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ABSTRACT
This article considers the problem of model averaging for regression models that can be nonlinear in
their parameters and variables. We consider a nonlinear model averaging (NMA) framework and propose
a weight-choosing criterion, the nonlinear information criterion (NIC). We show that up to a constant,
NIC is an asymptotically unbiased estimator of the risk function under nonlinear settings with some
mild assumptions. We also prove the optimality of NIC and show the convergence of the model aver-
aging weights. Monte Carlo experiments reveal that NMA leads to relatively lower risks compared with
alternative model selection and model averaging methods in most situations. Finally, we apply the NMA
method to predicting the individual wage, where our approach leads to the lowest prediction errors in
most cases.
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1. Introduction

Model selection has been an active research topic in statis-
tics and econometrics for over 40 years, and various methods
have been proposed based on distinct criteria, including Akaike
information criterion (AIC; Akaike 1973), Mallows’ Cp (Mal-
lows 1973), Bayesian information criterion (BIC; Schwarz 1978),
leave-one-out cross-validation (Stone 1974), risk in!ation crite-
rion (RIC; Foster and George 1994), and focused information
criterion (FIC; Claeskens and Hjort 2003). Despite the great
success of model selection, model averaging may be a better
option in many situations (Claeskens and Hjort 2008).

Compared with model selection, model averaging has two
crucial advantages. First, it reduces the uncertainty of model
selection. Given a data set and a set of candidate models, a
model selection method selects a particular model from the
candidate set, which is not stable because it is not a contin-
uous process in terms of the data. Indeed, even if we slightly
perturb one observation in the dataset, a speci"c model selec-
tion method may give us a di#erent model from the original
chosen one. The model averaging method gives us a possible
way to reduce the uncertainty of model selection by assigning
each model a weight, which is continuous in the data and
usually changes a little when a small part of the dataset changes.
Second, compared with model selection, model averaging can
reduce the risk of model misspeci"cation and estimation. For
example, to explain a speci"c economic phenomenon, there
may be many plausible candidate models. In that case, using
an averaged model instead of a particular model selected by
some model selection method, the risk arising from misspec-
i"cation can be reduced. Model averaging reduces to a model
selection method if we assign weight one to a particular model
and zeros to the rest, which implies that a model selection
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method is a special case of model averaging. From this per-
spective, the model averaging estimator has the potential to
achieve a better estimate than a speci"c post-model-selection
estimator. Hansen (2014) showed that the limiting risk of the
least-squares estimator of the full linear model is larger than
that of the Mallows model averaging (MMA) estimator, pro-
posed by Hansen (2007); Zhang, Ullah, and Zhao (2016) further
showed that under some conditions, the risk of the full model is
strictly larger than that of the MMA estimator in "nite sample
cases.

In the existing literature, the Bayesian model averaging
(BMA) and the frequentist model averaging (FMA) are two
di#erent approaches to model averaging. BMA has been stud-
ied by many researchers for decades (see reviews, e.g., Draper
1995; Hoeting et al. 1999; Clyde and George 2004). The idea
of FMA dates back to as early as Bates and Granger (1969),
which focuses on forecast combination. Under a nonlinear
model averaging (NMA) framework, this article proposes a
nonlinear information criterion (NIC) for choosing the weights,
which is inspired by the MMA in Hansen (2007). Hansen
(2007) showed that MMA is asymptotically optimal in the
sense that the unknown loss function is asymptotically mini-
mized. A$er that, to allow for heteroscedastic models, Hansen
and Racine (2012) proposed the jackknife model averaging
(JMA), and Liu and Okui (2013) adjusted the penalty term
of the Mallows criterion based on White’s estimator (White
1980) of the covariance matrix to accommodate the het-
eroscedasticity. Cheng, Ing, and Yu (2015), Dardanoni et al.
(2015), Gao et al. (2016), and Liu, Okui, and Yoshimura
(2016) proposed robust model averaging procedures when the
model has general error terms with heteroscedasticity and
autocorrelation.
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Other work on FMA includes instrumental variable estima-
tion (Kuersteiner and Okui 2010), high-dimensional regression
models (Ando and Li 2014), factor-augmented regression mod-
els (Cheng and Hansen 2015), quantile regression models (Lu
and Su 2015), generalized linear models and/or generalized lin-
ear mixed-e#ects models (Zhang et al. 2016; De Luca, Magnus,
and Peracchi 2018), high-dimensional generalized linear mod-
els (Ando and Li 2017), semiparametric ultra-high-dimensional
models (Chen et al. 2018), varying-coe%cient partially linear
models (Zhu et al. 2019), and GARCH models (Liu, Yao, and
Zhao 2020). For more details, see reviews on model averag-
ing methods in Claeskens and Hjort (2008) and Moral-Benito
(2015).

The method proposed in this article is based on the estima-
tion results of a set of nonlinear regression models. Nonlinear
regression models are important tools for economic applica-
tions because there are many economic models that take non-
linear forms, for example, the Cobb–Douglas (CD) and the
constant elasticity of substitution (CES) production functions,
the translog utility function, and the Box–Cox transformation.
As discussed in Bates and Watts (1988), compared with linear
regression models, the main advantages of nonlinear models
are parsimony and, sometimes, better interpretability. Theoret-
ically, although most nonlinear models can be approximated
with some degree of accuracy by a linear combination of a set of
basis functions locally or globally, the number of basis functions
needed may be very large compared with the limited sample size,
causing the problem of the “curse of dimensionality.” Moreover,
whereas a linear framework makes statistical inference conve-
nient, such simpli"cation puts aside the prior or structural infor-
mation delivered by the domain experts and theories, leading to
an unnecessarily large number of basis functions that are hard
to interpret. In comparison, a nonlinear model based on speci"c
economic theory can provide a straightforward interpretation
with economic implications.

In this article, we consider a NMA framework for regression
models that may be nonlinear in both variables and param-
eters. Also, we propose the model averaging estimator of the
unknown conditional mean and construct the corresponding
weight-choosing criterion, the NIC. The main theoretical con-
tributions of this article are 3-fold. First, we show that the NIC is
a high-order asymptotically unbiased estimator of the unknown
risk function. Second, we prove that the NIC asymptotically
minimizes the unknown loss function when the number of
candidate models is "xed or moderately increasing with sample
size. Third, we show that the model averaging weights selected
by minimizing the NIC converge to the optimal weights that
minimize the unknown mean squared error.

We now discuss several related works. Zhang and Liang
(2011) developed an FMA method for partially linear models.
In their analysis, all the models in the candidate model set are
limited to generalized additive partial linear models. Sueishi
(2013) developed model selection and averaging methods for
moment restriction models with a focused information criterion
based on the generalized empirical likelihood estimator. That
work focused on a local misspeci"cation framework, which is
di#erent from our setting. Zhang, Zou, and Carroll (2015) pro-
posed a model averaging method based on the Kullback–Leibler
divergence for models with homoscedastic normally distributed

error terms. Their method can also be applied to models that are
nonlinear with respect to parameters and variables. However,
they did not provide any theoretical results for nonlinear mod-
els. Zhang et al. (2016) studied the model averaging method for
generalized linear models and generalized linear mixed-e#ects
models. A$er transformation with a common link function,
the expected responses of the candidate models are linear in
canonical parameters. In contrast, the expected response of the
candidate models in NMA are nonlinear in parameters, and may
not be written in a linear form even a$er any transformation of
the response.

We now describe a motivating example for the NMA frame-
work. The empirical application in Section 5 of this article
focuses on predicting the individual wage, using explanatory
variables including education, experience, tenure, etc. Study-
ing the nonlinear impacts of continuous variables including
education and experience on individual wage is very impor-
tant. For example, under preference heterogeneity, the log-
wage can be concave in years of education (Lemieux 2006),
indicating diminishing marginal returns of education; Mincer
(1996) also showed that, under the heterogeneity of individ-
ual preference and earning opportunity, the average log-wage
could either be concave or convex in years of education. These
observations imply that, instead of being constant, education’s
marginal returns can fall or rise as the years of education
increase. Some empirical researches also support the nonlin-
earity of the impacts of education (e.g., Heckman, Lochner,
and Todd 2008). To deal with the nonlinear impacts of the
explanatory factors, many researchers add quadratic terms of
explanatory factors into the basic Mincer equation. However,
such practice sometimes lacks !exibility (see, e.g., Murphy and
Welch 1990). Quadratic speci"cation implies that the marginal
impact increases or decreases linearly with the change of the
explanatory factors, which may be too restrictive in empirical
applications. The same issue also applies to higher-order poly-
nomial approximations. Moreover, using higher-order polyno-
mials implies that as the explanatory variable tends to in"nity,
the marginal return will tend to positive or negative in"nity,
which may be unrealistic. To solve this issue, we introduce
nonlinear factors to form our candidate models. The nonlinear
form we consider is a power function of the corresponding
predictor, with the exponent being a parameter to be esti-
mated. This nonlinear form is more !exible and parsimonious
than the Mincer equation model with some quadratic terms or
models of a high-order polynomial. Moreover, as there is no
consensual model from economic theory for predicting indi-
vidual wages, the risk of misspeci"cation of any model is high.
Thus, we adopt the NMA framework to improve prediction
performance. The empirical results show that the NMA out-
performs model selection methods and other model averaging
approaches.

The remainder of the article is organized as follows. In
Section 2, we introduce the NMA framework for nonlinear
regression models and construct the weight-choosing criterion
NIC. Section 3 mainly focuses on the theoretical properties
of NIC. In Section 4, Monte Carlo experiments are conducted
to illustrate the "nite sample properties. In Section 5, as an
empirical application of our method, we apply the NMA with
the NIC to predict individual wages. We provide concluding
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remarks in Section 6. All technical details are relegated to the
Supplementary Materials.

2. Nonlinear Model Averaging

2.1. The Setup

Suppose we observe n independent and identically distributed
(iid) pairs {(X1, y1), . . . , (Xn, yn)} from (X, y), where the data
generation process of (X, y) is described as follows.

Assumption 1. The data-generation process is

y = µ(X) + ε, (1)

where the random vector X = (x1, x2, . . .)T is countably in"nite
and distributed on the Euclidean space, Ω . µ is an Ω → R
measurable function. The error ε satis"es E[ε|X] = 0 and
var[ε|X] = σ 2.

Assumption 1 is standard and has been used in many existing
works related to nonlinear regression models such as Jennrich
(1969) and White (1981). Here, the goal is usually to estimate
the unknown conditional mean function µ(·). To estimate µ,
suppose a total of S candidate models are given as M =
{M1, . . . , MS}. For each s = 1, . . . , S, we assume the following
working parametric model:

y = fs(X, θ s) + εs, (2)

where the format of fs(·, ·) is given, θ s = (θs,1, θs,2, . . . , θs,Ks)
T

is the unknown Ks-dimensional parameter vector, and εs is the
random error. We impose the following assumption on the sth
model fs(X, θ s).

Assumption 2. θ s ∈ Θs, where Θs is a compact and convex
parameter space. fs(X, θ s) is an Ω × Θs → R function that is
measurable for every θ s ∈ Θs and twice di#erentiable for every
X ∈ Ω . Moreover, there exists θ s,0 that uniquely minimizes
E

[
µ (X) − fs (X, θ s)

]2 on Θs.

Assumption 2 is imposed to ensure the parameter vector
is identi"able for each candidate model. Moreover, although
the function fs(X, θ s) is a function of X, it can only depend
on a "nite number of elements of X. This is natural since, in
the real world, the response may be in!uenced by uncountable
factors; however, we usually choose to focus on a few speci"c
ones implied by the candidate model. For example, when the sth
model is speci"ed as fs(X, θ s) = ∑Ks

k=1 θkxsk ,
{

s1, . . . , sKs
}

⊆ N,
it is, in fact, a linear regression model containing a subset of all
variables.

With sample
{(

Xt , yt
)}n

t=1, the nonlinear least-squares esti-
mator of θ s is de"ned as

θ̂ s,n = arg min
θ s∈Θs

n−1
n∑

t=1

[
yt − fs (Xt , θ s)

]2 , (3)

whose existence are guaranteed by Assumptions 1 and 2 com-
bined with Lemma 2 in Jennrich (1969). Then, the approxima-
tion of µ (X) under the sth model is given by fs(X, θ̂ s,n).

2.2. The NMA Estimator

Given the S candidate models, the idea of model selection is to
select a single “best” model according to some criteria. The past
two decades have witnessed an explosion of the model selec-
tion literature with many signi"cant advances in methodology,
theory, as well as algorithms. However, it is well documented
in the simulation and empirical results in various works (e.g.,
Hansen 2007; Liu, Okui, and Yoshimura 2016; Zhang et al. 2016,
among others) that when the sample size is relatively small and
the signal-to-noise ratio is low, model-averaging methods could
work better than model selection in terms of lower prediction
error. In addition, model selection could be unstable in the sense
that sometimes a small perturbation of the data could lead to a
totally di#erent selection result (Yang 2001; Zhang and Liang
2011). Consequently, selecting a single model and discarding
others will inevitably increase the instability of the estimation
and approximation.

To address the above issues, we consider the nonlinear model
averaging (NMA) framework, with the following model averag-
ing estimator for µ(X):

µ̂(X, W) =
S∑

s=1
wsfs(X, θ̂ s,n), (4)

where the NMA weight vector W = (w1, . . . , wS)T ∈ HS =
{W| W ∈ [0, 1]S ,

∑S
s=1 ws = 1} and fs(X, θ̂ s,n) represents

the estimate of µ(X) from model s. Note that the di#erences
between any two candidate nonlinear models lie, not only in
the included explanatory variables, but also in the functional
forms. Each candidate model may characterize only some of the
properties of the true data generating process. Consequently, a
properly weighted average of all the candidate models has the
potential to increase accuracy.

Remark 1. The NMA estimator given in (4) can be viewed as
an extension of the linear model averaging studied in Hansen
(2007). To see this, suppose the sth model is given by fs (X, θ s) =∑Ks

k=1 θkxk and the candidate models are nested (K1 < K2 <

· · · < KS), then the NMA estimator is given by

µ̂(X, W) =
(
x1, . . . , xKS

) S∑

s=1
ws

(
θ̂ s,n
0s

)
,

where 0s is a (KS − Ks)-dimensional vector with all elements
zero; this coincides with the MMA estimator in Hansen (2007).

2.3. Weight-Choosing Criterion

As is true for most model averaging methods, the key ques-
tion here is how to choose the weights for each candidate
model. Here, we introduce the NIC for the NMA as speci"ed
in (4). De"ne the loss function and the risk function under the
NMA framework as Ln(W) = n−1 ∑n

t=1 (µ (Xt) − µ̂(Xt , W))2

and Rn(W) = E (Ln(W)| Xn), respectively, where Xn =
(X1, . . . , Xn). Our basic aim is to "nd a weight to minimize the
risk Rn(W) given the covariates Xn. Since the risk function is
unobservable, we propose to substitute it with an asymptotically
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unbiased estimator. To construct such an estimator, we "rst
de"ne

βs,t (θ s) = ∂fs (Xt , θ s) /∂θ s,
γs,t (θ s) = ∂2fs (Xt , θ s) /∂θ s∂θT

s , (5)

Λs,n = 1
2
∂2

n∑

t=1

(
yt − fs

(
Xt , θ̂ s,n

))2
/∂θ s∂θT

s

=
n∑

t=1

[
βs,t

(̂
θ s,n

)
βT

s,t
(̂
θ s,n

)
−

(
yt − fs(Xt , θ̂ s,n)

)
γs,t

(̂
θ s,n

)]
,

(6)

and

πs,n = n−1
n∑

t=1
βT

s,t
(̂
θ s,n

)
Λ+

s,nβs,t
(̂
θ s,n

)
, (7)

where Λ+
s,n is the generalized inverse of Λs,n. Note that when

θ̂ s,n is an inner point of Θs and n−1 ∑n
t=1

(
yt − fs (Xt , θ s)

)2 is
uniquely minimized at θ̂ s,n on Θs, Λs,n is positive de"nite and
nonsingular, and thus Λ+

s,n = Λ−1
s,n . This applies to a wide range

of model families. For example, when the sth model is a linear
regression model with covariate matrix, Xn, where no perfect
multicollinearity exists, we have γs,t

(̂
θ s,n

)
= 0 and Λs,n =

XT
n Xn is positive de"nite.

Given the above notations, the NIC for NMA is de"ned as

NIC(W) = n−1
n∑

t=1

[
yt − µ̂(Xt , W)

]2 + 2σ̂ 2
n

S∑

s=1
wsπs,n, (8)

where σ̂ 2
n is an estimate of σ 2. In the NIC, the "rst term

n−1 ∑n
t=1

(
yt − µ̂(Xt , W)

)2 (the sum of the squared residuals)
represents the goodness of "t, whereas the second term is a bias-
adjusting term. When Λs,n is positive de"nite, we have πs,n ≥ 0
for all 1 ≤ s ≤ S, where the equality holds if and only if
βs,t

(̂
θ s,n

)
= 0 for all 1 ≤ t ≤ n. On this condition, the bias-

adjusting term in the NIC is positive and can be interpreted as a
penalty.

Remark 2. When the model averaging weight set is restricted to
H̃S = {e1, . . . , eS}, where es is a unit vector whose sth element
is 1 and other elements are all 0, then choosing a weight from
H̃S is equivalent to selecting a model from the candidate set{

fs(X, θ s)
}S

s=1. Then, the NIC reduces to

NIC(es) = n−1
n∑

t=1

[
yt − fs(Xt , θ̂ s,n)

]2 + 2σ̂ 2
n πs,n.

It is clear that, in this special scenario, NIC(es) is a model
selection criterion, and can be regarded as a generalization of
the Mallows’ Cp (Mallows 1973) to nonlinear regression models.
Indeed, when fs (X, θ s) = ∑Ks

k=1 θkxsk , we have βs,t (̂θ s,n) =
(
xs1,t , . . . , xsKs ,t

)T and γs,t (̂θ s,n) = 0. This leads to

πs,n = n−1
n∑

t=1
βs,t (̂θ s,n)

( n∑

r=1
βT

s,t (̂θ s,n)βs,t (̂θ s,n)

)−1

βT
s,t (̂θ s,n)

= n−1Ks.

This shows that NIC(es) is equivalent to Mallows’ Cp under lin-
ear regression settings. For nonlinear regression models, how-
ever, NIC(es) usually di#ers from Mallows’ Cp by imposing a
penalty to models not only on the number of parameters but
also on the complexity of the functional form of the models.

3. Properties of NIC

In this section, we provide the statistical properties of the NMA
with the weight-choosing criterion NIC. In particular, we "rst
show that the NIC is an asymptotically unbiased estimator of the
risk function, up to some constant. Then, we show that the NIC
is asymptotically optimal in the cases of both "xed and diverging
numbers of candidate models, where the unknown loss function
is asymptotically minimized. Finally, we illustrate the properties
of model averaging weights.

We "rst consider the case where σ 2 is known. More speci"-
cally, consider the following infeasible criterion:

NIC∗(W) = n−1
n∑

t=1

[
yt − µ̂(Xt , W)

]2 + 2σ 2
S∑

s=1
wsπs,n. (9)

We study the asymptotic properties of NIC∗. First, we introduce
three additional assumptions.

Assumption 3. De"ne Φs,n = ∑n
t=1

[
βs,tβT

s,t −
(
µ(Xt)−

fs(Xt , θ s,0)
)
γs,t

]
and Φs = En−1Φs,n, where βs,t = βs,t

(
θ s,0

)
and

γs,t = γs,t
(
θ s,0

)
, Φs is nonsingular for all 1 ≤ s ≤ S.

Assumption 4. (1) Eµ2(X) < ∞; (2) for all 1 ≤ s ≤ S and
1 ≤ p, q, r ≤ Ks, we have ∂3fs(X, θ s)/∂θs,p∂θs,q∂θs,r exists for all
(X, θ s) ∈ Ω × Θs; moreover, for all 0 ≤ i + j + k ≤ 3,

∣∣∣∂ i+j+kfs(X, θ s)/∂θ i
s,p∂θ

j
s,q∂θk

s,r

∣∣∣ ≤ m(X),

where m(X) is measurable and Em2(X) < ∞.

Assumption 5. θ s,0 is an interior point of Θs for all 1 ≤ s ≤ S.

Assumptions 3–5 are standard in the existing research on
nonlinear least-squares estimation (Jennrich 1969; White 1981).
Assumption 3 requires that Φs is nonsingular for all 1 ≤ s ≤
S. Such a restriction is mainly used to obtain the asymptotic
normality of θ̂ s,n. Assumption 4 poses some moment conditions
on the true conditional mean and the candidate models. It
requires that the true conditional mean is square-integrable.
Moreover, it requires that each candidate model has a third
derivative, and both the model form and its derivatives are
bounded by a squared-integrable function independent of θ s.
Note that Assumption 4 is su%cient to obtain the conditions
required in Jennrich (1969) and White (1981). In Assumption 5,
we assume that the unknown θ s,0 is interior to Θs, which is also
used to guarantee the asymptotic normality of the nonlinear
least-squares estimator.

Supposing all the assumptions hold, we have the following
theorem.

Theorem 1. If Assumptions 1–5 hold, then

E
(

NIC∗(W) − αn(W)
∣∣ Xn

)
= Rn(W) + σ 2, (10)
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where αn(W) = ∑S
s=1 wsαn(s) and αn(s) = Op(n− 3

2 ); more-
over, when the sth model is a linear regression model, then
αn(s) = 0.

In Theorem 1, taking W = es, αn(s) denotes a
higher-order bias term that makes the relationship
E (NIC∗(es) − αn(s)| Xn) = Rn(es) + σ 2 hold. As shown
in (10), when S is "xed the NIC∗ is an asymptotically unbiased
estimator of the risk function Rn(W) with a bias of order
at most Op(n− 3

2 ), which vanishes when n goes to in"nity,
and an extra constant term, σ 2, independent of W. When
S increases with the sample size n, we can guarantee that
αn(W) = op(1) if sup1≤s≤S |αn(s)| = op(1). When all
the candidate models are linear regression models, we have
αn(W) = 0, so the adjusting term can be omitted and the NIC∗

shares the same property as the Cn(W) in Hansen (2007) since
E (NIC∗(W)| Xn) = Rn(W) + σ 2.

Now, we are ready to study the asymptotic property of the
NIC, where the error variance is estimated. Parallel to Theo-
rem 1, we have the following theorem for the NIC.

Theorem 2. If Assumptions 1–5 hold, denote Bs = E
(
βs,tβT

s,t
)
,

then

E (NIC(W) − α̃n(W)| Xn)

= Rn(W) + 2n−1A · tr
( S∑

s=1
wsBsΦ

−1
s

)

+ σ 2, (11)

where α̃n(W) = ∑S
s=1 wsα̃n(s), α̃n(s) = op(n−1), and A =

p limn→∞(̂σ 2
n − σ 2).

Theorem 2 indicates that when σ 2 is unknown and is sub-
stituted with its estimator, additional bias due to the estimation
inaccuracy of σ 2 is introduced. Given the candidate models and
the model averaging weight W, the bias increases as the estimate
of σ 2 becomes less accurate. This implies that we should be
cautious when we choose the σ̂ 2

n to make the bias as small as
possible.

For the choice of σ̂ 2
n , we can use the estimated variance based

on the sth model, which is given by σ̂ 2
n (s) = n−1 ∑n

t=1(yt −
fs(Xt , θ̂ s,n))2. When the sth model is correctly speci"ed, that
is, µ(X) = fs(X, θ s,0) a.s. holds, Jennrich (1969) showed
that σ̂ 2

n (s) →p σ 2 and consequently A = 0, the NIC is
again an asymptotically unbiased estimator of the risk function.
However, as we show in the following proposition, when µ is
unknown and the sth model is misspeci"ed, σ̂ 2

n (s) leads to an
upward estimation bias. De"ne R0(s) = E

(
µ(X) − fs(X, θ s,0)

)2,
which is O(1) under Assumption 2. We have the following
proposition.

Proposition 1. If Assumptions 1–5 hold, then σ̂ 2
n (s) →p σ 2 +

R0(s).

When µ(X) = fs(X, θ s,0) a.s. holds, we have R0(s) = 0 and
σ̂ 2

n (s) →p σ 2. However, due to the possibility of the model being
misspeci"ed as well as the omission of variables, R0(s) > 0
can hold for all 1 ≤ s ≤ S and we are not able to obtain an

unbiased estimator of σ 2 given the candidate model set. On this
condition, to make the bias term as small as possible, we can use
min1≤s≤S σ̂ 2

n (s) as the estimated variance. Note that when the
largest model nests all the remaining candidates, such a practice
is equal to using the estimated variance from the largest model,
which is advocated in Mallows (1973).

As an alternative, we can also use the model averaging
method to construct the estimator of σ 2. De"ne σ̂ 2

n (W) =
n−1 ∑n

t=1(yt−
∑S

s=1 wsfs(Xt , θ̂ s,n))2, then σ̂ 2
n (W) can be used as

the variance estimator. Similarly to Proposition 1, σ̂ 2
n (W) pro-

vides an upward-biased estimator for the true σ 2 if the candidate
model set is misspeci"ed, that is, infW∈HS R0(W) > 0, where
R0(W) = E(µ(X) − ∑S

s=1 wsfs(X, θ s,0))2. 1

Remark 3. For "xed S, σ̂ 2
n (W) is a consistent estimator of σ 2

if µ(X) = ∑S
s=1 wsfs(X, θ s,0) holds almost surely. However,

this may be impossible when all the candidate models consid-
ered are misspeci"ed, implying that σ̂ 2

n (W) could be biased.
One way to "x this problem is to allow the number of can-
didate models, S, to increase with sample size n, so that the
largest model tends closer to the true conditional mean. For
example, when both n−1 ∑n

i=1
(
µ(Xt) − fS

(
Xt , θS,0

))2 →p 0

and n−1 ∑n
i=1

(
fS

(
Xt , θ̂S,n

)
− fS

(
Xt , θS,0

))2
→p 0 hold, we

can show that σ̂ 2
n (S) = n−1 ∑n

t=1 ε2
t + op(1). This implies

that σ̂ 2
n (S) − σ 2 = σ̂ 2

n (S) − n−1 ∑n
t=1 ε2

t + n−1 ∑n
t=1 ε2

t −
σ 2 = op (1). In Theorem 6, we will also show that as
long as

∣∣̂σ 2
n − σ 2∣∣ = Op(1), NIC(W) will perform as well

as its infeasible counterpart NIC∗(W) when n is su%ciently
large.

Based on the above properties of NIC∗(W) and NIC(W), we
now study the risk properties of the NIC. Similar to the previous
procedure, we "rst study the loss based on the infeasible weight-
choosing criterion NIC∗(W); then we show that the loss based
on NIC∗(W) and NIC(W) are asymptotically identical given
that the estimated variance σ̂ 2

n satis"es some order conditions.
In the existing model averaging literature, one desirable prop-
erty is the asymptotic optimality, which refers to the property
that the model averaging weight selected by the weight-choosing
criterion asymptotically minimizes the unknown loss function
Ln(W). De"ne Ŵn = arg minW∈HS NIC∗(W) and ξ =
infW∈HS R0(W), the following theorem shows that the NMA
based on the infeasible weight-choosing criterion NIC∗(W) is
asymptotically optimal.

Theorem 3. If Assumptions 1–5 hold, S is "xed, and ξ > 0, then

Ln(Ŵn)

infW∈HS Ln(W)
= 1 + Op(n− 1

2 ). (12)

Apart from Assumptions 1–5, Theorem 3 also requires that
ξ > 0. Such a restriction means that all the candidate models, as
well as their weighted combinations, are misspeci"ed, so that the
true conditional mean cannot be approximated with arbitrary

1In particular, for !xed S, we can easily show that σ̂ 2
n (W) →p σ 2 + R0(W)

based on the techniques used in the proof of Proposition 1.
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accuracy by "nitely many candidate models. Such a restriction
will not be required in the following case with diverging S.
Besides optimality, Theorem 3 also provides the convergence
speed of the ratio between Ln(Ŵn) and the unknown optimal
loss infW∈HS Ln(W).

The optimality result in Theorem 3 is derived in the case of
"nite S, that is, the number of the candidate models does not
increase with the sample size n. In many applications, however,
we usually have more candidate models in the model set as the
sample size increases. So, it is also worthwhile to investigate the
properties of model averaging estimation when the number of
candidate models increases with the sample size. To ensure that
optimality holds when limn→∞ S = ∞, we make the following
additional assumptions.

Assumption 6.
1. sups≥1 Ef 2

s (X, θ s,0) < ∞;
2. let ‖·‖ denote the Euclidean norm, sup1≤s≤S ||θ̂ s,n − θ s,0|| =

Op(nαn− 1
2 ) for some sequence {αn}∞n=1 which satis"es the

condition in Assumption 6(5);
3. for all s, K−1

s
∥∥∂fs(X, θ s)/∂θ s

∥∥ ≤ M(X) for some measurable
function M(X) satisfying EM2(X) < ∞;

4. sup1≤s≤S
∣∣πs,n

∣∣ = Op(n− 1
2 );

5. de"ne ξn = infW∈HS Ln(W), sup1≤s≤S Ksnαn− 1
2 ξ−1

n =
op(1), S 1

2 n− 1
2 ξ−1

n = op(1).

We brie!y discuss Assumption 6. Assumption 6(1) requires
that the second moments of all the candidate models are
uniformly bounded. Assumption 6(2) makes restrictions on
the uniform convergence speed of the estimated parameters.
Obviously, when S is "xed, ||θ̂ s,n − θ s,0|| is Op(n− 1

2 ) and so
is sup1≤s≤S ||θ̂ s,n − θ s,0||; whereas when S is diverging and
sups≥1 Ks = ∞, assuming sup1≤s≤S ||θ̂ s,n − θ s,0|| = Op(n− 1

2 )

may be too strong and can be violated in some situations. As the
alternative, a weaker condition is posed, as in Assumption 6(2).
Assumption 6(3) requires ||∂fs(X, θ s)/∂θ s||/Ks to be uniformly
bounded by a function with a "nite second moment. For exam-
ple, when fs (X, θ s) = ∏Ks

k=1 xθk
k , where xk > 0 for all 1 ≤ k ≤

Ks, we have ||∂fs(X, θ s)/∂θ s|| =
∣∣fs (X, θ s)

∣∣ (
∑Ks

k=1 log2 xk)
1
2 . If

further E
(
fs (X, θ s) supk

∣∣log xk
∣∣)2

< ∞, then the M(X) can
be taken as

∣∣fs (X, θ s)
∣∣ supk

∣∣log xk
∣∣. Assumption 6(4) requires

that sup1≤s≤S
∣∣πs,n

∣∣ is Op(n− 1
2 ). Note that when S is "xed,

sup1≤s≤S
∣∣πs,n

∣∣ is Op(n−1) under Assumptions 1–5. When S
diverges to in"nity with n, sup1≤s≤S

∣∣πs,n
∣∣ may be of higher

order than Op(n−1), but we still require its decreasing speed
is faster than n− 1

2 . Assumption 6(5) makes some restrictions
on the number of candidate models S as well as the number of
parameters Ks. It is required that both S 1

2 and sup1≤s≤S Ksnαn

do not increase faster than n 1
2 ξn. A necessary condition for

the above requirements to hold is that n− 1
2 ξ−1

n = op(1),
which indicates that the loss function decreases at a speed
slower than n− 1

2 . Similar conditions are also assumed in
Zhang et al. (2016).

When Assumptions 1, 2, and 6 hold, we have the following
theorem.

Theorem 4. If Assumptions 1, 2, and 6 hold, then

Ln(Ŵn)

infW∈HS Ln(W)
= 1 + Op

((

sup
1≤s≤S

Ksnαn + S
1
2

)

n− 1
2 ξ−1

n

)

,

(13)
holds when limn→∞ S = ∞.

Asymptotic optimality describes the properties of the loss
function under the model averaging method. Next, we dis-
cuss the behavior of the model averaging weight Ŵn when
S is "xed. Since HS is compact, it is a direct result that
there exists a subsequence {Ŵni}∞i=1 such that Ŵni converges
to some well-de"ned limit in HS. But such a result is not
satisfactory because it does not imply any properties of the
limiting weight. Here we provide some further results on
the weight vector selected by the NIC∗(W). De"ne A =
{W∗ ∈ HS| R0 (W∗) ≤ R0 (W) , ∀W ∈ HS}. A is the set of
weights that minimize R0 (W) on HS, which is nonempty due
to the compactness of HS. We show that the distance between
model averaging weight Ŵn and the set A will be arbitrarily
small as sample size n increases. Speci"cally, we have the fol-
lowing theorem.

Theorem 5. If Assumptions 1–5 hold and ξ > 0, S is "xed, then
infW∈A ||Ŵn − W|| →p 0.

Remark 4. Theorem 5 implies that when A has a unique
element, that is, there is a unique weight vector W∗ such that
R0 (W) is minimized at W∗, then the model averaging weight
vector Ŵn converges in probability to such an optimal weight
vector. Such a result can be used to obtain many useful con-
clusions. For example, consider the situation where the sth
model is fs (X, θ s) = θ0 + ∑Ks

k=1 θkxk for 1 ≤ s ≤ S and
1 ≤ K1 < K2 < · · · < KS. Suppose Assumptions 1–5
hold, then θ̂ s,n →p θ s,0 for all s. Suppose further at least one
of θS,0(KS−1 + 1), · · · , θS,0(KS) does not degenerate to zero.
Denote θ(W) = ∑S

s=1 ws(θ
T
s,0, 0T

s )T , where 0s is a (KS −Ks)×1
column vector with all elements being 0, θ(W) ,= θS,0 = θ(eS)
for any W ∈ HS and W ,= eS. Then we have

E
(
µ −

(
1, x1, . . . , xKS

)
θS,0

)2
< E

(
µ −

(
1, x1, . . . , xKS

)
θ(W)

)2

for all W ∈ HS and W ,= eS. This implies that W∗ = eS
uniquely minimizes R0(W) on HS and according to Theorem 5,
we have Ŵn →p eS. Consequently, there hold ŵn,s →p 0 for
s < S, ŵn,S →p 1, and

∑S
s=1 ŵn,ŝθ s,n →p θS,0.

Remark 5. Interestingly, the NMA does not always assign weight
1 to the largest model even when the largest model nests all
the remaining models if a more general nonlinear model set
is considered. We now provide an example. Consider the case
where the true conditional mean is µ(X) = kx1x2 and there
are only two candidate models f1(X, θ1) = xθ1

1 and f2(X, θ2) =
xθ1

1 xθ2
2 , where x1, x2 ∼ U(0, 1), and x1 and x2 are independent of

each other. Obviously, f1(X, θ1) is nested by f2(X, θ2). R0(W) =
E(µ − w1f1(X, θ1,0) − w2f2(X, θ2,0))2, where θ i,0 minimizes
E(µ − fi(X, θ i,0))2. Let α11 = E(µ − f1(X, θ1,0))2, α22 =
E(µ−f2(X, θ2,0))2, α12 = E(µ−f1(X, θ1,0))(µ−f2(X, θ2,0)), and
we have R0(W) = (α11 +α22 −2α12)w2

1 −2(α22 −α12)w1 +α2
22.

When 0 < α22−α12
α11+α22−2α12

< 1, 0 < w∗
1 < 1 and thus 0 <
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w∗
2 < 1 hold, so both models are assigned with nondegenerating

weights. Since α11 + α22 − 2α12 ≥ 0, 0 < α22−α12
α11+α22−2α12

< 1
holds as long as α22 − α12 > 0 holds strictly. Simple calculation
leads to θ1,0 = 2

√
2k− 1

2 −1
2−

√
2k− 1

2
, θ2,0 = ( 2k− 1

3 −1
2−k− 1

3
, 2k− 1

3 −1
2−k− 1

3
)T . On this

condition, let θ i,0,j be the jth element of θ i,0, and we have

α22 − α12 = E
(

xθ1,0,1
1 − xθ2,0,1

1 xθ2,0,2
2

) (
kx1x2 − xθ2,0,1

1 xθ2,0,2
2

)

= kEx1+θ1,0,1
1 x2 − Exθ1,0,1+θ2,0,1

1 xθ2,0,2
2

− kEx1+θ2,0,1
1 x1+θ2,0,2

2 + Ex2θ2,0,1
1 x2θ2,0,2

2

= k
2
(
2 + θ1,0,1

) − 1(
θ1,0,1 + θ2,0,1 + 1

) (
θ2,0,1 + 1

)

− k(
2 + θ2,0,1

) (
2 + θ2,0,2

)

+ 1(
1 + 2θ2,0,1

) (
1 + 2θ2,0,2

) .

α22 − α12 is positive when k < 1 and k is close to 1.

Remark 6. Theorem 5 also has another important implication.
In the supplementary materials, we show that when S is "xed,
supW∈HS |Ln(W) − R0(W)| = Op(n− 1

2 ) (in Lemma 2) and
R0(Ŵn) →p ξ (in the proof of Theorem 5) hold under Assump-
tions 1–5. When ξ > 0, Ln(es)/Ln(Ŵn) →p R0(es)/ξ . If
inf1≤s≤S R0(es) > ξ , that is, the optimal approximation is not
achieved by any single model, we have

p lim
(

inf
1≤s≤S

Ln(es)

)
/Ln(Ŵn) > 1.

With this condition, model selection is strictly inferior to NMA
asymptotically.

Remark 7. In Theorem 5, we show that the model averaging
weight Ŵn will be arbitrarily close to the set A as sample
size n increases. In many situations, empirical researchers also
care about the risk function Rn (W), which is the conditional
expectation of Ln (W) on Xn. Now we further provide a result
on the relationship between Ŵn and the weights that minimize
Rn (W). Given any sequence of positive real numbers a =
{an}∞n=1 such that an = o(1) and a−1

n n− 1
2 = o(1), de"ne

An,a =
{

W∗ ∈ HS| Rn (W∗) − infW∈HS Rn (W) ≤ an
}

. Obvi-
ously, An,a contains the weights that asymptotically minimize
Rn (W). Di#erent from A , An,a depends on the sequence a, the
sample size n as well as the observed sample realization Xn. In
the supplementary materials, we show that if Assumptions 1–5
hold, S is "xed, ξ > 0, and supn≥1 E(||√n(θ̂ s,n − θ s,0)||2) < ∞
for all 1 ≤ s ≤ S, then for any a that satis"es the above
mentioned properties, there holds

inf
W∈An,a

∥∥Ŵn − W
∥∥ →p 0. (14)

Such a result implies that, the distance between model averaging
weight Ŵn and An,a tends to 0 as sample size n increases.

Up to now, we have extensively discussed the properties of
the NMA based on the weight-choosing criterion NIC∗(W).
However, as we have discussed previously, the variance of the
error term σ 2 usually requires estimation, and we have to use
the NIC(W) instead of the infeasible criterion in practice. Since
the di#erence between the NIC(W) and NIC∗(W) lies only
in the variance term, it is natural that the NMA results based
on the NIC(W) do not di#er much from the results based
on the NIC∗(W) as long as the estimator of σ 2 is reasonable.
The following theorem provides a thorough description of the
properties of NIC(W).

Theorem 6. De"ne W̃n = arg minW∈HS NIC(W) with σ̂ 2
n =

σ̂ 2
n (s∗) for some s∗ ≤ S. We have

1. If Assumptions 1–5 hold, S is "xed and ξ > 0, then the results
of Theorems 3 and 5 hold when Ŵn is replaced with W̃n;
if supn≥1 E(||√n(θ̂ s,n − θ s,0)||2) < ∞ further holds for all
1 ≤ s ≤ S, then (14) also holds when Ŵn is replaced with
W̃n;

2. If Assumptions 1, 2, and 6 hold, limn→∞ S = ∞, and
|fs∗ (X, θs∗) | ≤ m(X) holds uniformly on Θs∗ with Em2(X) <

∞, then the results of Theorem 4 hold when Ŵn is replaced
with W̃n.

4. Simulation

In this section, we conduct extensive simulations to evaluate
the "nite-sample performance of the NIC and compare it with
popular model selection and model averaging methods. In par-
ticular, the model selection methods include AIC, BIC, and
Takeuchi information criterion (TIC). The model averaging
methods include the smoothed AIC (SAIC) and the smoothed
BIC (SBIC). For each candidate model, we estimate the param-
eters using the nonlinear least-squares method as in (3).

For the sth model, the AIC and BIC criteria are given by
AICn(s) = n log(̂σ 2

n (s)) + 2Ks and BICn(s) = n log(̂σ 2
n (s)) +

log(n)Ks, where σ̂ 2
n (s) is given in Section 3. The TIC criterion is

given by TICn(s) = n log(̂σ 2
n (s)) + 2tr(Â−1

s B̂s), where

Âs = −
n∑

t=1
∂/2

s,t (̂̃θ s)/∂ θ̃ s∂ θ̃
T
s ,

B̂s =
n∑

t=1

(
∂/s,t (̂̃θ s)/∂ θ̃ s

) (
∂/s,t (̂̃θ s)/∂ θ̃

T
s

)
,

where θ̃
T
s =

(
θT

s , σ 2), ̂̃θ s =
(
θ̂

T
s , σ̂ 2

)
, and /s,t (̃θ s) =

− 1
2 log 2πσ 2 − (yt − fs(Xt , θ s))2/2σ 2. The weights of SAIC and

SBIC for the sth model are

exp
(

−1
2

AICn(s)
)

/

S∑

s=1
exp

(
−1

2
AICn(s)

)

and

exp
(

−1
2

BICn(s)
)

/

S∑

s=1
exp

(
−1

2
BICn(s)

)
,
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respectively. The estimated variance in the NIC is taken as
the smallest estimated variance among all the candidate mod-
els. To evaluate the performance of di#erent model selec-
tion and averaging methods, the loss function is calculated as∑n

t=1
(
µ(Xt) − ŷt

)2, where µ(Xt) is the unknown conditional
mean and ŷt is the estimation of µ(Xt) under di#erent methods.
We repeat the simulation 1000 times and the averaged losses
are calculated as the risks. For comparison purposes, we report
the relative risk by dividing the risk of other methods by that of
NMA.

Assume the data we observe is {Xt , yt}, t = 1, . . . , n, where
Xt = (xt1, . . . , xtK) is the K-dimensional covariate vector. The
true data generating process is given by

yt =
K∏

k=1
xαk

tk + εt , (15)

where xtk
iid∼ Unif(0.5, 1.5) across k and t, αk = kδ , δ is a constant

controlling the elasticity mechanism of xtk, and εt is the random
error to be speci"ed. In particular, when δ < 0, the exponent
of xtk decreases with k, and the exponent of xtk is a constant 1
across k when δ = 0. The following four cases are studied.

• Case 1: δ = −0.25, misspeci"ed scenario.
• Case 2: δ = 0, misspeci"ed scenario.
• Case 3: δ = −0.25, correctly speci"ed scenario.
• Case 4: δ = 0, correctly speci"ed scenario.

For each case, the candidate model set is given by
{

fs(Xt , θ s) = θ0

s∏

k=1
xθk

tk , s = 1, 2, . . . , S
}

, (16)

where S is the number of candidate models. The misspeci"ed
scenario corresponds to K = 10 and S = 5 and the correctly
speci"ed scenario corresponds to K = S = 10. For each case,
we consider the sample sizes n = 100, n = 200, and n = 500,
and εt

iid∼ N(0, σ 2) or σ · t(4), and vary the value of σ such that
the population R2 ranges from 0.1 to 0.9 with increment 0.1. In
the misspeci"ed scenario, all candidate models are misspeci"ed,
whereas in the correctly speci"ed scenario, the correct model is
inside the candidate model set.

The results are presented in Figures 1–4. From Figure 1, we
observe that the NIC achieves the lowest risk in most situations,
with the improvement most prominent when R2 ≤ 0.5. Inter-
estingly, the model selection methods AIC and BIC are inferior
to their model averaging counterparts SAIC and SBIC in all
scenarios, showing the bene"ts of model averaging. In many
scenarios, the heavy tail error leads to a slightly larger gain for
NIC compared with the case of normal error. As n increases,
di#erent methods’ performance becomes more similar when R2

is large, but NIC still outperforms the other approaches when R2

is small.
Another observation is that TIC seems to perform worse

than AIC, under this misspeci"ed setting. Although TIC was
shown to be superior to AIC asymptotically under model mis-
speci"cation (Burnham and Anderson 2002), it is not always
the case for "nite sample scenarios. For example, Yanagihara

(2006) showed that in some cases, the frequencies of selecting
the true models of TIC are less than that of AIC; as an estimator
of Kullback–Leibler divergence, TIC has larger bias than AIC.
For our particular data generation process, the calculation of
TIC involves estimating the 4th moment of the error term which
does not exist for the t distribution with degrees of freedom
4. This could also lead to the worse performance of TIC than
that of AIC. See Table 3.4 in Konishi and Kitagawa (2008) for a
detailed comparison.

In general, we observe similar messages for Cases 2–4.
Another notable "nding is that, even in the correctly speci"ed
scenario, using the nonlinear model averaging with the NIC
leads to a smaller risk compared with the model selection
methods.

5. Empirical Application: Predicting the Wage

In this section, we revisit the empirical example in Hansen
and Racine (2012) and apply the NMA with the NIC to
the prediction of the individual wage. The empirical data2

come from the Wooldridge (2003) cross-sectional dataset
“wage1,” which contains 526 observations taken from the US
Current Population Survey for the year 1976. The goal is
to predict the log of average hourly earnings (the depen-
dent variable) using 20 explanatory variables: educ, exper,
tenure, nonwhite, female, married, numdep, smsa, northcen,
south, west, construc, ndurman, trcommpu, trade, services,
profserv, profocc, clerocc, and servocc. Following Hansen
and Racine (2012), in addition to the 20 original vari-
ables, we also consider the following nine possible interaction
terms: educ×nonwhite, educ×female, educ×married, exper×
nonwhite, exper×female, exper×married, tenure×nonwhite,
tenure× female, and tenure×married.

For individual i, let wi represent the average hourly earnings
and xik represent the kth explanatory variables according to the
order introduced above. The linear candidate model set contains
30 nested models Ml = {Ml

1, . . . , Ml
30}, where the mth (1 ≤

m ≤ 30) candidate model Ml
m is given by

log wi = θ0 +
∑

k<m
θkxik + εi. (17)

The above constructing procedure of the model set is the same
as in Hansen and Racine (2012). The linear candidate model
set Ml ranges from the null model with only the intercept to
the model including all original variables as well as the nine
interaction terms.

To study the nonlinear e#ects of the continuous variables
(education, experience, and tenure) on the log-wage, we intro-
duce possible nonlinear factors including ψ11̃xψ12

i1 , ψ21̃xψ22
i2 , and

ψ31̃xψ32
i3 . These factors describe the nonlinear impacts of the

continuous variables on the individual log-wage in a !exible
way. For example, when the "rst nonlinear factor is added
into the model, the marginal return of education on the log-
wage, which is ∂ log wi/∂xi1, now becomes θ1 + ψ11ψ12̃xψ12−1

i1 .
When ψ11 > 0 and ψ12 ∈ (0, 1) hold, ∂2 log wi/∂x2

i1 < 0,

2The data are available at http://fmwww.bc.edu/ec-p/data/wooldridge/
datasets.list.html

http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html
http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html
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Figure 1. Relative risk when comparing with NMA for Case 1.

implying the diminishing marginal returns of education. When
ψ11 > 0 and ψ12 ∈ (1, 2), the marginal return of education
increases as the education years increases, but the increasing
speed gradually drops. Finally, for ψ11 > 0 and ψ12 > 2, both

the marginal return and its increasing speed rises with that of
years of education. Note that when ψ11 = 0, the nonlinear
factor vanishes and log-wage depends on education linearly;
when ψ12 = 2, the nonlinear factor degenerates to the quadratic
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Figure 2. Relative risk when comparing with NMA for Case 2.

term of education. So our speci"cation is general enough to nest
some widely applied setups.

The nonlinear candidate models set, Mn = {Mn
1 ,

Mn
2 , Mn

3 , Mn
12, Mn

13, Mn
23, Mn

123}, contains seven models, where

Mn
k refers to the candidate with the kth nonlinear fac-

tor, Mn
k1k2

refers to the candidate with the k1 and k2th
nonlinear factors, and Mn

123 refers to the largest candidate
model containing all three nonlinear terms. More speci"cally,
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Figure 3. Relative risk when comparing with NMA for Case 3.

we have

log wi = θ0 +
∑

k<30
θkxik +

∑

k∈Gs

ψk1̃xψk2
ik + εi, (18)

where Gs ∈ G and G = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} ,
{1, 2, 3}}. Note that unlike the linear candidate models, the
nonlinear candidate models are not nested to one another.
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Figure 4. Relative risk when comparing with NMA for Case 4.

Now, the full candidate model set M = Ml ∪ Mn has a
total of 37 models, all of which are estimated using the nonlinear
least-squares method in (3).

Following Hansen and Racine (2012), we randomly choose
ntrain observations as the training set, and calculate the mean
squared prediction error (MSPE) on the remaining ntest test
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Table 1. Relative mean and median of MSPE over 1000 random splits.

ntrain FULL AIC BIC TIC SAIC SBIC MMA JMA

100 Mean 1.2079 1.1686 1.0283 1.1340 1.0716 1.0064 0.9520 0.9293
Median 1.1763 1.0969 1.0782 1.1060 1.0435 1.0623 0.9766 0.9714

200 Mean 1.0690 1.0632 1.1585 1.0606 1.0408 1.1395 1.0125 1.0107
Median 1.0636 1.0581 1.1577 1.0565 1.0379 1.1409 1.0129 1.0123

300 Mean 1.0454 1.0528 1.1553 1.0492 1.0389 1.1305 1.0249 1.0239
Median 1.0486 1.0557 1.1641 1.0508 1.0422 1.1384 1.0257 1.0262

400 Mean 1.0378 1.0423 1.0631 1.0433 1.0343 1.0609 1.0306 1.0295
Median 1.0365 1.0427 1.0598 1.0420 1.0336 1.0575 1.0278 1.0265

500 Mean 1.0329 1.0415 1.0521 1.0433 1.0303 1.0525 1.0352 1.0356
Median 1.0365 1.0442 1.0445 1.0394 1.0289 1.0458 1.0373 1.0338

Table 2. Model averaging weights of di!erent models.

ntrain Linear Mn
1 Mn

2 Mn
3 Mn

12 Mn
13 Mn

23 Mn
123

100 0.6434 0.0315 0.0234 0.0814 0.0282 0.0801 0.0643 0.0477
200 0.4850 0.0378 0.0180 0.0694 0.0425 0.1013 0.1416 0.1044
300 0.3836 0.0423 0.0113 0.0611 0.0377 0.0736 0.2311 0.1593
400 0.3475 0.0240 0.0065 0.0383 0.0246 0.0816 0.2922 0.1853
500 0.3251 0.0095 0.0010 0.0072 0.0074 0.0709 0.3326 0.2463

observations. We vary ntrain from 100 to 500 with increment 100
to see the e#ect of sample size increasing.

We evaluate the performances of the NIC as well as other
model selection and averaging methods including AIC, BIC,
TIC, SAIC, and SBIC considered in the simulation section, eval-
uated on the full candidate model set. In addition, we consider
the performance of FULL (the largest nonlinear model Mn

123),
MMA (Hansen 2007), and JMA (Hansen and Racine 2012)
on the linear candidate model set Ml. We repeat the random
splitting 1000 times for each method and calculate the mean
and median of MSPE. Table 1 reports the mean and median of
MSPE for the competing methods relative to those of the NIC.
It is clear that when ntrain ≥ 200, the NMA has the lowest
MSPE in terms of both mean and median among all methods
considered. It is interesting to note that when ntrain = 100, the
linear model averaging methods MMA and JMA perform better
than the NIC. As we have more training data, the advantage
of the NIC over linear model averaging becomes more evident,
which indicates there are possible nonlinear e#ects.

Now, we report the average weights of di#erent models for
the NIC in Table 2, where “linear” represents the total weights
assigned to the linear candidate models. From the table, we can
see that as ntrain increases, the total weight assigned to linear
candidate models decreases, and the weights corresponding to
Mn

23 and Mn
123 increase monotonically. This may indicate that

the nonlinear factors corresponding to experience and tenure
play an important role in the model, and considering the non-
linear regression model is critical.

6. Concluding Remarks

This article considered the NMA framework and advocated the
use of the NIC as the weight-choosing criterion. We proved the
optimality of the NIC, and showed that the model-averaging
weights selected by minimizing NIC converge to a well-de"ned
limit.

Extensive simulation studies illustrated that the NIC outper-
formed competing methods in most situations. The empirical
application of wage predication also demonstrates the superior-
ity of the new method over alternatives. One interesting future
work is to extend the current approach to high-dimensional
settings. We expect the NIC leads to sparse solutions, as the
MMA does for linear regression models (Feng, Liu, and Okui
2020). Another possible research direction is to handle the case
where the errors are heteroscedastic or autocorrelated.

Supplementary Materials

The online supplement contains the proofs, the codes for simulations and
the empirical application, and the data for the empirical application.
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