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Post selection shrinkage estimation for
high-dimensional data analysis

Xiaoli Gaoa*†, S. E. Ahmedb and Yang Fengc

In high-dimensional data settings where p ≫ n , many penalized regularization approaches were studied for simultaneous variable
selection and estimation. However, with the existence of covariates with weak effect, many existing variable selection methods,
including Lasso and its generations, cannot distinguish covariates with weak and no contribution. Thus, prediction based on a
subset model of selected covariates only can be inefficient. In this paper, we propose a post selection shrinkage estimation strategy
to improve the prediction performance of a selected subset model. Such a post selection shrinkage estimator (PSE) is data adaptive
and constructed by shrinking a post selection weighted ridge estimator in the direction of a selected candidate subset. Under an
asymptotic distributional quadratic risk criterion, its prediction performance is explored analytically. We show that the proposed
post selection PSE performs better than the post selection weighted ridge estimator. More importantly, it improves the prediction
performance of any candidate subset model selected from most existing Lasso-type variable selection methods significantly. The
relative performance of the post selection PSE is demonstrated by both simulation studies and real-data analysis. Copyright © 2016
John Wiley & Sons, Ltd.
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1. Introduction

Many high-dimensional data arise in biological, medical, social, and economical studies. Because of the trade-off between
model complexity and model prediction, the statistical inference of model selection becomes extremely important and
challenging in high-dimensional data analysis. Consider a classical high-dimensional linear regression model with ith
observed response variable yi and covariates xijs,

yi =
pn∑

j=1

xij"j + #i, 1 ⩽ i ⩽ n , (1.1)

where #is is independent and identically distributed random errors with center 0 and variance $2. Without loss of generality,
we do not include the intercept in the model by assuming all data have been centered. Here, the subscript n in pn indicates
that the number of coefficients may increase with the sample size n . Such a notation will be used throughout the paper
without further explanation.

Over the past two decades, many penalized regularization approaches have been developed to do variable selection and
estimation simultaneously. Among them, the Lasso [1] is one of the most popular approaches because of its convexity and
computation efficiency. In general, the Lasso penalty tends to select an over-fitted model because it penalizes all coefficients
equally [2]. Many endeavors have been undertaken to improve the Lasso to reach both variable selection consistency and the
estimation consistency. To list a few, smoothly clipped absolute deviation [3, 4], adaptive Lasso [5] and minimax concave
penalty [6], among others. An overview of variable selection in high-dimensional feature space can be found in [7].

In order to have nice estimation and selection properties, most Lasso-type penalties make some important assump-
tions about both true model and designed covariates. For example, the true model is often assumed to be sparse, insofar
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that (i) most "js are zeros except for a few ones and (ii) all those nonzero "j’s are larger than an inflated noise level,
c$

√
(2∕n ) log(pn ) with c ⩾ 1∕2 [8]. Additional assumptions made on the designed covariates include the adaptive

irrepresentable condition and the restricted eigenvalue conditions. For detailed information, we refer to [9], [10], and [11].
However, those conditions are somewhat restrictive and are not judiciously justified in real applications. Consequently,

Lasso and its generalizations may have lower prediction efficiency once those assumptions are violated. To fix the idea,
we take the sparse model assumption (ii) as an example. Suppose we can divide the index set {1,… , pn } into three disjoint
subsets: S1, S2, and S3. In particular, S1 includes indexes of nonzero "i’s which are moderately large and easily detected;
S3 includes indexes with only zero coefficients; S2, being the intermediate, includes indexes of those nonzero "j with weak
but nonzero effects. Thus, S1 is able to be detected using some existing variable selection techniques, while S2 may not be
separated from S3 in general using existing Lasso-type methods. A more detailed description can be found in [8]. Following
the spirit of model parsimony, covariates in S1 are kept in the model, and some or all covariates in S2 are left aside with
ones in S3. Author in [12] has showed using simulation studies that such a Lasso estimate often performs worse than the
post selection least squares estimate. To improve the prediction error of a Lasso-type variable selection approach, some
(modified) post least squares estimators are studied in [13] and [14]. However, this work still assume the irrepresentable
condition, and those post estimations are only based upon the chosen subset after the Lasso. Consequently, the simultaneous
weak effects in S2 are still ignored. An ideal strategy would be able to incorporate the joint contribution from covariates in
S2, even though a parsimonious model without including covariates in S2 is adopted.

Let us consider an extreme case where S1 is a null set and p is fixed. It has been studied extensively that shrinkage
estimators can have uniformly smaller risk compared with the ordinary maximum likelihood estimators (MLEs) since
the discussion papers in [15] and [16]. The relative risk properties of shrinkage estimators were also investigated in low-
dimensional regression models under a restricted linear submodel space. See, for example, [17–20] and many others.

However, in high-dimensional settings where p > n , a priori information on S1 is not guaranteed, not mentioning the
existence of an MLE. Thanks to the existing variable selection techniques, an estimated candidate subset Ŝ1 is selected.
Once Ŝ1 is obtained, the next question we want to ask is: can we construct a post selection shrinkage estimate to improve
the risk of the post selection least squares estimators?

As we know, ridge regression [21,22] has been widely used when the design matrix is ill-conditioned such that a regular
MLE is not available. In this paper, we follow the model parsimony spirit and extend shrinkage estimation to the high-
dimensional data setting using both ridge penalty and Lasso-type penalty separately. In particular, we use a ridge penalty
to construct a data-adaptive post selection shrinkage estimator (PSE) to improve the risk of a post selection least squares
estimator based upon a Lasso-type variable selection result.

We summarize our main contributions as follows:

(1) We propose a post selection shrinkage strategy to improve the risk of the Lasso-type estimators in high-dimensional
settings. This post selection shrinkage strategy is data adaptive and has some practical applications, especially when
an ‘important’ subset is generated and some covariates with joint weak effects are not selected.

(2) We investigate the asymptotic risk of the proposed PSEs. Corresponding asymptotic properties of a predecessor
generating those PSEs are also investigated under some regularity conditions.

The rest of the paper is organized as follows. In Section 2, we describe some preliminary model information involved in
building a PSE. As preparation, we introduce some sparsity definitions under certain signal strength levels. Some existing
variable selection results from Lasso are also summarized in this section. We propose three steps in constructing the
shrinkage strategy in Section 3. In Section 4, we investigate some asymptotic properties of those post selection estimators
during three steps in Section 3. We first investigate some asymptotic normality properties of the designed weighted ridge
(WR) estimators under some conditions. Then, we investigate the asymptotic distributional risks of the linear combination
of the proposed PSEs. In Sections 5 and 6, we perform some numerical studies using some simulated examples and a real-
data application, respectively. We summarize the paper with some discussions in the final section. All proofs are given in
the Appendix.

2. Model description and basic notations

Let !∗ = ("∗1 ,… , "∗pn
)′ be the true coefficients vector in model (1.1). For any subset S ⊂ {1,… , pn } with a cardinal value

|S|, denote !∗
S a subvector of !∗ indexed by S. Similar subscripts are used for other submatrices and subvectors.
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2.1. Model sparsity an d sign al stren gth

As introduced in the previous section, the effect of all pn covariates is characterized into three categories based upon their
signal strength: important covariates with strong effects in S1, covariates with no effect in S3, and an intermediate group in
S2 with joint weak effects. In particular, those sign al stren gth assumption s of the true model are made explicitly as follows:

(A1) There exists a positive constant c1, such that |"∗j | > c1

√
(log pn )∕n for ∀j ∈ S1;

(A2) The parameter vector !∗ satisfies that ‖!∗
S2
‖ = O(n ') for some 0 < ' < 1, where ‖ ⋅ ‖ is the "2 norm;

(A3) "∗j = 0, for ∀j ∈ S3.

Assumptions (A1–A3) specify those signal strength levels in the strong signals set S1, weak signals set S2, and sparse
signal set S3 explicitly. In particular, (A2) indicates that joint weak effects in !∗

S2
only grow with n at a certain rate, even

though the dimension pn grows with n fast. For example, if (A1) holds for some c1 > 0 and we let |"0j| < c1

√
(log pn )∕n

for j ∈ S2 with |S2| < n , then ‖!∗
S2
‖ < c1

√
log(pn ) < O(n ') even though pn = O(exp(n 2')).

Most existing high-dimensional sparse models investigate the variable selection consistency by only considering the
existence of the strong signals in (A1) and sparse signals in (A3). There is very limited work assuming the existence of weak
signals in S2. For example, besides a strong signal set in (A1), [23] does not separate S2 and S3 and makes an alternative
sparse model assumption,

(A2’)
∑

j∉S1
|"∗j | ⩽ (1 for some (1 ⩾ 0.

In their work, some sufficient conditions are investigated under which the Lasso can select the strong signal set S1
consistently, following the spirit of the model parsimony.

Our weak and sparse conditions in (A2–A3) are different from the sparse condition in (A2’) where S2 and S3 are not
separated. If we replace (A2) by (A2’) in our signal strength assumptions, then (A2) becomes ‖!∗

S2
‖ ⩽ ∑

j∈S2
|"∗j | = (1,

the joint effects in S2 being bounded uniformly. Thus, a true model under (A2’) only is less sparse than one under (A3)
only but more sparse than one in both (A2) and (A3). On the contrary, a sparse model under both (A2) and (A3) includes
the most weak signals; a sparse model under (A3) only does not have any weak signals, while a sparse model under (A2’)
only is in the middle.

2.2. Parsimon ious model selection

As discussed in Section 1, a penalized least squares (PLS) estimator is often adopted to select a parsimonious model for a
high-dimensional regression model in (1.1),

!̂PLS
n = arg min

⎧
⎪
⎨
⎪⎩

n∑
i=1

(
yi −

pn∑
j=1

xij"j

)2

+
pn∑

j=1

p)("j)
⎫
⎪
⎬
⎪⎭
, (2.1)

where p)("j) is the penalty term on "j with a tuning parameter controlling the size of selected candidate subset model. For
example, the Lasso takes p)("j) = )|"j|, and the adaptive Lasso takes p)("j) = )|"j|∕|wj|, where wj can be taken as an
initial estimator of "j. The size of selected subset model depends strongly on the choice of tuning parameters in (2.1). As
pointed out by [8], one turns to ignore weak signals in S2 together with S3 and select a candidate subset model with only
strong signals in S1, following the model parsimony spirit.

If we let Ŝ1 ⊂ {1,… , pn } index an active subset from (2.1), then a data-adaptive candidate subset model is produced
such that

"̂PLS
j = 0 if and only if j ∉ Ŝ1. (2.2)

Denote the response vector ! = (y1,… , yn )′, all covariates vectors "j = (x1j,… , xn j)′ for j = 1,… , pn , and the design
matrix # = ("1 … "pn

). Without loss of generality, we rearrange the designed vectors such that # = (# S1
|# S2

|# S3
), where

# S is the submatrix consists of vectors indexed by S ⊂ {1,… , pn }. Next, we give two scenarios where S2 cannot be
separated from S3.

Case 1 ([24])
Consider an orthonormal design with # ′# ∕n = $n and " ∼ N(0, $n ). The PLS with Lasso penalty provides a soft-threshold
estimator with "̂Lasso

j = "̃j − )∕(2n )sgn("̃j) and 0, for |"̃j| > )∕(2n ) and |"̃j| < )∕(2n ), respectively. Here, "̃j = "′j!∕n ∼
N("0j, 1∕n ) is the least squares solution, and sgn(⋅) is the sign mapping function. If minj∈S1

|"∗j | > )∕(2n ) > c > maxj∈S2
|"∗j |
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for some c > 0, then P(Ŝ1 = S1) → 1; that is, P("̂PLS
j = 0) → 1 for j ∉ S1. Thus, all weak signals in S2 are omitted together

with sparse signals in S3 using the Lasso approach.

Case 2 ([25])
Consider a non-singular design such that the smallest eigenvalue of # ′

Sc
3
# Sc

3
∕n is larger than some positive constant c. If

there exists some j ∈ S2 such that |"0j| < |gj())|, where gj()) = )%′j(#
′
Sc

3
# Sc

3
)−1sgn(!0Sc

3
) with %j being the jth column of

the identity matrix, then P({S1 ∪ S2 ⊆ Ŝ1} ∩ {S3 ⊆ Ŝc
1}) < 1. Thus, S2 and S3 cannot be separated using the Lasso.

Some post selection estimators were proposed to improve the prediction performance of the PLS estimator. For example,
under some regularity conditions, [13] and [14] studied some post selection least square estimators,

!̂RE
Ŝ1

=
(
# ′

Ŝ1
# Ŝ1

)−1
# ′

Ŝ1
!. (2.3)

Here, we denote such a post selection least squares estimator as a restricted estimator (RE), written as !̂RE
Ŝ1

in this paper. For
notation’s convenience, we omit the phase of ‘post selection’ in some future short notations without causing any confusion.

When S1 and S2 are not separable, we tend to select the important subset Ŝ1, such that Ŝ1 ⊆ S1 for a large enough ), or
S1 ⊂ Ŝ1 ⊂ S1 ∪ S2 for a smaller ), following the spirit of model parsimony. Although !̂RE

Ŝ1
is more estimation efficient than

!̂PLS
Ŝ1

, the prediction risk of !̂RE
Ŝ1

can still be high because many weak signals in S2 are ignored in !̂RE
Ŝ1

. Our interest is to

improve the risk performance of !̂RE
Ŝ1

given in (2.3) by picking up some information from Ŝc
1, a complement subset of the

selected candidate submodel.

2.3. Some addition al n otation s

Based upon a subset partition S1, S2, S3, we can partition the true parameters !∗ =
(
!∗′

1 , !
∗′
2 , !

∗′
3

)′
, without loss of gener-

ality. Some notations are shortened for notation’s simplicity such that !∗
Sk

= !∗
k for k = 1, 2 and 3. Similar notations are

also adopted for other subvectors and matrices. For example, after the same partition, the design matrix # = ("1,… , "pn
)

can be written as # = (# 1, # 2, # 3). We also write # = (&, # 3) with & = (# 1, # 2). The row vector of & is denoted as
'i = (zi1, · · · , zi,p1+p2

) for 1 ⩽ i ⩽ n .
We denote pk = |Sk| for 1 ⩽ k ⩽ 3 and pn = p1 + p2 + p3. In this paper, we allow pn = ∑3

k=1 pk to be very large but
restrict q = p1 + p2 ⩽ n such that (n = n −1&′& is non-singular. If (n is singular, then a generalized inverse matrix is
adopted when needed in computations. Some other submatrices of (n are defined as follows:

(n 11 = # ′
1# 1∕n , (n 22 = # ′

2# 2∕n ,
(n 12 = # ′

1# 2∕n , (n 21 = # ′
2# 1∕n ,

(n 22.1 = n −1# ′
2# 2 − # ′

2# 1(# ′
1# 1)−1# ′

1# 2

(n 11.2 = n −1# ′
1# 1 − # ′

1# 2(# ′
2# 2)−1# ′

2# 1

(2.4)

Let ) = (# 2, # 3) be a n × (pn − p1) submatrix of # . Then, another partition is written as # = (# 1,)). Let M1 =
$n − # 1(# ′

1# 1)−1# ′
1. Then, )′M1) is a (pn − p1) × (pn − p1) dimensional singular matrix with rank kn ⩾ 0. We denote

,1n ⩽ … ⩽ ,kn n as all kn positive eigenvalues of )′M1).

3. Post selection shrinkage estimation strategy

We propose a high-dimensional post selection shrinkage estimation strategy based upon the following three steps:

Step 1: Obtain a data-adaptive candidate subset Ŝ1 following a model parsimony spirit and construct a post selection
least square estimator !̂RE

Ŝ1
using (2.3);

Step 2: Obtain a post selection WR estimator, !̂WR
n =

(
!̂WR

Ŝ1
, !̂WR

Ŝc
1

)
, using a threshold ridge penalty to be introduced

and a submodel Ŝ1 selected from Step 1;
Step 3: Obtain a PSE by shrinking !̂WR

Ŝ1
from Step 2 in the direction of !̂RE

Ŝ1
from Step 1.

The post selection WR estimator in Step 2 can handle three scenarios simultaneously: (a) the sparsity in high-dimensional
data analysis; (b) the strong correlation among covariates; and (c) the jointly weak contribution from some covariates.
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Remark 1
This post selection shrinkage estimation is expected to improve the risk performance on the selected submodel once a
variable selection approach in Step 1 tends to select those and only those variables with strong signal strength, that is,
S1 ⊃ Ŝ1 or S1 ⊂ Ŝ1 ⊂ S1 ∪ S2. However, if the model parsimony spirit is not followed and ) in (2.1) is too small such that
Ŝ1 ⊃ S1 ∪ S2, this post selection shrinkage estimation is not suggested. Therefore, the effect of the PSE is data adaptive
and depends on Ŝ1.

As a preparation, we first construct a post selection WR estimation based upon Ŝ1. This post selection weight ridge
estimation itself is constructed from two steps introduced in Section 3.1 and 3.2.

3.1. Weighted ridge estimation

Once Ŝ1 is obtained from Step 1, we seek to minimize a penalized objective function with a ridge penalty on coefficients
in Ŝc

1,

!̃(rn ) = arg min{L(!; Ŝ1)} = arg min
{
‖* − # n ! n ‖2 + rn ‖! Ŝc

1
‖2
}

(3.1)

where rn > 0 is a tuning parameter controlling the penalty effect on ! Ŝ1
. Then, a post selection WR estimator

!̂WR(rn , an ; Ŝ1) = ("WR
Ŝ1

(rn ), "WR
ŜC

1

(rn , an ) is obtained from,

"̂WR
j (rn , an ) =

{
"̃j(rn ), j ∈ Ŝ1;
"̃j(rn )I

(
"̃j(rn ) > an

)
, j ∈ Ŝc

1,
(3.2)

where I(⋅) is the indicator function and an is a threshold parameter. Thus, we obtain estimators of the weak signal subset

Ŝ2 ∶= Ŝ2(Ŝ1) =
{

j ∈ Ŝc
1 ∶ "̂WR

j (rn , an ) ≠ 0
}

(3.3)

and of the sparse subset

Ŝ3 ∶= Ŝ3(Ŝ1) =
(
Ŝ1 ∪ Ŝ2

)c . (3.4)

Our post selection strategy is only applied when the threshold parameter an satisfies |Ŝ2| > 2 and |Ŝc
3| < n . In particular,

we set

an = c1n −0 , 0 < 0 ⩽ 1∕2, for some c1 > 0. (3.5)

Remark 2
We call !̂WR(rn , an ) a post selection WR estimator from two facts: (i) we only penalize parameters in ! Ŝc

1
instead of the

entire coefficients vector ! n , and (ii) the threshold step in (3.2) can be interpreted as a WR penalty rn
∑

j∈ŜC
1

(
"2

j ∕w2
j

)
in

(3.1), where wj = 0 and 1 for j ∈ Ŝ3 and j ∈ Ŝ2.

Remark 3
Similar to the discussion in Remark 2, we can also understand the post selection step into the WR estimator,
rn
∑

j∈ŜC
1

(
"2

j ∕w2
j

)
with wj = ∞ for j ∈ Ŝ1. We do not enforce an additional ridge penalty on Ŝ1 to reduce some unneces-

sary biases during the WR step. This is different from the post selection threshold regression studied in [26], where the "2
penalty is applied on the entire ! n equally.

Remark 4
The idea of the WR regression is connected to the regularization after retention framework proposed in [27]. In that frame-
work, a retention step is conducted to find the important set Ŝ1 with large marginal-correlation coefficients with the response.
Then, a regularization step is conducted by a penalized least square with L1 regularization only on the covariates that are
not in Ŝ1. Compared with that framework, the current framework focused more on prediction by using the ridge penalty,
and the estimate Ŝ1 is also different.

Notice that for every selected candidate subset Ŝ1, !̂WR
Ŝ1

(rn ) depends on rn and !̂WR
Ŝc

1
(rn , an ) depends on both rn and

an . For convenience, we omit those tuning parameters and denote above post selection WR estimators as !̂WR
Ŝ1

and !̂WR
Ŝc

1
,

respectively.

Copyright © 2016 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. In d. 2017, 33 97–120
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3.2. Post selection shrin kage estimation

Now, we are ready to propose a shrinkage estimation based upon two post selection estimators: !̂RE
S1

and !̂WR
S1

.

An initial PSE !̂SE
Ŝ1

is defined as

!̂SE
Ŝ1

= !̂RE
Ŝ1

+
(
!̂WR

Ŝ1
− !̂RE

Ŝ1

) (
1 − (ŝ2 − 2)∕T̂n

)

= !̂WR
Ŝ1

−
(
(ŝ2 − 2)∕T̂n

) (
!̂WR

Ŝ1
− !̂RE

Ŝ1

)
,

(3.6)

where ŝ2 = |Ŝ2| and T̂n are given by

T̂n =
(
!̂WR

Ŝ2

)′ (
# ′

Ŝ2
MŜ1

# Ŝ2

)
!̂WR

Ŝ2
∕$2, (3.7)

where MŜ1
= $n −# Ŝ1

(
# ′

Ŝ1
# Ŝ1

)−1
# ′

Ŝ1
. If $2 is unknown, it is replaced by a consistent estimator $̂2. In the numerical studies,

$2 is replaced by $̂2 = ∑n
i=1

(
yi − "′i !̂

WR
Ŝ2

)2
∕(n − ŝ2), and a generalized inverse is used if

(
# ′

Ŝ1
# Ŝ1

)−1
is not singular.

Observing from (3.6) and (3.7), signs of two estimators of ! Ŝ1
can be reversed if T̂n is too small such that ŝ2 − 2 > T̂n .

It is possible because !̂WR
Ŝc

1
consists of nuisance parameters, and over-shrinkage can occur for a large rn in the WR step.

Thus, we also suggest to modify (3.6) as the following post selection PSE,

!̂PSE
Ŝ1

= !̂WR
Ŝ1

− ([(ŝ2 − 2)∕T̂n ] ∧ 1)
(
!̂WR

Ŝ1
− !̂RE

Ŝ1

)
. (3.8)

Remark 5
Our proposed post selection shrinkage estimation and the classical shrinkage estimation bear some resemblance but are
different because of two facts: (i) Post selection shrinkage estimation is associated with a selected candidate subset and has
some flexibility of adjusting the shrinkage strength data adaptively because !̂WR

Ŝc
1

depends on tuning parameters an and rn ;
(ii) Post selection shrinkage estimation uses an initial ridge shrinkage step and is tailored for the high-dimensional settings
where multiple covariates tend to be correlated and function jointly.

4. Asymptotic properties

In order to investigate some asymptotic properties of the proposed post selection estimators, we first make following
assumptions on the random error, )′M1), and the model sparsity. One can review some notations at the end of Section 2.

(B1) The random error #i ∼ N(0, $2).
(B2) ,−1

1n = O(n −(), where ' < ( ⩽ 1 for ' in (A2).
(B3) log(pn ) = O(n 1) for 0 < 1 < 1.
(B4) There exists a positive definite matrix ( such that limn →∞ (n = (, where eigenvalues of ( satisfy 0 < 21 < 2( <
22 < ∞.

Here, condition (B1) can be relaxed to a symmetric distribution with some finite moments. To simplify our theoretical
investigations and handle the ultra high dimensionality, we only restrict our studies to normal random error in this paper.
Condition (B2) guarantees that the positive eigenvalues of the redundant U′M1U cannot be too small with a rate associated
with the weak signals strength in S2. Condition (B3) permits the ultra-high dimensionality such that the number of variables
can grow with sample size at an almost exponential rate. Condition (B4) is the regularity condition for # Sc

3
. This condition

is made in order to obtain the asymptotic normality the WR estimator.

4.1. Asymptotic properties of the weighted ridge estimator

We have the following asymptotic properties of the WR estimator !̂WR
n .

Theorem 1
Suppose the sparse model in (1.1) satisfies signal strength assumptions in (A1–A3) and model assumptions in (B1–B3). If
we choose rn = c2a−2

n (log log n )3 log(n ∨ pn ) for some constant c2 > 0 and an defined in (3.5) with 0 < (( − 1 − ')∕3, then
Ŝ2 in (3.3) satisfies
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P
(
Ŝ2 = S2|Ŝ1 = S1

)
⩾ 1 − (n ∨ pn )−t for some constant t > 0, (4.1)

where ', (, and 1 are defined in (A2), (B2), and (B3), respectively.

Theorem 1 is similar to the variable selection result in [28]. We postpone the detailed proof to the Appendix. It tells us
that the WR estimator !̂WR

Sc
1

is able to single out the sparse set S3 with a large probability, if S1 is pre-selected in advance such

that P(Ŝ1 = S1) = 1. For example, [23] argued that S1 can be recovered with a large probability under the sparse Riesz con-
dition (SRC) with rank p1. Here, a design matrix # satisfies the SRC with rank qand spectrum bounds 0 < c∗ < c∗ < ∞ if

c∗ ⩽
‖# S+‖2

‖+‖2
⩽ c∗ ∀S with |S| = qand + ∈ q. (4.2)

Lemma 1
Consider the Lasso solution for linear model (1.1) with #i ∼ N(0, $2). Suppose (A1) and (B1) are satisfied, and the sparse
condition (A2’) holds for some 0 < (1 < O(p1

√
log(pn )∕n ), and the design matrix # satisfies the SRC with rank p1 in

(4.2). Then, Ŝ1 generated from a PLS with the Lasso penalty in (2.1) satisfies

lim
n →∞

P

(
{S1 ⊂ Ŝ1} ∩

{∑
j∈S1

|"∗j |I
(
"̂PLS

j = 0
)
= 0

})
= lim

n →∞
P(Ŝ1 = S1) = 1.

Lemma 1 is a direct result from Theorem 2 in [23]. Here, the tuning parameter in (2.1) is chosen such that ) ⩾
2$

√
2(1 + c0)c∗n log(pn ). Lemma 1 indicates that those and only those strong signals in S1 are included in Ŝ1 while using

the Lasso under sufficient conditions.
In Lemma 1, we have

∑
j∉S1

|"∗j | < (. The signal of each individual coefficient is trivial if such a joint effect is uniformly
distributed on pn − p1 coefficients when pn ≫ n . However, if this joint effect is only distributed on a much smaller
number of coefficients, each individual effect may not be negligible. In particular, if we let both (A2’) and (A3) hold, then∑

j∈S2
|"∗j | < (. Thus, (A2) also holds. Combing Lemma 1 and Theorem 1, we have the following result directly.

Corollary 1
Suppose all conditions in both Lemma 1 and Theorem 1 hold. Then, we have

lim
n →∞

P
(
{Ŝ2 = S2} ∩ {Ŝ1 = S1}

)
= 1. (4.3)

Corollary 1 indicates that Ŝ3 = S3 is able to be recovered if an additional WRs step is used post the Lasso under some
sufficient conditions. We skip the proof because this is a direct result from Lemma 1 and Theorem 1.

However, Corollary 1 still requires a SRC condition. Although P(Ŝ1 = S1) = 1 may not be guaranteed when a SRC
condition is not satisfied, we may have

P
(
{S1 ⊂ Ŝ1 ⊂ S1 ∪ S2}

)
→ 1. (4.4)

Thus, we have similar but weaker result.

Corollary 2
Suppose all conditions in Theorem 1 hold, and Ŝ1 satisfies (4.4). Then, we have

lim
n →∞

P
(
{Ŝ2 = Ŝc

1 ∩ S2}
)
= 1. (4.5)

Corollary 2 can be interpreted by treating Ŝ1 as a new S1 and Ŝc
1 ∩ S2 as a new S2.

The asymptotic properties in Theorem 1 and its derivatives in Corollary 1 and 2 are important for establishing the
efficiency of !̂WR

Ŝ1
and !̂WR

Ŝ2
.

Theorem 2
Let s2

n = $2,′n (
−1
n ,n for any (p1n + p2n ) × 1 vector ,n satisfying ‖,n ‖ ⩽ 1. Suppose assumptions (B1–B4) hold. Consider

a sparse model with signal strength under (A1), (A3), and (A2) with 0 < ' < 1∕2. Suppose a pre-selected model such as
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S1 ⊂ Ŝ1 ⊂ S1 ∪ S2 is obtained with probability 1. If we choose rn as in Theorem 1 with 0 < {(( − 1 − ')∕3, 1∕4 − '∕2},
then we have the asymptotic normality,

n 1∕2s−1
n ,′n

(
!̂WR

Sc
3

− !∗
Sc

3

)
d−→N(0, 1). (4.6)

Theorem 2 studies the asymptotic normality of the WR estimator, !̂Sc
3
. In addition, !̂Sc

3
has the same estimation efficiency

as one from a restricted least square estimator as if !S3
= 0 is given as a priori. However, the result holds if ‖!∗

S2
‖ = o(n 1∕2)

and rn is chosen appropriately. More importantly, the strong signal set S1 is detected with a large probability in advance.
This can be guaranteed under Lemma 1.

4.2. Asymptotic distribution al risk an alysis

In this section, we provide the relative performance of the post selection shrinkage estimation regarding the asymptotic
distribution risk (ADR) introduced in [29]. For simplicity and notation’s convenience, we focus on the ADR analysis by
assuming Ŝ1 = S1, following the spirit of model parsimony. If S1 ⊂ Ŝ1 ⊂ S1 ∪ S2, a similar analysis can be carried
out by redefining (S1, S2) = (Ŝ1, Ŝ1 ∩ S2), as discussed in Section 4.1. Together with the results in Theorem 1, such that
P(Ŝ3 = S3) → 1, S3 is also removed from the PSE with a large probability. Thus, the risk analysis in this section will be
conducted by assuming both S1 and S3 are known in advance.

Defin ition 1
For any estimator !⋄

1n and p1n −dimensional vector, ,1n , satisfying ‖,1n ‖ ⩽ 1, the ADR of ,′1n !
⋄
1n is

ADR
(
,′1n !

⋄
1n

)
= lim

n →∞
E
{[

n 1∕2s−1
1n ,

′
1n (!

⋄
1n − !∗

1)
]2
}
, (4.7)

where s2
1n = $2,′1n (

−1
n 11.2,1n with (n 11.2 defined in (2.4).

We will provide some analytic expressions of ADRs under specific weak coefficients in (A2”). In particular,

(A2”) "∗j = 3j∕
√

n for j ∈ S2, where |3j| < 3max for some 3max > 0.

Denote $ =
(
31,… , 3p2n

)′ ∈ p2n . Then, Δn = $′(n 22.1$ ⩽ 22p2n 3max, where 22 is defined in (B4).
Define

Δ,1n
=

,′1n

(
(−1

n 11(n 12$$′(n 21(−1
n 11

)
,1n

,′1n

(
(−1

n 11(n 12(−1
n 22.1(n 21(−1

n 11

)
,1n

. (4.8)

We obtain the following results on the expression of ADRs of PSEs.

Theorem 3
Let ,1n be any p1n − dimensional vector satisfying 0 < ‖,1n ‖ ⩽ 1 and s2

1n = $2,′1n (
−1
n 11.2,1n . Suppose all assumptions in

Theorem 2 hold except that (A2) is replaced by (A2”). Then, we have

ADR
(
,′1n !̂

WR
1n

)
= 1, (4.9a)

ADR
(
,′1n !̂

RE
1n

)
= 1 − (1 − c)(1 − Δ,1n

), (4.9b)

ADR
(
,′1n !̂

SE
1n

)
= 1 − E[g1('2 + $)], (4.9c)

ADR
(
,′1n !̂

PSE
1n

)
= 1 − E[g2('2 + $)]. (4.9d)

Here, c = limn →∞ ,′1n (
−1
n 11,1n ∕

(
,′1n (

−1
n 11.2,1n

)
⩽ 1, '2 satisfies that s−1

2n ,
′
2n '2 → N(0, 1) with ,2n = $2(n 21(−1

n 11,1n and
s2

2n = ,′2n (
−1
n 22.1,2n . In addition,

g1(") = lim
n →∞

(1 − c)
p2n − 2
"′(n 22.1"

[
2 −

"′((p2n + 2),2n ,′2n )"
s2

2n "′(n 22.1"

]
, (4.10)
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and

g2(") = limn →∞
p2n − 2
"′(n 22.1"

[
(1 − c)

(
2 −

"′((p2n + 2),2n ,′2n )"
s2

2n "′(n 22.1"

)]
I("′(n 22.1" ⩾ p2n − 2)

+ limn →∞
[
(2 − s−2

2n "
′,2n ,′2n ")(1 − c)

]
I
(
"′(n 22.1" ⩽ p2n − 2

)
,

(4.11)

with I(⋅) being an indicator function.

Theorem 3 lists the analytic expressions of the asymptotic risk of all above estimators. From Theorem 3, we can obtain
the following risk comparisons.

Corollary 3
Under assumptions in Theorem 3, we have

(i) ADR
(
,′1n !̂

PSE
1n

)
⩽ ADR

(
,′1n !̂

SE
1n

)
⩽ ADR

(
,′1n !̂

WR
1n

)
holds for 0 < ‖$‖2 ⩽ 1;

(ii) Inequalities in (i) also hold for ‖$‖2 ⩽ 1 + 4 for some 4 > 0 if Δn = 4p2n .

(iii) If ‖$‖ = o(1), then ADR
(
,′1n !̂

RE
1n

)
⩽ ADR

(
,′1n !̂

PSE
1n

)
< ADR

(
,′1n !̂

WR
1n

)
} holds for $ = 0, where the ‘=’ holds

when p2n → ∞.

Corollary 3 indicates that the performance of the PSE is closely related to the post selection least squares estimator. On
one hand, if Ŝ1 ⊂ S1 ∪ S2 and (S1 ∪ S2)∩ Ŝc

1 are large, then the post selection PSE tends to dominate the RE. Thus, the post
selection PSE can improve the performance of the post selection least squares estimators in [13] and [14], especially when
pn ≫ n and an under-fitted submodel is selected by a large penalty parameter. On the other hand, if a variable selection
approach almost generates the right submodel and ‖$‖ = o(1), that is, limn →∞ Ŝ1 = S1 ∪ S2, then a post selection LSE
(!̂RE

1n ) is the most efficient one compared with all other post selection estimates.

Remark 6
In the high-dimensional setting where p ≫ n , we do need to assume the true model to be sparse in the sense that most coef-
ficients goes to 0 when n → ∞. However, we still permit some "j to be small but not exactly 0. Such covariates with a small
amount of influence on the response variable are often ignored incorrectly in high-dimensional variable selection methods.
If we borrow information from those covariates using the proposed shrinkage methods, the prediction performance based
on selected submodel can be improved substantially.

5. Simulation studies

In this section, we use some simulation studies to examine the quadratic risk performance of the proposed estimators. Our
simulation is based on the linear regression model in (1.1).

True model settin g. In all experiments, #i’s are simulated from independent and identically distributed standard normal

random variables, xis =
(
51
(is)

)2
+ 52

(is), where 51
(is) and 52

(is), i = 1, · · · , n , s = 1, · · · , pn are also independent copies of the
standard normal distribution. In all experiments, we let n = 200 and pn = n ' for different sample size n , where ' changes
from 1 to 1.2 with an increment of 0.02. Three different coefficient configurations are considered as follows:

Case 1: !∗ = (5, 5, 5, 0.5,… , 0.5
⏟⏞⏞⏞⏟⏞⏞⏞⏟

10

, -′p3
)′;

Case 2: !∗ = (10, 10, 10, 0.1,… , 0.1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

50

)′, -′p3
)′;

Case 3: !∗ = (10, 10, 10, 0.1,… , 0.1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

p2

, -′20)
′.

All nonzero coefficients are randomly assigned to be either positive or negative. Both zero and weak signals coexist in
the aforementioned three settings. In Case 1, most covariates are noises. Compared with Case 1, the weak signals become
weaker, and the strong signals become stronger in Case 2. In addition, the number of weak signals is larger but also fixed.
In Case 3, only p3n = 20 zero signals, large amount of weak signals contribute simultaneously, and the number of weak
signals grows with the number of covariates such that p2n ≫ n . Notice that the signal strength setting in this case is different
from that considered in our post selection shrinkage analysis, where p2n < n and p3n ≫ n .
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Figure 1. Relative mean squared errors (RMSEs) of post selection relative mean squared errora (PSEs) compared with one from Lasso
or adaptive Lasso (ALasso) from simulation examples in Cases 1–3. The top (a or a’), middle (b or b’), and bottom (c or c’) panels
are for Cases 1, 2, and 3, respectively. The left (a–c) and right panels (a’–c’) are comparisons when the candidate submodels are

chosen from the Lasso and adaptive Lasso methods, respectively.

Subset selection . Because the adaptive Lasso, smoothly clipped absolute deviation, and minimax concave penalty per-
form closely under certain conditions, we only adopt the adaptive Lasso, and Lasso in selecting a subset before applying
the post selection shrinkage strategy. All tuning parameters in variable selection approaches are chosen using the BIC.

Tun in g parameters an d simulation Settin g. As we know, an and rn are two important tuning parameters affecting Ŝ2 and
Ŝ3. We choose those two tuning parameters based upon the asymptotic investigations in Theorem 2 for all our numerical
studies. In particular, the post selection PSEs are computed for rn = c2a−2

n (log log n )3 log(n ∨ pn ) with an = c1n −1∕8.
Corresponding coefficients c1 and c2 are chosen using cross validation.

Evaluation . Each design is repeated 1000 times, as a further increase in the number of realizations did not significantly
change the result. Let !⋄

1n be either !̂PSE
1n or !̂RE

1n after the variable selection. The performance of !⋄
1n is evaluated by the

relative mean squared error (RMSE) criterion with respect to !̂WR
1n as follows:

RMSE(!⋄
1n ) =

E‖!̂WR
1n − !∗

1‖2

E‖!⋄
1n − !∗

1‖2
. (5.1)

Therefore, RMSE (!⋄
1n ) > 1 means the superiority of !⋄

1n over !̂WR
1n .
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Table I. Simulated RMSEs from simulation examples in Case 1–3.

Lasso Adaptive Lasso

Case pn |Ŝ1| !̂Lasso

1n !̂RE

1n !̂PSE

1n |Ŝ1| !̂ALasso

1n !̂RE

1n !̂PSE

1n

200 10.920 0.690 7.880 2.285 10.537 7.611 7.739 2.269
222 10.785 0.190 2.035 1.680 10.434 2.001 1.991 1.667

1 275 10.655 0.082 0.744 1.231 10.250 0.783 0.773 1.242
340 10.491 0.066 0.574 1.126 10.137 0.585 0.558 1.114
420 10.416 0.061 0.485 1.061 9.906 0.514 0.491 1.062
519 10.293 0.063 0.476 1.047 9.781 0.480 0.446 1.042
200 3.112 0.491 6.169 2.409 3.170 4.859 3.431 2.199
222 3.078 0.137 1.790 1.807 3.149 1.447 1.012 1.640

2 275 3.041 0.048 0.684 1.393 3.083 0.561 0.384 1.205
340 3.036 0.035 0.517 1.222 3.051 0.395 0.270 1.066
420 3.000 0.029 0.442 1.138 3.025 0.335 0.233 1.003
519 3.000 0.023 0.388 1.140 3.000 0.312 0.217 0.998
200 4.020 0.730 2.594 1.420 7.379 6.380 5.815 1.491
222 6.109 0.430 0.809 1.200 10.005 1.778 1.684 1.310

3 275 5.277 0.176 0.449 1.007 8.159 0.747 0.687 1.092
340 3.046 0.034 0.396 1.077 3.783 0.476 0.361 1.070
420 5.325 0.231 0.633 0.984 7.390 0.762 0.710 1.025
519 7.213 0.461 0.860 1.014 9.114 0.844 0.804 1.020

|Ŝ1|is the average size of produced submodel; RMSEs, relative mean squared errors;
PSE, post selection shrinkage estimator; RE, restricted estimator.

Result: We plot the mean RMSEs from 1000 iterations along pn in Figure 1. Some selected results are also reported
in Table I. To check the behavior of Lasso or adaptive Lasso for subset selection, we also report the average number of
selected important covariates as |Ŝ1| in Table I. It is not surprising to see that RE post the adaptive Lasso is comparable with
the adaptive Lasso itself, while RE post the Lasso behaves much better than Lasso [13, 14]. We summarize the simulation
results as follows:

• Figure 1(a’)–(c’) lists results when the adaptive Lasso is used to generate the submodel. (i) When pn is closer to n , both
post selection RE and adaptive Lasso perform better than the post selection PSE and WR (RMSE>1). (ii) When pn
grows bigger, both RE and adaptive Lasso become worse than the post selection WR (RMSE<1). However, the post
selection PSE still performs better than the post selection WR. Therefore, the post selection PSE provides a protection
of the adaptive Lasso in the case that the adaptive Lasso loses its efficiency.

• Figure 1(a)–(c) lists results when the Lasso is used to generate the submodel. The advantage of the post selection PSE
over the Lasso is more obvious than the earlier. This is because the adaptive Lasso tends to produce a more efficient
estimator than the Lasso does.

• When pn grows, the post selection PSE is much more robust and at least as good as the WR estimator (RMSE is
approaching to 1). When pn grows bigger, the improvement of the post selection PSE from adaptive Lasso or Lasso
becomes more obvious. See Table I.

• In Case 3, the post selection PSE may lose its superiority to the post selection RE and adaptive Lasso, especially when
pn grows quickly with n . One explanation is that the selected model size varies dramatically because the number of
weak coefficients grows. However, if we still follow the model parsimony spirit and decide to use an aggressive tuning
parameter to obtain a relatively consistent submodel size Ŝ1, the superiority of post selection PSEs follows the same
pattern as in Cases 1 and 2.

6. Real-data example

In this section, we apply the proposed post selection shrinkage strategy to the growth data for the years 1960–1985 [30].
Table II lists the detailed descriptions of the dependent variable and 45 covariates related to education and its interaction
with lgdp60i, market efficiency, political stability, market openness, and demographic characteristics.

The growth regression model has been applied to test the negative relationship between the long-run growth rate and
the initial GDP given other covariates. See [31] and [32] for literature reviews. Very recently, [33] took into account the
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possible discrepancy among the aforementioned negative relationship using a growth regression model with threshold. In
particular, they consider a threshold variable in the following regression model,

gri = "0 + "1lgdp60i + '′i!2 + I(Qi < ')(30 + 31lgdp60i + '′i$2) + #i, (6.1)

where gri is the annualized GDP growth rate of country i from 1960 to 1985, lgdp60i is the log GDP in 1960, 'i includes all
45 covariates listed in Table II, and Qi is a threshold variable, where we use the initial GDP in 1960. Because the estimation
of the threshold parameter ' is not our target, we consider five different '’s in our analysis: 1655, 2073, 2898, 3268, and
6030. Among them, ' = 2898 is a threshold value suggested by [33], and the other four threshold values are kth percentiles

Table II. List of variable.

Variable Description

Dependent variable

gr Annualized GDP growth rate in the period of 1960–85
Threshold variables
gdp60 Real GDP per capita in 1960 (1985 price)
Covariates
lgdp60 log GDP per capita in 1960 (1985 price)
lsk Log(Investment/Output) annualized over 1960–85;

a proxy for the log physical savings rate
lgrpop Log population growth rate annualized over 1960–1985
pyrm60 Log average years of primary schooling in the male population in 1960
pyrf60 Log average years of primary schooling in the female population in 1960
syrm60 Log average years of secondary schooling in the male population in 1960
syrf60 Log average years of secondary schooling in the female population in 1960
hyrm60 Log average years of higher schooling in the male population in 1960
hyrf60 Log average years of higher schooling in the female population in 1960
nom60 Percentage of no schooling in the male population in 1960
nof60 Percentage of no schooling in the female population in 1960
prim60 Percentage of primary schooling attained in the male population in 1960
prif60 Percentage of primary schooling attained in the female population in 1960
pricm60 Percentage of primary schooling complete in the male population in 1960
pricf60 Percentage of primary schooling complete in the female population in 1960
secm60 Percentage of secondary schooling attained in the male population in 1960
secf60 Percentage of secondary schooling attained in the female population in 1960
seccm60 Percentage of secondary schooling complete in the male population in 1960
seccf60 Percentage of secondary schooling complete in the female population in 1960
llife Log of life expectancy at age 0 averaged over 1960–1985
lfert Log of fertility rate (children per woman) averaged over 1960–1985
edu/gdp Government expenditure on eduction per GDP averaged over 1960–1985
gcon/gdp Government consumption expenditure net of defence and education

per GDP averaged over 1960–85
revol The number of revolutions per year over 1960–84
revcoup The number of revolutions and coups per year over 1960–84
wardum Dummy for countries that participated in at least one external war over 1960–84
wartime The fraction of time over 1960–1985 involved in external war
lbmp Log(1+black market premium averaged over 1960–85)
tot The term of trade shock
lgdp60 ‘educ’ Product of two covariates (interaction of lgdp60 and education

variables from pyrm60 to seccf60); total 16 variables

Table III. Sizes of selected submodel.

' 6030 3268 2898 2073 1655

Lasso 15 18 18 19 11
adaptive Lasso 19 13 20 19 11
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for k = 60, 70, 80, 90, respectively. After removing all missing data, each setting includes n = 82 observations and p = 90
covariates besides two intercepts.

Before applying the post selection shrinkage strategy, we first obtain candidate subsets from two variable selection
techniques: Lasso and adaptive Lasso, respectively. All tuning parameters are selected from fivefold cross validation. In
Table III, we list the numbers of selected important variables, ŝ1 = |Ŝ1|, and also the sizes of candidate submodels, under
five different '’s. In Table IV, we list the frequency of each variable being selected among all five settings. We observe

Table IV. Frequency of selected variables (based upon
either "j ≠ 0 or 3j ≠ 0) among All 5 '’s.

Lasso ALasso

Variable #("j ≠ 0) #(3j ≠ 0) #("j ≠ 0) #(3j ≠ 0)

lgdp60 5 0 5 0
lsk 5 0 5 0
nom60 0 1 0 1
prim60 3 0 3 0
pricm60 3 3 3 3
seccm60 0 5 0 5
seccf60 1 0 1 0
llife 5 0 5 0
lfert 5 0 5 0
edugdp 3 0 4 0
gcongdp 5 0 5 0
revol 2 0 3 0
wardum 2 3 2 3
wartime 4 4 3 3
lbmp 5 0 5 0
tot 0 5 0 5
lgdpsyrm60 2 0 2 0
lgdphyrm60 3 0 1 0
lgdphyrf60 0 1 1 0
lgdpnof60 0 3 0 3
lgdpprim60 2 0 2 1
lgdpprif60 0 1 0 2
lgdpseccf60 1 0 0 0

Table V. Estimation results under ' = 2898 (Candidate submodel from ALasso).

Variable "̂(ALasso) 3̂(ALasso) "̂(PSE) 3̂(PSE)

lgdp60 −9.253 × 10−3 — −1.287 × 10−2 —
lsk 6.121 × 10−4 — 3.942 × 10−4 —
nom60 — 1.400 × 10−2 — 3.481 × 10−2

prim60 −4.579 × 10−2 — −7.472 × 10−2 —
pricm60 1.934 × 10−2 1.974 × 10−3 4.129 × 10−2 7.058 × 10−3

seccm60 — 4.903 × 10−4 — 4.324 × 10−4

llife 1.200 × 10−3 — 2.212 × 10−3 —
lfert −1.659 × 10−3 — −1.507 × 10−3 —
edugdp 2.228 × 10−5 — 2.309 × 10−5 —
gcongdp −2.351 × 10−4 — −2.610 × 10−4 —
revol −1.020 × 10−6 — −1.158 × 10−4 —
wardum — −1.417 × 10−4 — −3.336 × 10−4

wartime −1.655 × 10−4 — −5.081 × 10−5 —
lbmp −1.580 × 10−3 — −1.595 × 10−3 —
tot — 5.202 × 10−6 — 6.318 × 10−6

lgdphyrm60 1.122 × 10−2 — 4.291 × 10−2 —
lgdphyrf60 −7.585 × 10−3 — −4.143 × 10−2 —
lgdpnof60 — 6.392 × 10−2 — 0.189
lgdpprif60 — −3.130 × 10−2 — −0.127
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that Lasso and adaptive Lasso variable selection results in Table IV are quite close for this data set. However, the selected
candidate subset model can be quite different among all five different '’s.

After the variable selection, post selection PSE is applied based upon the selected candidate subsets in all settings.
Tables V and VI give the estimation results for ' = 2898 and ' = 1655, where both candidate subsets are selected by the
adaptive Lasso. We omit results under other settings to save the space.

Becuase we do not know what the true model is in the real-data analysis, we first evaluate the prediction improvement
from variable selection estimates to post selection PSEs by computing the relative residual sum of squares (RRSS) of the
estimator !⋄ over the WR estimator !̂WR

 as follows:

RRSS(!⋄ ) =
∑n

i=1 ‖! −
∑

j∈ #  !̂WR
 ‖2

∑n
i=1 ‖! −

∑
j∈ #  !⋄ ‖2

, (6.2)

where  is the index of the submodel chosen by corresponding variable selection methods, and !⋄ can be (adaptive) Lasso
and the corresponding generated post selection SEs and post selection PSEs. Similar to the simulation studies, RRSS > 1
indicates the superiority of !⋄ over !̂ . The results on RRSS for different '’s are reported in Figure 2, where the left and
right panels are based upon Lasso and adaptive Lasso submodels, respectively. Those RRSS values of post selection REs
give the highest value in both cases. This is not surprising because we assume the selected submodel is the right one and does
not account for any bias. In both cases, the post selection PSEs dominate the corresponding variable selection estimation
in terms of the RRSS regardless of whether Lasso or adaptive Lasso is used for generating the candidate submodel. This is

Table VI. Estimation results under ' = 1655 (Candidate submodel from
ALasso).

Variable "̂(ALasso) 3̂(ALasso) "̂(PSE) 3̂(PSE)

lgdp60 −2.841 × 10−3 — −1.306 × 10−2 —
lsk 1.319 × 10−3 — 1.284 × 10−3 —
seccm60 — 3.652 × 10−4 — 5.873 × 10−4

llife 3.532 × 10−4 — 1.633 × 10−3 —
lfert −2.552 × 10−4 — −2.250 × 10−3 —
gcongdp −1.554 × 10−4 — −3.033 × 10−4 —
revol −3.715 × 10−5 — −9.248 × 10−4 —
wartime −4.965 × 10−5 −1.120 × 10−5 2.731 × 10−4 −3.958 × 10−5

lbmp −1.428 × 10−3 — −5.887 × 10−4 —
tot — 5.175 × 10−7 — 8.476 × 10−6

Figure 2. Relative residual sum of squares (RRSS) from (6.2) from post selection post selection shrinkage estimator (PSE) and the
Lasso-type estimators: Lasso (left panel) or adaptive Lasso (ALasso) (right panel). The curve is plotted based upon a decreasing

order of RRSS for better visibility, with corresponding values of ' plotted in x-axis.
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Figure 3. Prediction errors from post selection post selection shrinkage estimator (PSE), restricted estimator (RE), and adaptive Lasso
(ALasso). Left: ' = 2898; Right: ' = 1655. All prediction errors are computed using cross validation following 500 random
partitions of the data set. In each partition, the training set consists of 2/3 observations, and the test set consists of the remaining 1/3

observations.

because shrinkage estimation provides a better trade-off between bias and variance when selected submodels underfit the
true model.

In addition, we also obtain prediction errors using cross validation following 500 random partitions of the data set.
In each partition, the training set consists of 2/3 observations (size 55), and the test set consists of the remaining 1/3
observations (size 28). Corresponding results for ' = 2898 and 1655 are reported in Figure 3, where the post selection
PSEs are compared with the adaptive Lasso. The comparisons between the post selection PSEs and (adaptive) Lasso for
other '’s follow the similar pattern and thus are omitted. It is observed that post selection PSEs produce much smaller
prediction errors than the Lasso-type estimation.

7. Conclusion and discussions

In this paper, we generalize the shrinkage estimation to a high-dimensional sparse regression model. We propose a post
selection shrinkage estimation strategy by shrinking a WR estimator in the direction of a candidate submodel obtained by
existing PLSs variable selection methods.

When pn grows with n quickly, it is reasonable to assume that the model sparsity exists in the sense that most covariates do
not contribute. However, at the same time, some covariates may still make some small but jointly non-trivial contribution to
the response. Existing penalized regularization approaches usually lead to a sparse model but tend to miss the possible small
contributions from some covariates, resulting in excessive prediction errors or inefficient estimation. Our proposed post
selection shrinkage strategy, taking into account possible contributions of covariates with weak and/or moderate signals,
has dominant prediction performances over candidate submodel estimates generated from Lasso-type methods.

Before obtaining a shrinkage estimator, one key step is to generate a full estimation of ! n when p ≫ n . We suggest a
post selection WR estimator which is able to separate small coefficients from zero coefficients. The advantages of proposed
post selection PSE are studied both theoretically and numerically. In theory, we established the asymptotic normality of
the post selection WR estimator when pn grows with n at an almost exponential rate such that log(pn ) = O(n 1) for some
0 < 1 < 1. Those novel asymptotic properties are used for investigating the asymptotic efficiency of the proposed post
selection PSE analytically. In numerical studies, we chose tuning parameters c1 and c2 from cross validation but cannot
guarantee their optimality for post selection PSE. The choice of tuning parameters is an important but challenging issue
in high-dimensional data analysis that could potentially create very important future work. Although the proposed post
selection PSE was presented based on a WR method, other methods can also be used to generate the shrinkage estimator.

Finally, we acknowledge the importance of Lasso-type variable selection methods, but at the same time, and do not
depend completely on them, especially when many weak coefficients jointly affect the response variable. The Lasso is the
start but not the end. We could potentially still make some significant prediction improvements. We hope this work will shed
some more light on the investigation of the post variable selection shrinkage analysis in high-dimensional data analysis.
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Appendix

All technical proofs are given in this section.

Proof of Theorem 1

After solving (3.1), we obtain

!̃ Ŝ1
(rn ) =

(
# ′

Ŝ1
MŜc

1
(rn )# Ŝ1

)−1
# ′

Ŝ1
MŜc

1
(rn )! (A1)

and

!̃ Ŝc
1
(rn ) =

(
rn $p2n

+ # ′
Ŝc

1

MŜ1
# Ŝc

1

)−1

# ′
Ŝc

1

MŜ1
!, (A2)

where MŜc
1
(rn ) = $n − # Ŝc

1

(
rn $p2n

+ # ′
Ŝc

1

# Ŝc
1

)−1

# ′
Ŝc

1

and MŜ1
= $n − # Ŝ1

(# ′
Ŝ1
# Ŝ1

)−1# ′
Ŝ1

.

We only need to prove the result under the condition Ŝ1 = S1, and then all matrices, vectors indexed by Ŝ1 can be replaced
by S1 or 1 without causing of any confusion. For example, MŜ1

= MS1
= M1 under the condition.

First, we check the bias of !̂WR
Sc

1
. Because M1 is an idempotent matrix, M1# 1n = 0. Denote qn = p2n + p3n . Then,

(# ′
Sc

1
M1# Sc

1
+ rn $qn

)−1# ′
Sc

1
M1# 1n !10 = -.

Let . be a qn × qn orthogonal matrix such that

)′M1) = # ′
Sc

1
M1# Sc

1
= .

(
/ -
- -

)
.′,

where / = diag{,1n ,… , ,kn n }. Then, we have

E
(
!̂WR

Sc
1

)
− !∗

Sc
1
=

(
# ′

Sc
1
M1# Sc

1
+ rn $qn

)−1
# ′

Sc
1
M1! − !∗

Sc
1

]

=
(
# ′

Sc
1
M1# Sc

1
+ rn $qn

)−1
# ′

Sc
1
M1# Sc

1
!∗

Sc
1
− !∗

Sc
1

= −rn

(
# ′

Sc
1
M1# Sc

1
+ rn $qn

)−1
!∗

Sc
1

= −.
( (

$kn
+ r−1

n /
)−1 -

- $qn −kn

)
.′!∗

Sc
1
.

(A3)

Suppose that . = (.1,.2) and .1 is a qn × kn matrix. Notice that ..′ = .′. = $qn
. Then, .′

1.1 = $kn
, .′

1.2 = -, and
.2.′

2 is a projection matrix. Let %∗ = .1.′
1!

∗
Sc

1
. Then,

!∗
Sc

1
= .1.′

1%
∗ = .1.′

1.1.′
1!

∗
Sc

1
= .1.′

1!
∗
Sc

1
. (A4)

Replace !∗
Sc

1
in (A3) by .1.′

1!
∗
Sc

1
, we have

E
(
!̂WR

Sc
1

)
− !0Sc

1
= −.1

(
$kn

+ r−1
n /

)−1 .′
1!

∗
Sc

1
.

Thus,

‖‖‖‖E
(
!̂WR

Sc
1

)
− ! ∗Sc

1

‖‖‖‖
2

= %′
0.1

(
$kn

+ r−1
n /

)−2 .1%0 ⩽ (1 + ,1n ∕rn )−2‖!0Sc
1
‖2
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For every j ∉ S1,
||||bias

(
"̂WR

j

)|||| ⩽
‖‖‖‖E

(
!̂WR

Sc
1

)
− !0Sc

1

)‖‖‖‖, and thus,

||||bias
(
"̂WR

j

)|||| ⩽ (1 + ,1n ∕rn )−1‖!0Sc
1
‖ ⩽ (rn ∕,1n )O(n ') ⩽ O(rn n '−().

The rest of the proof just mimics the proof of Theorem 2 in [28]. We will provide some outlines of the proof. If we let
rn = c2a−2

n (log log n )3 log(n ∨ p) and log(pn ) = O(n 1) in (B3), then for un = 1 + (log log n )−1, we have

||||bias
(
"̂WR

j

)||||
an (un − 1) ⩽

rn n '−(

an (un − 1) ⩽
c2(log log n )4

a3
n n (−'−1

⩽
c2(log log n )4

c3
1n (−'−1−30

→ 0 if 30 < ( − 1 − ',

where the last ‘⩽’ is from (3.5) and c1 is defined there. From the normal assumption of #i and the solution in linear
expression in (A2), we know !̂WR

Sc
1

is normally distributed and

Var
(
!̂WR

Sc
1

)
= $2

(
# ′

Sc
1
M1# Sc

1
+ rn $qn

)−1
# ′
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1
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1

(
# ′
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1
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1
+ rn $qn

)−1

⪯ $2
(
# ′
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1
M1# Sc

1
+ rn $qn

)−1

⪯ $2r−1
n $qn

,

where ‘0 ⪯ 1’ means 1 − 0 is a non-negative definite matrix. Thus, for any j ∉ S1,Var
(
"̂WR

j

)
= O(1∕rn ). Notice that√

rn an (un − 1) = O
(
(log log n )1∕2

)
→ ∞. We have

an (un − 1)√
Var

(
"̂WR

j

) ⩾ an (un − 1)
√

rn → ∞.

P
(
|"̂WR

j − "∗j | > an (un − 1)
)
⩽ P

⎛
⎜
⎜
⎜⎝
|N(0, 1)| > an (un − 1)√

Var("̂WR
j )

−
|bias("̂WR

j )|
√

Var("̂WR
j )

⎞
⎟
⎟
⎟⎠

= 2Φ
⎛
⎜
⎜
⎜⎝

|bias("̂WR
j )| − an (un − 1)
√

Var("̂WR
j )

⎞
⎟
⎟
⎟⎠

⩽ 2Φ
(
−c0

√
rn an ∕(log log n )

)

⩽ exp{−c2
0rn a2

n ∕(log log n )2},

where Φ is the cumulative distribution function of a standard normal random variable, c0 > 0 is a constant, ‘⩽’ is the tail
probability of a normal random variable. Thus,

P
(
{j ∉ S1 ∶ |"∗j | > an un } ⊂ {j ∉ S1 ∶ |"̂WR

j | > an }
)

⩾ 1 − P
⎛
⎜
⎜⎝

⋃
j∶|"∗j |>an un

{|"̂WR
j | ⩽ an }

⎞
⎟
⎟⎠

⩾ 1 − P
⎛
⎜
⎜⎝

⋃
j∶|"∗j |>an un

{|"̂WR
j − "∗j | ⩽ an (un − 1)}

⎞
⎟
⎟⎠

⩾ 1 −
∑
j∉S1

P
(
|"̂WR

j − "∗j | > an (un − 1)
)

⩾ 1 − qn exp{−c2
0rn a2

n ∕(log log n )2}
⩾ 1 − exp{−

(
c2

0rn a2
n ∕(log log n )2 − log(pn )

)
}

⩾ 1 − exp{−(c2
0 log log n − 1) log(pn ∨ n )}.
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When n is large enough, there exists c2
0 log log n − 1 > t > 0 for some t > 0. Thus,

lim
n →∞

P
(
{j ∉ S1 ∶ |"∗j | > an un } ⊂ {j ∉ S1 ∶ |"̂WR

j | > an }
)
⩾ 1 − (pn ∨ n )−t → 1.

Similarly, we have

lim
n →∞

P
(
{j ∉ S1 ∶ |"∗j | > an ∕un } ⊃ {j ∉ S1 ∶ |"̂WR

j | > an }
)
⩾ 1 − (pn ∨ n )−t → 1.

Because of the continuity of "̂WR
j and limn →∞ un = 1, we have

lim
n →∞

P(Ŝ2|Ŝ1 = S1) = 1.

Proof of Corollary 1

Because S1 ⊂ Ŝ1, a weighted ridge estimator !̂ Ŝ1
aims to find some weak signals from Ŝc

1 ∩ S2. Because Ŝc
1 ⊂ Sc

1, the
smallest positive eigenvalues of # ′

Ŝc
1

MŜ1
# Ŝ1

must be larger than )1n , and ‖!∗
Ŝc

1

‖2 ⩽ ‖!∗
Sc

1
‖2. Thus, we can borrow the proof

of Theorem 1 here, by treating Ŝ1 and S2 ∩ Ŝc
1 as the new S1 and S2.

Proof of Theorem 2

Similar to the proof in Theorem 1, we assume Ŝ1 = S1. Then, the penalized quadratic loss function in (3.1) becomes

L(! n ; S1) =
{
‖! − # n !‖2 + rn ‖!Sc

1
‖2
}
.

Therefore, !̂WR
n = arg min{L(! n ; S1)} satisfies,
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)
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= -.
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.
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Notice that (n = n −1 ∑
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(H5)114
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Under conditions (B1–B3), with probability 1, !̂WR
S3

= - from Theorem 1. Therefore, the third term in (H5) is zero. By
abusing the notation, if we rewrite ,n = (,′1n ,,

′
2n )

′, then

n −1∕2rn ,′n (
−1
n

(
-p1n

!̂WR
S2

)
⩽ 2−1

1 n −1∕2rn ,′2n !̂
WR
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= OP(2−1
1 n −1∕2rn ,′2n !

∗
S2
)

⩽ OP
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2−1

1 rn n −1∕2‖,2n ‖‖!∗
S2
‖
)

⩽ OP

(
2−1

1 rn n −(1∕2−')) = oP(1),

where the first ‘⩽’ is from (B4), the first ‘=’ is from (A2) and (B1), the second ‘⩽’ is from the Cauchy–Schwarz inequality,
the third ‘⩽’ is from (A2). The last ‘=’ holds because rn = o(n 1∕2−') if we choose rn = c2a−2

n (log log n )3 log(n ∨ pn ) with
an = c1n −0 for 0 < 1∕4 − '∕2 for 0 < ' < 1∕2. Therefore,

lim
n →∞

n 1∕2s−1
n ,′n

(
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Sc
3

− !∗
Sc

3

)
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n →∞
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,′n #i(−1
n 'i (H6)

Define ui = n −1∕2s−1
n ,′n (

−1
n 'i, 1 ⩽ i ⩽ n . From (B1), we know that

∑n
i=1 ui#i is normal with variance,

Var

(
n∑

i=1

(ui#i)
)

= $2n −1s−2
n ,′n (

−1
n

(
n∑
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'i'i

)
(−1

n ,n = 1.

Proof of Theorem 3

First, (4.9a) holds because we have

lim
n →∞

E
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1n ,
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)]2
]
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]}
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where Z ∼ N(0, 1). We now verify (4.9b). Let !̃ = ! − # 2n !̂
WR
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3n . Then,
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From the definition,
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= I1 + I2 + I3.
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From (4.9a), we know I1 = limn →∞ E
{

n 1∕2s−1
1n ,

′
1n

(
!̂WR

1n − !∗
1

)}2
= 1. From (H7),
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where ,2n = (n 21(−1
n 11,1n and s2

2n = ,′2n (
−1
n 22.1,2n . From Ouellette (1981) Equation (1.12), we obtain

(−1
11 (12(−1

22.1(21(−1
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11.2 − (−1
11 . (H8)

Therefore,
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Because s2
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1n → 1 − c,
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where ;2
1 (t) is a ;2 distribution with degrees of freedom 1 and noncentral parameter t. Here, Δ,1n

is given in (4.8). From
the Cauchy–Schwarz inequality,

Δ,1n
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Furthermore,
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We now investigate (4.9c). First from the definition,
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Then, we have
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2E
{

n s−2
1n ((p2n − 2)∕Tn ),′1n

(
!̂WR

1n − !̂RE
1n

)(
!̂WR

1n − !∗
1

)′
,1n

}

− lim
n →∞

E
{

n 1∕2s−2
1n ,

′
1n (!̂

WR
1n − !̂RE

1n )((p2n − 2)∕Tn )
}2

= − lim
n →∞

2s−2
1n E

{
((p2n − 2)∕Tn )

√
n ,′2n !̂

WR
2n

√
n
(
!̂WR

1n − !∗
1

)′
,1n

}

− lim
n →∞

s−2
1n E

{[
((p2n − 2)∕Tn )

√
n ,′2n !̂

WR
2n

]2
}
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)
.

Then, from the asymptotic normality,

J2 − J3 = lim
n →∞

s−2
1n E[2((' + &)3′' − (((' + &))2],

where & ′ =
(
-p1n ×1 −!′

20

)
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(
,′n (

−1∕2
n ,n

)−1 ,′n ' → N(0, 1)

and
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n →∞

(
,′n (

−1
n ,n

)−1 (,′n &)
2 = lim

n →∞
Δd1n

.

From Stein’s lemma, we have

E(((' + &)3′') = 3′(−1
n (:((' + &)∕:')

=
(p2n − 2)3′(−1

n 4
(' + &)′5(' + &) −

2(p2n − 2)3′(−1
n 5(' + &)(' + &)′4

((' + &)′5(' + &))2

So we have

J2 − J3 = limn →∞ s−2
1n E[2((' + &)3′' − (((' + &))2]

= limn →∞ s−2
1n E

{[
2
(p2n − 2)3′(−1

n 4
(' + &)′5(' + &) − 4

(p2n − 2)3′(−1
n 5(' + &)(' + &)′4

((' + &)′5(' + &))2

]}

− limn →∞ s−2
1n E

{ (p2n − 2)24′(' + &)(' + &)′4
((' + &)′5(' + &))2

}

= limn →∞ E
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(' + &)′5(' + &) f
}

,

where
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n 4
s2
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−
4(' + &)′5(−1

n 34′(' + &)
s2

1n (' + &)′5(' + &)
−
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1n (' + &)′5(' + &)
.
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Notice that 3′(−1
n 4 = ,′2n (

−1
n 22.1,2n = s2

2n and 5(−1
n 34′ = 44′. Therefore,

f = 2
s2

2n

s2
1n

−
(p2n + 2)(' + &)′44′(' + &)

s2
1n (' + &)′5(' + &)

.

Thus,

J2 − J3 = limn →∞ E

{
(p2n − 2)

(' + &)′5(' + &)

[
2s2

2n

s2
1n

−
(p2n + 2)(' + &)′,2n ,′2n (' + &)

s2
1n (' + &)′5(' + &)

]}

= limn →∞
s2

2n

s2
1n

E

{
(p2n − 2)

('2 + $)′(n 22.1('2 + $)

[
2 −

(p2n + 2)('2 + $)′,2n ,′2n ('2 + $)
s2

2n ('2 + $)′(n 22.1('2 + $)

]}
,

where '2 satisfies that s−1
2n ,

′
2n '2 → N(0, 1). Thus (4.9c) holds. Similarly, we can obtain (4.9d).

Proof of Corollary 3

We first verify (i). Define '̃2 = $−2(1∕2
n 22.1('2 + $) and 1 = ($2∕s2

2n )(
−1∕2
n 22.1,2n ,′2n (

−1∕2
n 22.1. From the Cramér–Wold device,

we have

J2 − J3 = (1 − c) limn →∞

{
E
[
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]
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('̃′2'̃2)2
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;2
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,

where Δn = $′(n 22.1$ and ‘Tr(1)’ is the trace of matrix 1. Here, the second ‘=’ is from Theorem 8 in Chapter 2 in [29].
Notice that Tr(1) = 1. Using the relationship between the chi-square distribution and Poisson distribution,

J2 − J3 = (1 − c) limn →∞

{
E<

[
p2n − 2

p2n − 2 + 2<

(
1 −

p2n + 2
p2n + 2<

)]}
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{
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[
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p2n − 2 + 2<

(
1 −

$′1$(p2n − 2 + 2<)(p2n + 2)
(p2n + 2 + 2<)(p2n + 2<)

)]}
,

where < is a Poisson distribution with mean Δn ∕2 and E< means the expectation is taken for the Poisson random variable
<. Because P(< ⩾ 1) → 1 when p2n → ∞. With almost probability 1, we have

0 ⩽
p2n − 2

p2n − 2 + 2<

(
1 −

p2n + 2
p2n + 2<

)
⩽ 1.

If ‖$‖2 ⩽ 1, then $′1$ =
(
$′(−1∕2

n 22.1,2n

)2
∕
(
,′2n (

−1
n 22.1,2n

)
⩽ $′$ ⩽ 1. Then, E[g1('2 + $)] ⩾ 0. Furthermore, when

"′(n 22.1" ⩽ p2n − 2, we have

2 − s−2
2n ",2n ,′2n "

′ ⩾ 2 −
(p2n − 2)",2n ,′2n "′

s2
2n "′(n 22.1"

> 2 −
(p2n + 2)",2n ,′2n "′

s2
2n "′(n 22.1"

.

Therefore, g2(") ⩾ g1("). Thus, (i) holds.
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In fact, the inequalities in (i) also hold even though ‖$‖2 > 1. For example, suppose Δn = 4p2n for some constant 4 > 0.
Then, p−1∕2

2n (2< − Δn ) ⇝ N(0, 4−1). Therefore, if ‖$‖2 ⩽ 1 + 4, with probability 1, we have

1 −
$′1$(p2n − 2 + 2<)(p2n + 2)
(p2n + 2 + 2<)(p2n + 2<) → 1 − ‖$‖2

1 + 4
> 0.

Thus, (ii) holds.
We now verify (iii). If $ = -, then Δ,1n

= 0. Thus, ADR(,′1n !̂
RE
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WR
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From Theorem 2.1.8 in [29] and moment of inverse chi-squares distribution, we have
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Thus, if p2n = p2 is fixed, E[g1('2)] = (1 − c)(1 − 2∕p2) < 1 − c. Therefore,
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(
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Similarly, we can verify ADR
(
,′1n !̂

RE
1n

)
< ADR

(
,′1n !̂

PSE
1n

)
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→ 1.
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Discussion of ‘Post selection shrinkage
estimation for high-dimensional data analysis’

I wholeheartedly congratulate Gao, Ahmed, and Feng on the stimulating paper, which provides a novel idea to estimate
weak but non-vanishing coefficients that can be missed in the first stage of model selection. The basic idea is to conduct
the shrinkage estimator on the variables that are not selected in the first stage, penalizing the L2-norm of the coefficients of
remaining variables without penalty on those that survived the first stage, and then to recruit additionally those variables
with big estimated ridge regression coefficients. This basically assesses the conditional contributions of the remaining vari-
ables, given those already selected in the first stage, using a ridge regression technique to avoid the curse of dimensionality
in implementation. Furthermore, such a post selection shrinkage estimator is further combined with the post-lasso esti-
mator to improve further the estimated coefficients for the strong signal components. The advantages of including these
additional variables are shown unambiguously by using both asymptotic and empirical studies. I welcome the opportunity
to make a few comments.

There are a couple of assumptions that is worth discussing. First of all, the authors assume that there are three well-
separated regimes of regression coefficients, whose indices are denoted by !1, !2, and !3 by the authors. This can be too
ideal in various applications. In addition, while the conditional model selection consistency for !2 is given in Theorem
1, I can not find the condition on the minimal signal strength in !2 to separate !2 from !3. Assumption (A2) is probably
inadequate.

Secondly, it is assumed that !1 is consistently estimated in the preliminary stage. While technical conditions can be posed
to make model selection consistency, in many applications, this is very hard to achieve. What happens to the procedure if
there are some missed variables in the first stage? Can it be recovered in the second stage? How about irrelevant variables
recruited in the first stage?

Finally, the assumption on the design matrix is rather strong. It excludes reasonably correlated design matrix. Are
assumptions (B2) and (B4) typically compatible? A showcase example is welcome.

The capstone of the paper is to define the weighted ridge estimator and post-selection shrinkage estimator. High-
dimensional ridge estimation can be tricky: from numerical stability to biases and variances in each component. One tuning
ridge parameter is not flexible enough. For weighted ridge estimator, instead of using shrinkage and thresholding, one can
also use penalized least-squares:

‖" − #!‖2 + !1

∑

j∈Ŝ1

|#j| + !2

∑

j∉Ŝ1

|#j|

where !1 and !2 are penalization parameters. Following the idea of the authors, one can take !1 = 0. This corresponds to
p′!(#̂j) for a sufficiently large |#̂j| such as those j ∈ Ŝ1 for SCAD and MCP penalties. In that sense, the given penalized least-
squares corresponds to the one-step implementation of the folded-concave penalized least-squares, namely, adaptive Lasso
(Zou, 2006; Zou and Li, [1]; Fan, Xue, and Zou, [2]). Fan, Liu, Sun, and Zhang unveil the iteration effects of iteratively
reweighted lasso implementation of the folded-concave penalized least-squares and demonstrate the advantages of such
iterations. Can we have similar iterative versions of weighted ridge estimators that allow the sets of Ŝ1, Ŝ2, and Ŝ3 to change?

Two versions of post-selection shrinkages are given in (3.6) and (3.8). The authors are welcome to provide intuitions
on these estimators and why they expect to improve the sampling properties. The simulation results on the selection con-
sistency of Ŝ1 and Ŝ2 are also welcome. In addition, comparisons with other existing procedures will provide additional
insights.

Jianqing Fan
Department of Operations Research and Financial Engineering

Princeton University
E-mail: jqfan@princeton.edu
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Discussion of ‘Post selection shrinkage
estimation for high-dimensional data analysis’

The authors are congratulated on this interesting paper about high dimensional (HD) data analysis. Because of rapid
progress in data acquisition techniques, more and more applications have HD data involved. Thus, statistical modeling
and analysis of HD data have become a popular research area in the past 10–15 years. Many related methodologies have
been developed in the literature, most of which use the terminologies such as ‘variable selection’, ‘dimension reduction’,
and ‘machine learning’. As pointed out in the paper, many existing methods discuss the HD problem under the sparsity
assumption, and try to select a small number of important covariates to be kept in a model and remove all other covari-
ates from regression modeling. In reality, however, it can happen that there are many covariates that all provide useful
information about the response variable y, although the amount of such useful information in a single covariate might be
small. One novelty of the proposed methods in the current paper is that the authors try to properly accommodate such rel-
atively small contributions from these covariates by (i) selecting the important covariates using the conventional LASSO
or adaptive LASSO algorithm and (ii) suggesting a post-selection shrinkage estimation strategy to properly accommodate
the contribution of some less important covariates. Both theoretical arguments and numerical examples show that the pro-
posed methods have some advantages, compared with certain existing variable selection methods (e.g., LASSO), for HD
model estimation. Next, we comment on certain aspects of the proposed methods and provide some suggestions for future
research on the related topics.

1. Model and model assumptions

The paper focuses on the linear regression model (1.1), as did in most papers on HD data modeling. This model has
many model assumptions, including the linearity, i.i.d. and additive random noise with mean 0 and constant variance !2.
Although it is not mentioned immediately after (1.1), the paper also assumes that the noise is normally distributed (cf., the
assumption (B1) in Section 4). The authors pointed out that many existing methods on variable selection require the sparsity
assumption that only a small number of model coefficients in model (1.1) are non-zero and that this assumption may not
be valid in many applications. In practice, a more realistic scenario is that there could be a quite number of covariates that
provide useful information for describing the response variable y, although their contributions might be relatively small,
compared with a small number of important covariates. So, the paper focuses on this scenario and suggests some new
methodologies to handle it properly.

We agree with the authors completely that the sparsity assumption may not be valid in most applications. Instead, the
scenario with a small number of important covariates and a relatively large number of helpful but less important covariates
might be more realistic. To describe this scenario, the authors introduce three signal strength assumptions (A1)–(A3) to
define three sets of covariates according to their signal strength levels: S1 includes covariates with strong signal strength,
S2 includes covariates with weak signal strength, and S3 includes covariates with zero signal strength. The three levels
of signal strength are defined based on the magnitudes of the true regression coefficients. For instance, the assumption
(A2) specifies the covariates in S2 to be those whose regression coefficients, denoted as !∗

S2
, satisfy ‖!∗

S2
‖ = O(n"), where

" ∈ (0, 1) is a constant and ‖ ⋅ ‖ is the L2 norm. We would like to point out that the definitions of S1 − S3 in (A1)–(A3)
may not be rigorous enough. For instance, by the current definition, S2 should also contain all covariates in S3 because a
sequence an = O(n") can include the case when an = 0, for all n, by the definition of the big O notation. So, we would
suggest that you change ‘‖!∗

S2
‖ = O(n")’ to ‘‖!∗

S2
‖ ∼ O(n")’ in (A2) and specify that all components of !∗

S2
are non-zero.

Similarly, by the current definition, S1 and S2 may not be disjoint. For instance, if pn = exp(n2("− 0.5)+ 1) and " > 0.5, then
some covariates in S2 can also belong to S1. So, it requires much effort on the definitions of S1-S3 so that they are three
disjoint sets of covariates and really represent the covariates at the high, low, and zero signal strength levels.

As aforementioned, one important contribution of the current paper is to generalize the sparsity assumption that divides
all covariates into two sets (i.e., useful and non-useful covariates) to cases with three sets (i.e., useful, less useful, and
non-useful covariates). It tries to accommodate certain covariates with relatively weak signal strength in the modeling.
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We agree with the authors that this is an important step forward in the variable selection research. However, in practice, it is
always challenging to divide all covariates into two or three categories, because the signal strength might be a continuous
quantity and it is quite subjective to divide its values into two or three categories. For instance, in Case I of your simulation
example, the components of !∗ are chosen to be 5, 0.5, or 0. If the components of !∗ can take the values of 5, 4, 3, 2, 1, 0.5,
0.2, and 0, how can we divide them into three categories? Should we consider the three groups {5, 4, 3, 2}, {1, 0.5, 0.2} and
{0}? or, an alternative grouping {5, 4, 3, 2, 1}, {0.5, 0.2} and {0}? Of course, we can also consider four or more groups. It
may require some future research effort to address this kind of arbitrariness involved in the grouping of the covariates.

The three-step post selection shrinkage estimation strategy discussed in Section 3 is a creative one. From the definitions
of !̂

WR
(rn, an) in (3.2) and !̂

PSE

Ŝ1
in (3.8), selection of the parameters rn and an is critically important to their performance. In

the simulation study, the authors suggest choosing an = c1n− 1∕8 and rn = c2a− 2
n (log log n)3 log(n⋁ pn), where the constants

c1 and c2 are determined by cross-validation. However, it is still unknown whether this parameter selection scheme will
work well in general cases. Much research is needed to provide practical guidelines for choosing these parameters in
different scenarios.

As mentioned in the first paragraph of this part, the sparsity assumption is only one of many assumptions of model
(1.1). In cases when there are a large number of covariates involved, it is difficult to imagine that the regression function
is still linear. Recently, there is some research on nonparametric transformation of covariates in the context of dimension
reduction (e.g., Mai and Zou [1]). Also, in image or other spatial data, the random noise could be spatially correlated. In
MRI or fMRI image data, the random noise may not be additive and the noise variability could change over location (e.g.,
Mukherjee and Qiu [2]).

2. Evaluation of different methods

In the simulation study in Section 5, the authors use the relative mean squared error (RMSE) criterion defined in (5.1)
for comparing the three different methods RE, ALASSO, and PSE. While this criterion is good for evaluating the overall
performance of the coefficient estimators, it has its limitations. For instance, in Case 1 of your simulation example, 3
coefficients have their true values of 5, 10 coefficients have their true values of 0.5, and the remaining coefficients are
all 0. The coefficient values are dramatically different in such a case. So, the criterion RMSE is mainly for evaluating
the performance of the estimates of the first three coefficients in !∗. An alternative criterion is the average or sum of
($̂∗j − $∗j )∕$

∗
j , over all j, where $∗j is the jth component of !∗. This alternative criterion will not be dominated by certain

coefficients whose values are much larger than the other coefficients. Also, the scale of a covariate can be changed in
practice. For instance, in your real-data example discussed in Section 6, the covariate gdp60 can be in the unit of dollars,
or in the unit of 1000 dollars. If the unit of a covariate changes, then its coefficient value will also change. Consequently,
some less important covariates become important ones in your definitions of S1-S3, and vice versa. Your suggested methods
and the criterion RMSE depend on the specific unit of each covariate, while the suggested alternative criterion does not.
Another alternative criterion is the mean square error of the entire regression function, defined as

E(X!̂
∗
− X!∗)2.

This criterion does not depend on the covariate scale either.

3. Model diagnoses and applications

One major contribution of the paper is to make certain variable selection methods (e.g., LASSO) more practical by loosen-
ing the sparsity assumption and accommodating certain covariates whose contribution in describing the response variable
y is less important than the major covariates that are likely to be selected by the conventional variable selection methods.
This is definitely a welcome research effort. However, to make a method relevant to applications and compare different
methods about their adequacy and goodness-of-fit in a specific application, some proper diagnosis tools and goodness-
of-fit tests are necessary, which could be good topics for future research. For instance, in the real-data example discussed
in Section 6, why is the model (6.1) adequate for describing the GDP growth data? Are the random errors {%i} i.i.d. and
normally distributed? If some of these assumptions are violated, will the related variable selection methods still perform
well? For a specific variable selection method, after the model (6.1) is estimated, how do the residual plots look like? Can
we perform a formal goodness-of-fit test about the estimated model? And so on and so forth. Thus, a great future research
effort is still needed to answer all these questions. Definitely, the research effort in the current paper is a first step towards
that direction.

We will close by thanking the authors for a thought-provoking paper and a novel variable selection method that has its
potential to be used in a wide range of applications.
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Discussion of ‘Post selection shrinkage
estimation for high-dimensional data analysis’

We congratulate Guo, Ahmed, and Feng (referred to as GAF hereafter) on an interesting paper that advances theory and
methodologies relevant to post selection estimators in high-dimensional data settings. As existing post estimators have often
ignored contributions from weak signals, the key contribution of this paper is proposing a new post selection shrinkage
estimator (PSE) that takes into account the joint impact of both strong and weak signals. Through intensive theoretical
and empirical work, GAF have demonstrated that the PSE possesses improved prediction performance compared with the
post selection estimators generated by Lasso-type methods. In this discussion, we re-consider the PSE estimator from two
new perspectives.

First, we notice that GAF have only focused on detecting marginally strong and weak signals. However, variables that
are regarded as ‘noise variables’ (or in S3) but have non-ignorable impact on the outcome, together with some variables
in S1 or S2, are also worth considering. These variables, termed marginally unimportant but jointly informative variables,
have aroused much interest recently. We plan to explore the performance of PSE in the presence of marginally unimportant
but jointly informative variables. Secondly, we are keen on investigating whether the PSE approach can be extended to
encompass ultrahigh-dimensional data because the pre-determined important set Ŝ1, as defined by GAF, is obtained from
the regularized regression method that is not feasible for ultrahigh-dimensional data analysis.

1. Existence of marginally unimportant but jointly informative variables

The performance of post selection estimators largely depends on how the submodel S1 is selected. It is well known that
Lasso-type penalized regularization approaches tend to select only one representative variable out of several highly corre-
lated variables, and also tend to miss marginally weak signals. As marginally unimportant but jointly informative (MUJI)
variables are highly correlated with some variables in S1, they have low priorities to be selected using the regularization
method, which will incur inefficient estimation and large prediction errors. Although the proposed post selection shrink-
age estimator (PSE) takes into account covariates with marginally weak impact on the response, it fails to account for
the effects of MUJI variables, which typically belong to S3. The existence of MUJI variables can be easily identified by
investigating the covariance structure. This naturally leads to a question on how to incorporate such a covariance structure
into the construction of post selection estimators for identifying MUJI variables, denoted by SMUJI, and for simultaneously
estimating ! based on the three sets, S1, S2, and SMUJI.

2. Applicability to the ultrahigh-dimensional data

In an ultrahigh-dimensional data setting, where the number of covariates pn is in the exponential order of sample size n,
solving a penalized regression problem is computationally infeasible as it involves inverting a pn × pn matrix. Moreover,
the finite sample oracle bounds for selection and estimation errors are in the scale of O(log pn∕n), which are too wide for
ultrahigh-dimensional settings. Therefore, the current PSE method may not be directly applicable to model the ultrahigh-
dimensional data.

To address the challenge, we modify the PSE algorithm proposed by Guo, Ahmed, and Feng (GAF) and present a
covariance insured screening-based PSE (CIS-PSE), which incorporates the correlation structure to identify SMUJI and
facilitates variable selection in ultrahigh-dimensional settings.

3. Covariance insured screening-based post selection shrinkage estimator

Following GAF, we use the same definitions of S1, S2, S3, representing strong, weak, and sparse signal set, respectively.
Assuming that ! has been standardized columnwise, we design the proposed CIS-PSE algorithm as follows.
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1. Select Ŝ1, Ŝ2, and ŜMUJI:

Obtain the marginally strong set Ŝ1 using the selection criteria of Ŝ1 = {j ∶ |!′
j"∕(!

′
j!j)| > "n} for some tuning

parameter "n. Set !̂MS
Ŝ1

= (!′
Ŝ1
!Ŝ1

)− 1!′
Ŝ1
". If the number of variables in Ŝ1 exceeds the sample size, a Lasso

regression can be used instead. Here, !̂MS
Ŝ1

plays the same role as !̂RE
Ŝ1

in GAF except that Ŝ1 is obtained by a
marginal screening, and thus is adaptive to the ultrahigh-dimensional data.
Then, compute residuals from the fitted model based on Ŝ1, that is, "̂ = "− !Ŝ1

!̂ Ŝ1
. Treating "̂ as the working

response variable, we recruit new predictors by Ŝ2 = {j ∈ Ŝc
1 ∶ |!′

j "̂∕(!
′
j!j)| > #n}, where #n is a tuning

parameter.
The set of MUJI variables is selected by ŜMUJI = {j ∈ Ŝc

1 ∶ |!′
j!j′ | > $n for some j′ ∈ Ŝ1}, where $n is a tuning

parameter.

2. Obtain an initial post selection least squares estimator with variables belonging to Ŝ1 ∪ Ŝ2 ∪ ŜMUJI. If the number of
variables in Ŝ1 ∪ Ŝ2 ∪ ŜMUJI exceeds the sample size, we use a ridge regression with a penalty only on coefficients in
Ŝc

1 ∩ (Ŝ2 ∪ ŜMUJI). Denote the resulting estimates by !̂R
. Similar to GAF, we hard-threshold the parameters in Ŝc

1 to

obtain the post screening weighted ridge (SWR) estimator !̂SWR
from

%̂SWR
j =

⎧
⎪
⎨
⎪⎩

%̂R
j , j ∈ Ŝ1

%̂R
j I(%̂R

j > an), j ∈ Ŝc
1 ∩ (Ŝ2 ∪ ŜMUJI)

0, otherwise.

Denote by !̂SWR
Ŝ1

the components of !̂SWR
corresponding to Ŝ1. Though !̂SWR

Ŝ1
is defined similarly as in GAF, it

incorporates both Ŝ2 and ŜMUJI.
3. We obtain the CIS-PSE of !1 by

!̂CIS-PSE
Ŝ1

= !̂SWR
Ŝ1

−
(

ŝ2 − 2

T̂n

∧ 1

)(
!̂SWR

Ŝ1
− !̂MS

Ŝ1

)
,

where ŝ2 = |Ŝ2 ∪ ŜMUJI| and T̂n is as defined in GAF.

In summary, the proposed CIS-PSE estimator is different from the PSE in two aspects. First, it incorporates SMUJI that
could be missed by the PSE because of high correlations with variables in S1. Second, aided by a screening procedure, the
CIS-PSE can accommodate ultrahigh-dimensional data.

4. Numerical examples

To evaluate the performance of our proposal, we consider two examples where non-ignorable signals come from either S2
or SMUJI.

Example 1
Assume that &i are i.i.d. from N(0, 1). !i,S1∪S2;1∶3

∼ N(#,$), where $ is a 6 × 6 covariance matrix with unit marginal
variances, cor(X1,X4) = cor(X2,X5) = cor(X3,X6) = 0.8 and all other covariances being zeros. For s ∉ {1,… , 6}, xis are
simulated independently from N(0, '2), where ' is chosen such that the signal to noise ratios for the weak signals in S2 are
about 1. We set n = 200 and pn = 400, 10,000, and 100,000. The absolute values of the true regression coefficients are set
to be

|!∗| = (

S1
⏞⏞⏞⏞⏞⏞⏞
10, 10, 10,

S2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0.5, 0.5, 0.5
⏟⏞⏞⏞⏟⏞⏞⏞⏟

S2,1∶3

, 0.5, · · · , 0.5
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

10

,

S3
⏞⏞⏞
0, · · · , 0)′

with all nonzero coefficients randomly assigned to be either positive or negative.
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Table I. Numerical results.

Example pn = 400 pn = 10, 000 pn = 100, 000

Example 1

PSE

MSE 0.46 NA NA
RMSE 1.02 NA NA
|Ŝ1| 3.0 NA NA
|Ŝ2| 8.6 NA NA

CIS-PSE

MSE 0.08 1.62 1.47
RMSE 22.75 10.87 8.76
|Ŝ1| 3.0 2.9 3.0
|Ŝ2| 11.1 10.1 10.6

Example 2

PSE

MSE 0.05 NA NA

RMSE 1.02 NA NA
|Ŝ1| 3.0 NA NA
|Ŝ2| 7.6 NA NA

CIS-PSE

MSE 0.09 0.56 0.42
RMSE 5.01 1.27 0.99
|Ŝ1| 3.0 3.0 3.0
|Ŝ2| 8.2 6.2 9.1

CIS-PSE, covariance insured screening-based post selection shrinkage estimator;
MSE, mean squared error; NA, not applicable ; RMSE, relative mean squared error.

Example 2
Consider the same setting as Example 1 except that !i,S1∪SMUJI

∼ N(#,$) and

|!∗| = (

S1
⏞⏞⏞⏞⏞⏞⏞
10, 10, 10,

S2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0.5, · · · , 0.5
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

10

,

S3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0
⏟⏟⏟

SMUJI

, 0, · · · , 0)′.

We obtained the estimation of !S1
via PSE and CIS-PSE and compared their performance. We applied cross-validation

for tuning parameters "n, #n, $n and /n. To evaluate the model performance we measured mean squared error (MSE)( ̂!⋄
S1
) ∶=

‖!̂⋄
S1
− !∗

S1
‖2

2 with ⋄ being either PSE or CIS-PSE. For the PSE, we obtained the relative MSE (RMSE) with respect to !̂WR
S1

as in GAF, and for the CIS-PSE, RMSE is with respect to !̂SWR
S1

. That is, RMSE(!̂PSE
S1

) = E‖!̂WR
S1

− !∗
S1
‖2

2∕E‖!̂
PSE
S1

− !∗
S1
‖2

2

and RMSE(!̂CIS-PSE
S1

) = E‖!̂SWR
S1

− !∗
S1
‖2

2∕E‖!̂
CIS-PSE
S1

− !∗
S1
‖2

2. We also report numbers of correctly identified variables in

S1 and S2 (denoted as |Ŝ1| and |Ŝ2|) to evaluate the screening performance.

The results are shown in Table I based on 400 independent replications. We observe that the CIS-PSE outperforms the
original PSE in the low-dimensional setting. Its performance is satisfactory even in the ultrahigh-dimensional setting, which
defies the original PSE procedure. Moreover, the results seem to hint that incorporating MUJI signals improves estimation
accuracy.

5. Conclusions

Our discussion is meant to address two fundamental questions surrounding GAF’s PSE procedure: (1) can PSE be adopted
for modeling ultrahigh-dimensional data; (2) can PSE incorporate variables that are marginally weak but highly correlated
with some variables in S1, and thus have joint effects on the response together with variables from S1? Based on GAF’s work,
we have proposed a simple but efficient modification of PSE to address these two intriguing issues. The limited simulations
conducted by us lent support to the benefit of considering MUJI variables in estimation and the feasibility of applications
in ultrahigh-dimensional cases. We hope that our brief exploration adds some new perspectives to the development of post
selection estimators and will appreciate the feedback from the authors.
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Discussion of ‘Post selection shrinkage
estimation for high-dimensional data analysis’

The ever increasing ability to collect and store large amounts of data creates the need for novel statistical methods that can
be used to analyze large data sets. This article is an important contribution to the development of statistical methods for
high dimensional data. A good example where such methods are needed is the pharmaceutical industry where the study
of the effect of pharmaceutical products on health for people with certain bio-markers is at the root of the current move to
personalized medicine. Individual bio-markers such as SNPs typically have a weak effect on health responses. However, it
is thought that a collection of bio-markers jointly can have an important effect. The search for such collections, sometimes
called networks or pathways, is a topic of great concern for those working on personalized medicine.

The current paper by Gao, Ahmed, and Feng provides methods for examining the joint effect of bio-markers that indi-
vidually have weak signals. The methods are based on subtracting out the effect of strong predictors for health such as age
and body mass index, thereby giving bio-marker networks made up of predictors with individual weak signals a chance to
be discovered.

The proposed method by Gao, Ahmed, and Feng consists of first selecting predictors with strong signals using a statistical
variable selection procedure such as the Least Absolute Shrinkage and Selection Operator (Lasso). The next step is to
compute a ridge regression estimate of the regression coefficients for the variables not selected in the first step and to
delete variables whose estimated coefficients fall below a threshold. The third step is to use the results from steps one and
two to construct a shrinkage estimate of the regression coefficients for the variables with strong signals. Our suggestion
is that in step two, the joint effect of the weak predictors on the response be studied using a partial regression coefficient.
See Doksum and Samarov [1, Section 4] and Rao [2, Section 4g.2].

The emphasis in the article is on improving on the Lasso estimator of the regression coefficients for the variables that
provide strong signals. Constructions of improvements to Lasso estimators are favored activities of statisticians. However,
we think that a more important contribution of the current paper is to the development of techniques that can be used to
detect networks of individually weak signals that jointly have an important effect. Theorem 2 gives the asymptotic normal
distribution of the estimates of the coefficients for the weak signals, but further studies of the properties of these estimates
are of interest using for instance the partial correlation of collections of such signals with the response.

Finally, it is important to note that for the results of this article and others like it to lead to useful applications,
interdisciplinary research projects are desirable.
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Rejoinder to ‘Post-selection shrinkage
estimation for high-dimensional data analysis’

We sincerely thank all the discussants Kjell Doksum and Joan Fujimura (DF); Jianqing Fan (Fan); Peihua Qiu, Kai Yang,
and Lu You (QYY); and Yanming Li, Hyokyoung Grace Hong, and Yi Li (LHL) for the thought-provoking and insightful
discussions on our paper. We would also like to thank the Editor Fabrizio Ruggeri for processing and organizing the
discussion. Ahmed would like to specially thank him for his encouragement on this paper and patience.

1. Strong signal, weak signal, and noise

One fundamental ingredient of our work is to formally split the signals into strong and weak ones. The rationale is that
the usual one-step method such as the least absolute shrinkage and selection operator (LASSO) may be very effective in
detecting strong signals while failing to identify some weak ones, which in turn has a significant impact on the model
fitting, as well as prediction. The discussions of both Fan and QYY contain very interesting comments on the separation
of the three sets of variables. Regarding Assumption (A2) about the weak signal set S2, we admit that the original version
was not as rigorous as it could have been, as it could have contained the variables in S3. We now propose the following
Assumption (A2’) that replaces (A2) in the original paper.

(A2’): The parameter vector !∗ satisfies that ‖!∗
S2
‖ ∼ n! for some 0 < ! < 1, where ‖ ⋅ ‖ is the "2 norm and "∗j ≠ 0 for

any j ∈ S2.
QYY mentioned that in practice, it is sometimes difficult to have a subjective separation of strong and weak signals. First

of all, we would like to emphasize that the conditions imposed in the paper are from an asymptotic point of view, which
demonstrate the great performance of the proposed estimators in the specified scalings and covariance structure. Second,
we would like to argue that this separation is sometimes unnecessary in practice as the ultimate goal of high-dimensional
regression is to provide accurate predictions for future data after variable selection and insightful interpretations on the
importance of the predictors in terms of explaining the response. Third, the separation of strong and weak signals was
mainly used to stimulate the post-selection shrinkage estimation (PSE) method, and the variables identified as ‘strong’
or ‘weak’ by PSE do not necessarily have a natural separation in terms of true regression coefficients, at least for a fixed
sample size.

2. Conditions on designed matrix

We thank Fan for pointing out that the assumption on the design matrix could be strong. In fact, condition (B2) is mainly
motivated from [1], and it requires the weak signals to be correlated to strong ones, in order for it to be detectable using
the weighted ridge regression. On the other hand, condition (B4) requires that the eigenvalues of the design matrix cor-
responding to both strong and weak signals are bounded away from both 0 and infinity. Now, we describe one specific
example. Consider an n × p design matrix ! = [!1,!2,!3]. !1 and !2 correspond to strong and weak signals, and !3
includes noises. Suppose all signals in " = [!1,!2] are correlated with constant correlation coefficient of r and uncorre-
lated with noises in !3. Then, such a design matrix satisfies both conditions (B2) and (B4). We agree that some reasonably
correlated design matrix for all variables could be excluded under those conditions.

3. MUJI variables

We thank LHL for bringing up the marginally unimportant but jointly informative (MUJI) variable set [2], namely,
‘marginally unimportant but jointly important’ variables. Indeed, the inclusion of MUJI variables could significantly
improve the performance of the vanilla sure independence screening approach [3]. However, we would like to argue that
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Table I. Simulated results for example 1

Method MUJI (Y/N) pn = 400 pn = 100, 000

LASSO-PSE

|Ŝ1| 6 6

No
MSE 0.0015 0.0046
MPE 0.0501 0.1661
RMSE 5.0701 3.1477

Yes
MSE 0.0022 0.0129
MPE 0.0279 0.5374
RMSE 3.4907 1.0945

MCP-PSE

|Ŝ1| 3 3

No
MSE 0.1284 0.0196
MPE 1.9041 0.2629
RMSE 0.3456 0.6933

Yes
MSE 0.0154 0.0049
MPE 0.2447 0.0755
RMSE 2.8821 2.6005

CIS-PSE

|Ŝ1| 3 3

No
MSE 1.4339 0.1215
MPE 20.5638 1.6907
RMSE 0.0754 0.5184

Yes
MSE 0.0431 0.0151
MPE 0.5850 0.3049
RMSE 2.5070 1.9322

Larger RMSE, smaller MSE, and smaller MPE indicate better performance.
CIS, Covariance Insured Screening; MPE, mean prediction error; MSE, mean
squared error; PSE, post-selection shrinkage estimation; RMSE, relative mean
squared error.

in our proposal, the estimation of S1 could be done by any variable selection method that could identify the strong sig-
nals, for example, LASSO. As a result, S1 could already contain the MUJI variables as it considers the joint regression on
all predictors.

Motivated by the MUJI variables, LHL proposed a new shrinkage estimator called Covariance Insured Screening-based
PSE (CIS-PSE), which uses two simulation examples to compare HD-PSE and CIS-PSE. They conclude that using MUJI
can help to improve the risk performance of the shrinkage estimator. However, the comparison could be a little unfair
because S1 in CIS-PSE is generated by marginal correlation, while S1 in HD-PSE is from LASSO. Thus, S1 generated from
two methods can be different. To ensure a fair comparison, we let S1 in the first step from both CIS-PSE and HD-PSE be
consistent. We consider different scenarios: (i) S1 is selected by LASSO; (ii) S1 is selected by the minimax concave penalty
(MCP); (iii) S1 is selected using the marginal strong set suggested by LHL in the first step while producing CIS-PSE. For
each of those aforementioned three cases, we compute the MUJI set ŜMUJI as suggested by LHL and then shrinking Ŝ1∪Ŝ2∪
ŜMUJI in the direction of Ŝ1. We define those three estimates as LASSO-PSE, MCP-PSE, and CIS-PSE, correspondingly.
We then recheck those two examples, compare their performance, and report the results in Tables I and II ‡. When pn =
100, 000, we apply ridge regression and keep the 500 variables with the largest absolute coefficients before applying
our algorithm.

In the tables, we report mean squared error and relative mean squared error. We also report the mean prediction error
based upon the selected subset, defined as

E(!Ŝ1
!̂∗

S1
− !Ŝ1

!∗
Ŝ1
)2.

In Example 1 in LHL, there is strong correlation among three covariates with weak signals and three covariates with
strong signals. From the evaluation results reported in Table I, we observe that when using the MCP-PSE and CIS-PSE,

‡The results of LASSO-PSE and MCP-PSE are identical when pn = 400 because they always select the same Ŝ1.
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Table II. Simulated results for example 2

Method MUJI(Y/N) pn = 400 pn = 100, 000

LASSO-PSE

|Ŝ1| 3 3

No
MSE 0.0018 0.0100
MPE 0.0225 0.1594
RMSE 8.4982 4.6249

Yes
MSE 0.0067 0.0294
MPE 0.0917 0.4487
RMSE 2.3025 1.5091

MCP-PSE

|Ŝ1| 3 3

No
MSE 0.0018 0.0100
MPE 0.0225 0.1594
RMSE 8.4982 4.6249

Yes
MSE 0.0067 0.0294
MPE 0.0917 0.4487
RMSE 2.2974 1.5091

CIS-PSE

|Ŝ1| 3 3

No
MSE 1.2953 0.0100
MPE 13.5683 0.1594
RMSE 0.0719 4.6249

Yes
MSE 0.0262 0.0294
MPE 0.3166 0.4487
RMSE 2.5238 1.5091

Larger RMSE, smaller MSE, smaller MPE indicate better performance.
CIS, Covariance Insured Screening; MPE, mean prediction error; MSE,
mean squared error; PSE, post-selection shrinkage estimation; RMSE,
relative mean squared error.

incorporating the MUJI variables improves the performance of the method as it can include additional signals from the
MUJI set. However, when using LASSO-PSE, it is clear that using MUJI actually deteriorates the performance of the
method by having larger mean squared errors and smaller relative mean squared errors. This is probably because LASSO
already selects some weak signals in additional to the strong signals, which makes the MUJI detection step unnecessary. In
Example 2 in LHL, there is strong correlation among three noise covariates and three covariates with strong signals. From
the evaluation results reported in Table II, we observe that both Lasso and MCP only select strong signals with no weak
signals. Incorporating MUJI variables deteriorates the performances of both MCP-PSE and LASSO-PSE in this case. This
is because MUJI variables may pick up those noises in the second step. However, CIS-PSE with MUJI variables can help
to improve the performance of the method.

From this preliminary numerical study, we can see that including MUJI variables may or may not improve the
performance of the PSE, depending on the selected submodel.

The corresponding theoretical analysis regarding when the MUJI variables help the final estimation is an interesting
open research question.

4. About the algorithm

DF suggested to use the partial least square method in the second step to select the weak signals, as opposed to the current
weighted ridge regression. We appreciate the suggestion; however, one still needs to impose regularization on the estimates,
which would lead to a different strategy and should be of interest for further research.

QYY posed the question about the selection of the tuning parameters an and rn in the PSE strategy. We agree that the
proposed cross-validation method, while effective in our limited numerical experience, may need further theoretical justi-
fication. Recently, [4,5] conducted a systematic study on the cross-validation-based tuning parameter selection method for
high-dimensional penalized regression problems. Some work along similar lines could be an interesting research project. In

Copyright © 2017 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2017, 33 131–135

133



REJOINDER

addition, it is also important to develop a certain adaptive tuning parameter selection method and demonstrate its robustness
against model misspecification.

5. Future directions

This paper introduced the post-shrinkage estimation framework and used specific methods to select the strong and weak
signals. The shrinkage estimation received a lot of attention since its inception decades ago. It strikes a balance between
post-selected submodels and high-dimensional weighted ridge estimators and is proved to be an effective strategy.

There are a number of alternatives to mimick the ideas of the PSE. For example, Fan suggested a great idea involving
using the penalized least square with different penalty levels, closely related to the folded concave penalties including the
smoothly clipped absolute deviations penalty (SCAD) and MCP.

The current methodology can be extended in a host of directions, including nonparametric models (suggested by QYY),
spatially corrected data, among others. We would like to remark here that shrinkage estimation strategies have already
been applied to some nonparametric models in low-dimensional cases such as [6–8], among others that can be extended
to high-dimensional cases.

Another interesting direction would be to study the shrinkage method in robust high-dimensional data analysis, such as
M-estimation. Recently, [9,10] proposed penalized weighted least squares and penalized weighted least absolute deviation
methods to study robust high-dimensional regression. The methods unify the M-estimation in a penalized weighted least
squares and least absolute deviation framework. Such a connection will enable us to extend the post-selection shrinkage
strategy to robust high-dimensional regression models.

The scope of research in PSE is expanding. How to develop a system of diagnostic tools for the high-dimensional
post-shrinkage estimators is an important direction for future research, as suggested by QYY.
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