̄n: the faster qn grows with n, the
faster �n/�̄n → 0.

Theorem 1. Suppose Conditions (A1) and (B1-B2)
hold. Let ŵ be a PWLAD solution in (3) under a

given initial estimator β̃ satisfying P

(
‖β̃ − β∗‖2 >

λ/(
√
pbn max{�̄n/2, �n})

)
= o(1). Then

lim
n→∞

P (Ô = O) = 1.

The proof of Theorem 1 is provided in Section 6. The-
orem 1 indicates that the PWLAD estimator with appro-
priately chosen �is can detect all outliers with probability
going to 1 asymptotically if we start from a well behaved
initial estimator, β̃. For example, such a consistent initial
estimator can be obtained from the trimmed LAD estima-
tor under regular conditions [21]. In the numerical studies,

we choose initial weight w
(0)
i s as introduced in Section 2.2

and let �i = 1/| log(w(0)
i )|. We obtain β̃ from the WLAD

using the above initial weight vector.
Remark 5: If w∗

i in the true outlier set O is small enough
such that ā2n = O(n−α) for some α > 1, then O can be

identified consistently as long as the initial estimator |β̃j | is
bounded for 1 ≤ j ≤ p, even when the number of outliers
is proportional to the sample size, i.e. qn = O(n) and the
leverage points exist. In particular, if bn = o(log(n)) and
0 < �n < 1/4 < 1/2 < �̄n ≤ 1, we can choose c1 log(n) <
λ < c2 log(n) for some constant

√
p/2 < c1 < c2, then both

conditions in (B2) are satisfied and the rate conditions on

β̃ in Theorem 1 becomes

P
(
‖β̃ − β∗‖2 > λ/(

√
pbn max{�̄n/2, �n})

)
< P

(
‖β̃ − β∗‖2 > log(n)/bn

)
= o(1).

4. NUMERICAL STUDIES

4.1 Simulation experiments

In this section, we conduct extensive simulation studies
under different settings to demonstrate the performance of
PWLAD in terms of both outlier detection and regression
coefficients estimation.

Example 1. [Scale-shifted model] The data is generated
from a homogenous linear model (1) with β = 05 and n =

100. The covariance matrix X = (x1, · · · ,xn)
′ = UΣ

1/2
1 ,

where U = (ujk)n×p with ujk
i.i.d.∼ Unif(−5, 5) and Σ1 has

diagonal elements of 1 and all non-diagonal elements of 0.5.
The first 30% observations are set as the outlier set O by
letting w∗

i = 0.05 for i ∈ O and 1 otherwise. We generate
i.i.d. random error from either εi ∼ N(0, 1) or t(2).

We compare the performance of PWLAD with those of
three other robust methods: LAD, WLAD and PWLS in
terms of both outlier detection and regression coefficients
estimation. All simulations are repeated 100 times. To en-
sure a fair comparison, the initial weighting with 25% pre-
screening step introduced in Section 2.2 and the random
weighting method introduced in Section 2.3 for tuning pa-
rameter selection are adopted in both PWLAD and PWLS.

To evaluate the estimation performance of β̂, we report
the �1 estimation error, ‖β̂−β∗‖1, from 100 iterations in Fig-
ure 1. The left panel in Figure 1 contains the box plots of the
�1 estimation error for LAD (black), PWLAD (red), PWLS
(green) and WLAD (blue). From the graph, we observe that
the performance of the four methods are comparable when
the error distribution is N(0, 1). When we are in the heavy
tail error case (t(2)), it appears that PWLAD outperforms
the other methods by having the smallest median and the
smallest maximum value.

To evaluate the outlier detection performance, we plot the
ROC curves in the middle and right panels of Figure 2. Note
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Figure 2. Estimation and outlier detection results of Example 1. Left panel: the �1 estimation error from all 4 methods
(PWLAD: red, PWLS: green, WLAD: blue, and LAD: black; left–N(0, 1) and right–t(2)). Middle panel: ROC curves

(PWLAD:Black, PWLS: Red) when random errors follow t(2). Right panel: ROC curves when random errors follow N(0, 1).

that since LAD and WLAD are not designed to detect out-
liers, we only plot ROC curves generated from PWLAD and
PWLS. It is observed from Figure 2 that PWLAD outper-
forms PWLS regarding the outlier detection accuracy when
the random error is heavy tailed. Under the normal random
error case, the outlier detection performance of both meth-
ods greatly improves and PWLS works slightly better than
PWLAD.

Example 2. [Mean-shifted model] We generate the data
from a heterogenous mean linear model

(8) yi = γi + x′
iβ + σiηi, 1 ≤ i ≤ 100,

where β = 05, σi = exp{0.055(xi1 + xi2)}, ηi are i.i.d.
from one of the three types of distributions: N(0, 1), t(2)
and standard double exponential distribution, DE(0, 1). The
first �100r�% (r = 0.1, 0.2 or 0.3) observations are set as the
potential outlier set O by letting γ∗

i = 5 for i ∈ O and 0 oth-
erwise. The other settings are the same as Example 1, except
that those corresponding outliers are also leverage points by
letting xi4 = xi5 = 20 for i ∈ O.

In Example 2, we generate outliers using a mean shift
model. Other more complicated outlying generation schemes
including heteroscedasticity, the coexistence of outliers and
leverage points are also considered.

In Figure 3, we compare the ROC curves regarding the
outlier detection for PWLAD and PWLS under three differ-
ent error distributions (t(2), DE(0,1) and N(0,1)) as well as
three different outlying proportions (10%, 20% and 30%).

From Figure 3, it is clear that PWLAD performs con-
siderably better than the PWLS among all settings includ-
ing different types of random errors and various outlier per-
centages. In the cases where the outlier proportion is 10%
and 20%, PWLAD can detect 80% to 90% outliers correctly

Table 1. Example 2 − Outlier detection evaluation (M: the
mean masking probability; S: the mean swamping probability;

JD: the joint outlier detection rate)

PWLAD(%) PWLS (%)
r JD M S JD M S

t(2)
0.1 50 21 9 0 91 11
0.2 54 26 4 0 86 16
0.3 0 61 0 0 90 9

DB(0, 1)
0.1 67 8 8 0 84 19
0.2 70 13 4 0 83 20
0.3 0 64 0 0 84 18

N(0, 1)
0.1 81 7 8 0 78 24
0.2 85 6 5 0 78 24
0.3 0 44 0 0 81 23

without any false positives. When the outlier percentage be-
comes 30%, the outlier detection performance of PWLAD
become worse, but can still detect 40% to 60% outliers cor-
rectly without any false positives. However, the PWLS loses
its outlier detection ability almost completely across all set-
tings, with the possible reason being that the data is gener-
ated with heterogeneous random error.

To further investigate the outlier detection performance
of PWLAD, we also compute the mean masking probability
(M: fraction of undetected true outliers), the mean swamp-
ing probability (S: fraction of non-outliers labeled as out-
liers), and the joint outlier detection rate (JD: fraction of
repetitions with 0 masking) out of all repetitions. The higher
JD is, the better; the smaller M and S are, the better. The
results are reported in Table 1. It is observed that if the
outlier percentage is below 30%, the entire outlier set can
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Figure 3. ROC comparisons of PWLAD (Black) and PWLS (Red) for Example 2. Left panel: t(2); Middle panel: DE(0,1);
Right panel: N(0,1).

Figure 4. Regression coefficients estimation comparison for Example 2. The �1 estimation error from all 4 methods (PWLAD:
red, PWLS: green, WLAD: blue, and LAD: black) are compared under three different outlier proportions (10%, 20%, and

30%). Left panel: t(2). Middle panel: DE(0, 1). Right panel: N(0, 1).

be detected by PWLAD as high as 85% of simulation iter-
ations.

The �1 estimation error output from all four methods
for Example 2 are reported in Figure 4. It is observed
that when the outlier percentage is below 30%, PWLAD
performs much better than all three other methods: LAD,
PWLS, and WLAD. WLAD performs the second best if the
outlier percentage is as low as 10%. When the outlier per-
centage reaches 30%, all four methods produce comparable
MAEs.

In summary, PWLAD appears to be the most robust
method across all settings: heterogeneous random errors,
data contamination at both x and y directions, and heavy
tailed distributions.

4.2 Real data analysis

Two data sets will be investigated in this section to
demonstrate the performance of the PWLAD approach.

The first data set is the Hertzsprung–Russell stars data
[28] studied in both [14] and [21]. In this dataset, the loga-
rithm of the light intensity and effective surface temperature
were measured for 47 stars. One is interested in fitting the
logarithm of light intensity using the logarithm of the sur-
face temperature linearly.

The data is plotted in the left panel of Figure 5. Using
PWLAD, 5 observations (7, 11, 20, 30 and 34) are claimed
as outliers or leverage points. Among them, weights of ob-
servations 11, 20, 30 and 34 (highlighted with black “*”) are
estimated with 0.006, 0.006, 0.005 and 0.005, while weight
of observation 7 (highlighted with black “�”) is estimated
to be 0.016. This implies that even though observation 7
is also singled out as a non-normal observation, it plays a
more important role during the model fitting process than
the other 4 outliers. We also plot four fitted regression lines
from LAD (dotted line), WLAD (dash line), PWLAD (solid
line), and the re-fitted LAD line (LAD-4, red solid line) after
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Figure 5. The Hertzsprung—Russell stars data analysis. The left panel plots the original observations (Outliers: “*” or “�”;
Normal observations: Gray dots) and three fitted regression lines: (LAD: dotted line, WLAD: dash line, PWLAD: solid line.
LAD–4 (LAD fit after removing observations 11, 20, 30 and 34): red solid line). The middle panel plots entire solution paths
of − log(ŵi) versus − log(λ) (Outliers: Dark curves, Normal observations: Gray curves) for all n observations. The right panel
plots all outlying probabilities solution paths versus − log(λ) (Outliers: Dark curves, Normal observations: Gray curves). The

vertical lines on the last two panels identify the optimal location of the tuning parameter.

removing 4 observations (11, 20, 30 and 34) in this plot. It is
observed that the LAD fitting line is significantly affected by
all those 5 observations. The WLAD fits the data much bet-
ter than the LAD by adjusting those leverage points with
different weights. PWLAD calibrates the LAD slightly by
data-adaptively adjusting those weights assigned for all ob-
servations. The LAD-4 regression line is located between
PWLAD and WLAD. This is reasonable since the WLAD
only downweights but still uses observations 11, 20, 30 and
34. Compared with the WLAD and LAD-4, PWLAD not
only removes (almost) all those four observations, but also
downweights an additional observation 17 in the model fit-
ting process.

The solution paths of − log(ŵi) along a sequence of tun-
ing parameter (− log(λ)) are reported in the middle panel,
where the vertical line identifies the location of the cho-
sen tuning parameter via stability selection. In the right
panel, we show the path of outlying probabilities for all ob-
servations along a sequence of tuning parameter (− log(λ)).
Here the outlying probability is computed using the random
weighting method introduced in Section 2.3. During the pro-
cess, the data are reweighted for 100 times. Each time all
observations are judged to be an outlier or not. The outlying
probability of observation i is the proportion of this observa-
tion is identified as an outlier out of 100 reweighted samples.
At the chosen tuning parameter, the outlying probabilities
of observations 7, 11, 20, 30 and 34 are 11%, 81%, 82%,
85% and 89%, respectively. Thus we found that although

observation 7 shows some difference from other normal ob-
servations, it is only suggested to be singled out with 11%
probability.

The second data set is the modified wood gravity data
[25] analyzed using the WLAD method in [14]. The data in-
clude 5 covariates and 20 observations, with observations 4,
6, 8 and 19 being modified to be outliers. Those four obser-
vations are identified using PWLAD, with weights being es-
timated as 0.18, 0.15, 0.16 and 0.13, respectively. Compared
with the previous star example, none of those outliers has
weight close to 0. It means that although those observations
are singled out as outliers from others, their information is
still used in the regression analysis, but with lower weights.
The solution paths of − log(ŵi) are plotted in the middle
panel in Figure 6. Apparently, those four observations are
separated from others regarding to their weight importance
during the regression analysis. It is also interesting to see
that the outlying probabilities of those four observations
are only around 10%. The outlying probability plot (in the
right panel of Figure 6) indicates that simply removing those
observations from the regression analysis are not ideal.

In the left panel of Figure 6, we plot the residuals for
all 20 observations using LAD (gray circles), WLAD (gray
solid dots), and PWLAD (black solid dots for normal obser-
vations, black “*” for outliers), respectively. We can see that
PWLAD calibrates the WLAD regression by having smaller
residuals for normal observations and larger residuals for
those outlying observations.
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Figure 6. The modified wood gravity data analysis. The left panel plots the residuals from all three regression analysis: LAD
(gray circles), WLAD (gray solid dots) and PWLAD (black solid dots for normal observations, black “*” for those

downweighted 4 observations), respectively. The gray horizontal line plots at 0 residuals. The middle panel plots entire solution
paths of − log(ŵi) versus − log(λ) (Outliers: Dark curves, Normal observations: Gray curves) for all observations. The right
panel plots all outlying probabilities solution paths versus − log(λ) (Outliers: Dark curves, Normal observations: Gray curves).

The vertical lines on the last two panels identify the optimal location of the tuning parameter.

5. DISCUSSION

In this work, we propose a robust LAD regression method
called PWLAD. By assigning each observation an individual
weight, wi, and imposing a lasso-type penalty on 1 − wi,
PWLAD is able to perform simultaneous outlier detection
and robust regression, even when the random error is both
heterogenous and heavy tailed.

Different from the trimmed LAD regression, PWLAD
does not remove detected outliers completely from the LAD
regression. All observations contribute in the model fitting
process, with observations having large probability being an
outlier are used with a considerably smaller weight (close
to 0) than the remaining observations. In addition, using
PWLAD, there is no need to specify a prior trimmed per-
centage in the model fitting process, which enhances the
robustness of the procedure. PWLAD provides the entire so-
lution path along a sequence of penalty parameters with the
final solution chosen using a stability selection approach. As
a by-product, an outlying probability is obtained for quan-
tifying each observation’s outlying behavior.

Robust regression with variable selection has attracted
much attention lately in high-dimensional data analysis. See,
for example, the LAD-Lasso in [35] and the least trimmed
squares estimator in [1]. An interesting future work is to
conduct variable selection and outlier detection simulta-
neously, e.g., by adding an extra penalty on the regres-
sion coefficients, say λ2

∑p
j=1 |βj |, to the objective function

of (3).

Moreover, it is important to point out that quantile re-
gression is also not robust to outliers in x direction. Al-
though the weighted quantile regression (WQR) [17] or
trimmed quantile regression (LTQR) were shown [21] to im-
prove the robustness, there are still limitations on the choice
of weight parameter and the trimming percentage. There-
fore, both LTQR and WQR would lack robustness under
large percentage of data contamination. It is also worth-
while to extend the penalized weight idea to the quantile
regression framework.

6. PROOFS

Proof of Theorem 1. The proof of outlier detection consis-
tency is similar to [11]. We only provide the main idea as

follows. Under an initial estimator β̃, the objective function
of PWLAD on w becomes

L(w|β̃, λ,�) =

n∑
i=1

(w2
i /2)|yi − x′

iβ̃|+ λ�i|1− wi|.

Thus the solution of ŵ satisfies,

(9)

{
ŵi|yi − x′

iβ̃| = λ�i if 0 < ŵi < 1,

ŵi|yi − x′
iβ̃| < λ�i if ŵi = 1.

Then Ô = O if

(10)

{
|yi − x′

iβ̃| > λ�i if i ∈ O,

|yi − x′
iβ̃| ≤ λ�i if i ∈ Oc.
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Thus

P (Ô �= O) ≤ P

( ⋃
i∈O

{|yi − x′
iβ̃| < λ�i}

)
(11)

+ P

( ⋃
i∈Oc

{|yi − x′
iβ̃| ≥ λ�i}

)
.

First,

P

( ⋃
i∈O

{|r̃i| < λ�i}
)

≤ P

( ⋃
i∈O

{|εi/w∗2
i | < λ�i + |x′

i(β̃ − β∗)|}
)

≤ P

( ⋃
i∈O

{|εi/w∗2
i | < λ�n + |x′

i(β̃ − β∗)|}
)

+ P

(
max
i∈O

�i > �n

)
≤ qnP

(
|εi| < 2λā2n�n

)
+ P

(
‖β̃ − β∗‖2 > λ�n/(bn

√
p)

)
+ o(1)

≤ 2
√
2σ√
π

qnā
2
nλ�n

+ P
(
‖β̃ − β∗‖2 > λ�n/(bn

√
p)

)
+ o(1)

= P
(
‖β̃ − β∗‖2 > λ�n/(bn

√
p)

)
+ o(1),

where the third “≤” is from Condition (B1), and the last
“≤” is from Conditions (A1) and (B2-i). Second,

P

( ⋃
i∈Oc

{|r̃i| ≥ λ�i}
)

≤ P

( ⋃
i∈Oc

{|εi/w∗2
i | ≥ λ�i − |x′

i(β̃ − β∗)|}
)

≤ P

( ⋃
i∈Oc

{|εi| ≥ λ�̄n − bn
√
p‖β̃ − β∗‖2}

)

+ P

(
min
i∈Oc

�i < �̄n

)
≤ P

(
max
i∈Oc

|εi| ≥ (λ/2)�̄n

)
+ P

(
‖β̃ − β∗‖2 > λ�̄n/(2

√
pbn)

)
+ o(1)

≤ 3
√
1 + log(2n)σ

λ�̄n
+ P

(
‖β̃ − β∗‖2 > λ�̄n/(2

√
pbn)

)
+ o(1)

= P
(
‖β̃ − β∗‖2 > λ�̄n/(2

√
pbn)

)
+ o(1),

where the third “≤” is from Condition (B1), and the last
“≤” is from Conditions (A1) and (B2-ii).

The theorem is proved by combining the results regarding
the two terms on the right hand side of (11).

Received 16 March 2016

REFERENCES

[1] Alfons, A., Croux, C., and Gelper, S. Sparse least trimmed
squares regression for analyzing high-dimensional large data sets.
Annals of Applied Statistics, 7(1):226–248, 2013. MR3086417

[2] Atkinson, A. C., Riani, M., and Cerioli, A. Exploring
Multivariate Data with the Forward Search. Springer, 2003.
MR2055967

[3] Billor, N., Hadi, A. S., and Velleman, P. F. BACON:blocked
adaptive computationally efficient outlier nominators. Computa-
tional Statistics & Data Analysis, 34:279–298, 2000.

[4] Chaloner, K. and Brant, R. A bayesian approach to outlier
detection and residual analysis. Biometrika, 75(4):651–659, 1988.

[5] Chatterjee, S. and Hadi, A. S. Sensitivity Analysis in Linear
Regression. Wiley, NewYork, 1988. MR0939610

[6] Cohen, J. A coefficient of agreement for nominal scales. Educa-
tional and Psychological Measuremen, 20:37–46, 1960.

[7] Croux, C., Rousseeuw, P. J., and Hössjer, O. Generalized
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