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1 | INTRODUCTION

Abstract

A common issue for classification in scientific research and industry is the
existence of imbalanced classes. When sample sizes of different classes are
imbalanced in training data, naively implementing a classification method often
leads to unsatisfactory prediction results on test data. Multiple resampling tech-
niques have been proposed to address the class imbalance issues. Yet, there
is no general guidance on when to use each technique. In this article, we
provide a paradigm-based review of the common resampling techniques for
binary classification under imbalanced class sizes. The paradigms we consider
include the classical paradigm that minimizes the overall classification error, the
cost-sensitive learning paradigm that minimizes a cost-adjusted weighted type I
and type II errors, and the Neyman-Pearson paradigm that minimizes the type
IT error subject to a type I error constraint. Under each paradigm, we investigate
the combination of the resampling techniques and a few state-of-the-art clas-
sification methods. For each pair of resampling techniques and classification
methods, we use simulation studies and a real dataset on credit card fraud to
study the performance under different evaluation metrics. From these extensive
numerical experiments, we demonstrate under each classification paradigm, the
complex dynamics among resampling techniques, base classification methods,
evaluation metrics, and imbalance ratios. We also summarize a few takeaway
messages regarding the choices of resampling techniques and base classification
methods, which could be helpful for practitioners.

KEYWORDS
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imbalance ratio, imbalanced data, Neyman-Pearson (NP) paradigm, resampling methods

networks [NNs], boosting), which we refer to as the base
classification methods in this paper, have been developed

Classification is a widely studied type of supervised learn-
ing problem with extensive applications. A myriad of
classification methods (e.g., logistic regression [LR], sup-
port vector machines [SVMs], random forest [RF], neural
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to deal with different distributions of data [32]. However,
in the case where the classes are of different sizes (i.e.,
the imbalanced classification scenario), naively applying
the existing methods could lead to undesirable results.
Some prominent applications include defect detection [4],
medical diagnosis [16], fraud detection [66], spam email
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filtering [68], text categorization [71], oil spills detection
in satellite radar images [33], and land use classification
[49]. To address the class size imbalance scenario, there
has been extensive research on developing different meth-
ods [58, 40, 25]. Some popular tools include resampling
techniques [1, 3, 40], direct methods [37, 38, 48, 57, 72],
postprocessing methods [11], as well as different combina-
tions of these tools. The most common and understandable
class of approaches is resampling techniques. However,
there lacks a consensus about when and how to use them.

In this work, we aim to provide some guidelines on
using resampling techniques for imbalanced binary classi-
fication. We first disentangle the general claims of undesir-
ability in classification results under imbalanced classes,
via listing a few common paradigms and evaluation met-
rics. To decide which resampling technique to use, we need
to be clear on the paradigms as well as the preferred eval-
uation metrics. Sometimes, the chosen paradigm and the
evaluation metric are not compatible, which makes the
problem unsolvable by any technique. When they are, we
will show that the optimal resampling technique depends
on both the paradigm and the base classification method.

There are different degrees of data imbalance. We char-
acterize this degree by the imbalance ratio (IR) [23], which
is the ratio of the sample size of the majority class and that
of the minority class. In real applications, IR can range
from 1 to more than 1000. For instance, a rare disease
occurs only in 0.1% of the human population [5]. We will
show that different IRs might demand different combi-
nations of resampling techniques and base classification
methods.

This review conducts extensive simulation experi-
ments as well as a real dataset on credit card fraud to
concretely illustrate the dynamics among data distribu-
tions, IR, base classification methods, and resampling
techniques. This is the first time that such dynamics are
explicitly examined. To the best of our knowledge, this
is also the first time that a review paper uses running
simulation examples to demonstrate the advantages and
disadvantages of the reviewed methods. Through simula-
tion and real data analysis, we give practitioners a look into
the complicated nature of the imbalanced data problem in
classification, even if we narrow our search to the resam-
pling techniques only. For important applications where
data distributions can be approximately simulated, prac-
titioners are encouraged to mimic our simulation stud-
ies and properly evaluate the combinations of resampling
techniques and base classification methods. In the end, we
summarize a few takeaway messages regarding the choices
of resampling techniques and base classification methods,
which could be helpful for practitioners.

The rest of the review is organized as follows. In
Section 2, we describe three classification paradigms and

discuss their corresponding objectives. Then, we introduce
a matrix of classification algorithms as pairs of resam-
pling techniques and the base classification methods in
Section 3. Section 4 provides a list of commonly used eval-
uation metrics for imbalanced classification. In Sections 5
and 6, we conduct a systematic simulation study and
a real data analysis to evaluate the performance of dif-
ferent combinations of resampling techniques and base
classification methods, under different paradigms, data
distributions, and IRs, in terms of various evaluation met-
rics. We conclude the review with a short discussion in
Section 7.

2 | THREE CLASSIFICATION
PARADIGMS

In this section, we review three classification paradigms
that are defined by different objective functions. Con-
cretely, we consider the classical classification (CC)
paradigm that minimizes the overall classification error
(Section 2.1), the cost-sensitive (CS) learning paradigm
that minimizes the cost-adjusted weighted type I and type
IT errors (Section 2.2), and the Neyman-Pearson (NP)
paradigm that minimizes the type II error subject to a type
I error constraint (Section 2.3).

Assume X € X ¢ R? is a random vector of d features,
and Y € {0,1} is the class label. Let P(Y = 0) = ny and
P(Y =1) = 1y =1 — mp. Throughout the article, we label
the minority class as 0 and the majority class as 1 (i.e.,
7o < m). Also, for language consistency, we call class 0 the
negative class and class 1 the positive class. Please note
that the minority class might be referred to as “positive” in
medical applications.

2.1 | CCparadigm

A classifier is defined as ¢ : X — {0,1}, which is a map-
ping from the feature space to the label space. The overall
classification error (risk) is naturally defined as R(¢) =
E[l(¢p(X) # Y)] = P(¢p(X) # Y), where I(-) is the indicator
function. In binary classification, most existing classifica-
tion methods focus on the minimization of the overall clas-
sification error (risk) [27, 30]. In this article, this paradigm
isreferred to as CC paradigm. Under this paradigm, the CC
oracle ¢™ is a classifier that minimizes the population risk;
that is,

¢* = argmin R(¢).
¢

It is well known that ¢* = I(n(x) > 1/2), where 5(x) =
E(Y|X = x) is the regression function [31]. In practice, we
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construct a classifier (,?; based on finite sample { (X}, Y;), i =
1, ... ,n} using some classification method.

Popular the CC paradigm is, it may not be the ideal
choice when the class sizes are imbalanced. By the law
of total probability, we decompose the overall classifica-
tion error as a weighted sum of type I and II errors,
that is,

R(¢) = moRo(@) + m1R1(9),

where Ry(¢p) = P(¢p(X) # Y|Y = 0) denotes the (popula-
tion) type I error (the conditional probability of misclas-
sifying a class 0 observation as class 1); and Ri(¢) =
P(¢(X) # Y|Y = 1) denotes the (population) type II error
(the conditional probability of misclassifying a class 1
observation as class 0). However, in many practical appli-
cations, we may want to treat type I and II errors differently
under two common scenarios. One is the asymmetric
error importance scenario. In this scenario, making one
type of error (e.g., type I error) is more serious than
making the other type of error (e.g., type II error). For
instance, in severe disease diagnosis, misclassifying a dis-
eased patient as healthy could lead to missing the opti-
mal treatment window while misclassifying a healthy
patient as diseased can lead to patient anxiety and incur
additional medical costs. The other is the imbalanced
class proportion scenario. Under this scenario, 7, is much
smaller than z;, and minimizing the overall classifica-
tion error could sometimes result in a larger type I error.
For applications that fit these two scenarios, the over-
all classification error may not be the optimal choice to
serve the users’ purpose, either as an optimization crite-
rion or as an evaluation metric. Next, we will introduce
two other paradigms that have been used the address
the asymmetric error importance and imbalanced class
proportion issues.

2.2 | CSlearning paradigm

In the asymmetric error importance and imbalanced class
proportion scenarios introduced at the end of Section 2.1,
the cost of type I error is usually higher than that of
type II error. For example, in spam email filtering, the
cost of misclassifying a regular email as spam is much
higher than the cost of misclassifying spam as a regular
email. A popular approach to incorporate different costs
for these two types of errors is the CS learning paradigm
[21, 69]. Let C(¢p(X), Y) being the cost function for classi-
fier ¢ at observation pair (X, Y). Let Cy = C(1,0) and C; =
C(0, 1) being the costs of type I and II errors, respectively.
For the correct classification result, we have C(0,0) =
C(1,1) = 0. Then, CS learning minimizes the expected

misclassification cost [34]:

Re(¢) = EC(¢p(X),Y)
— CoP((X)=1,Y = 0) + C,P(H(X) = 0,Y = 1)
= CoP(¢p(X) =1|Y = OP(Y = 0) + C1P(¢(X)
=0y = DP(Y = 1)
= ComoRo(¢) + C1m1R1().

There are primarily two types of approaches in the litera-
ture on CS learning. The first type is called direct methods,
which builds a CS learning classifier by incorporating the
different misclassification costs into the training process
of the base classification method. For instance, there has
been much work on CS decision tree (DT) [6, 38, 63],
CS boosting [39, 57, 65], CS SVM [47], and CS NN [72].
The second type is usually referred to as postprocessing
methods, in such a way that we adjust the decision thresh-
old with the base classification algorithm unmodified. An
example of this can be found in [20]. Some additional
references on CS learning include [25, 40, 41, 64, 70, 73].

In this review, we focus on the postprocessing methods
as it combines well with any existing base classification
algorithm without the need to change its internal mecha-
nism, which is also better understood among practitioners.
In addition, it serves the purpose of making an informative
comparison among different learning paradigms across
different classification methods. On the population level,
with the knowledge of C, and C;, the CS oracle is

* 1 = CO
¢: = argmin Re(d) =1 <’7(x) 7 Cort cl> ’

which reduces to the CC oracle ¢* when Cy = C;.

Although CS learning has its merits on the control of
asymmetric errors, its drawback is also apparent because
it is sometimes difficult or immoral to assign the values of
costs Cp and C;. In most applications, including the severe
disease classification, these costs are unknown and cannot
be easily provided by experts. One way to extricate from
this dilemma is to set the majority class misclassification
cost C; =1 and the minority class misclassification cost
Co = m /7o [11].

2.3 | NP paradigm

Besides requiring the knowledge of costs for different mis-
classification errors, the CS learning paradigm does not
provide an explicit probabilistic control on type I error
under a pre-specified level. Even if the practitioner tunes
the empirical type I error equal to the pre-specified level,
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Oracle classifier

TABLE 1 Three types of classification paradigms in binary classification
Paradigm Objective
Classical Minimize the overall classification error

Cost-sensitive

Neyman-Pearson

the population-level type I error still has a non-trivial
chance of exceeding this level [61, 62]. To deal with this
issue, another emerging statistical framework to control
asymmetric error is called NP paradigm [9, 50, 60-62],
which aims to minimize type II error R;(¢p) while con-
trolling type I error Ro(¢p) under a desirable level. The
corresponding NP oracle is

¢, = argmin R;(¢),
¢:Ro(d)<a

where « is a targeted upper bound for type I error. It can be
shown that ¢}(-) = I(y(-) > D) for some properly chosen
Dj. Unlike 1/2 or Cy/(Co + C1), D}, is not known unless
one has access to the distribution information. Tong et al.
[61] proposed an umbrella algorithm for NP classification,
which adapts existing scoring-type classification methods
(e.g., LR, SVMs, RF) by choosing an order-statistics based
thresholding level so that the resulting classifier has type I
error bounded from above by a with high probability. This
thresholding mechanism, along with the thresholds 1/2
and Cy/(Cy + C1) for CC and CS paradigms respectively,
will be systematically studied in combination with several
state-of-the-art base classification methods in numerical
studies.

24 | A summary of three classification
paradigms

For readers’ convenience, we summarize the three classifi-
cation paradigms with their corresponding objectives and
oracle classifiers in Table 1.

3 | AMATRIXOF ALGORITHMS
FOR IMBALANCED
CLASSIFICATION

In this section, we introduce a matrix of algorithms for
imbalanced classification, which consists of combinations
of resampling techniques and base classification methods.

To fix idea, assume among the n observation pairs
{X;,Y), i=1,...,n}, there are ny observations with
Y; = 0 (the minority class) and n; observations with Y; = 1
(the majority class). Then, the IR = n; /ny.

Minimize the expected misclassification cost

Minimize type II error while controlling type I error under «

¢* = argmin R(¢)
¢

¢; = argmin R(¢)
¢

¢g = argming: g p)<a R1()

3.1 | Resampling techniques

To address the imbalanced classification problem under
one of the three classification paradigms described in
Section 2, resampling techniques are often used to create
a new training dataset by balancing the number of data
points in the minority and majority classes in order to
alleviate the effect of class size imbalance in the process
of classification. Lopez et al. [40] pointed out that about
one third of their reviewed papers have used resampling
techniques. They are usually divided into three categories:
undersampling, oversampling, and hybrid methods.

The undersampling methods directly discard a sub-
set of observations of the majority class. It includes two
main versions: the cluster-based undersampling and ran-
dom undersampling [25, 35, 59, 67]. In the cluster-based
undersampling, a clustering algorithm is applied to cluster
the majority class such that the number of clusters is equal
to that of the data points in the minority class (i.e., ng clus-
ters), and then one point is randomly selected from each
cluster. Nevertheless, the clustering process could be quite
slow when n; is large. Random undersampling is a simpler
and more efficient approach, which randomly eliminates
the data points from the majority class to make it of size
no. By undersampling, the processed training dataset is a
combination of ny randomly chosen data points from the
majority class and all (ny) data points from the minority
class. However, undersampling may lead to loss of infor-
mation as a large portion of the data from the majority class
is discarded.

The oversampling method, on the other hand,
increases the number of data points in the minority class
from ny to n; while keeping the observations from the
majority class intact. The leading two approaches are ran-
dom oversampling and SMOTE [5, 22, 26, 28, 44]. Random
oversampling, as a counterpart of random undersampling,
is perhaps the most straightforward approach to duplicate
the data points of minority class randomly. One ver-
sion of the approach samples n; — ny observations with
replacement from the minority class and add them to the
new training set. The approach SMOTE is the acronym
for the “synthetic minority over-sampling technique”
proposed by Chawla et al. [13]. It generates n; — ny new
synthetic data points for the minority class by interpo-
lating pairs of k-nearest neighbors (KNNs). We review
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Algorithm 1. SMOTE [13]

For any data point of minority class
X; = X, X2, ... ,Xiq)", the multiple N = IR — 1,
number of nearest neighbors K
Step 1: Find the K nearest neighbor points of X; in
the minority class: X , ... ,X;,.
Step 2:
fordoj=1:N
randomly choose one of the K nearest
neighbor points: X; = (Xi 1, Xi 2, ... ,Xi,d)T-
generate a random number 7y ~ Unif[0, 1].
generate the synthetic data point for the

minority class as X' = (X}, X}, ... ,XJZ)T,
where XJ’; = Xjs+rg * (Xl-js - Xi),
s=1,...,d.
end for
Return X7, ... ,X;(] as new synthetic data points.

the details of SMOTE in Algorithm 1. Compared with
undersampling, oversampling methods usually require
longer training time and could cause over-fitting. A
popular extension of SMOTE is the borderline-SMOTE
(BLSMOTE) [26], which only oversamples the minority
observations near the borderline and the essential step to
generate the data point is similar to the SMOTE algorithm
in Algorithm 1 (see [26] for a detailed description for
BLSMOTE).

The hybrid method is just a combination of under-
sampling and oversampling methods [10, 12, 19, 53]. It
simultaneously decreases the number of data points from
the majority class and increases the number of data points
from the minority class to n,, where the above-described
undersampling and oversampling methods can be used.
The hybrid method could serve as an option that bal-
ances the goodness of fit, computational cost as well as
robustness of the classifier.

3.2 | Classification methods

Using any of the resampling methods, we will arrive at
a new training dataset that has balanced classes. Natu-
rally, we can apply any existing base classification method
on this new dataset coupled with one of the paradigms
described in Section 2.

Many classification methods have been extensively
studied. The well-known ones include DT [54], KNNs [2],
linear discriminant analysis [42], LR [45], naive Bayes
[51], NN [52], RF [8], SVM [17], and XGBoost (XGB) [14],
among others.

Base
Classification
Methods:

LR, RF, SVM, XGB

Resampling
Techniques:

Original, Under, BLSMOTE,
SMOTE, Hybrid

FIGURE 1 A summary of the matrix of algorithms

To learn more about these methods, we refer the read-
ers to a review of classification methods [32] and a book on
statistical learning [27].

3.3 | A summary of the matrix
of algorithms

In numerical studies, we consider a matrix of classification
algorithms shown in Figure 1, as combinations of resam-
pling techniques described in Section 3.1 and four (out of
many) state-of-the-art classification methods described in
Section 3.2.

In Figure 1, “Original” refers to no resampling, “Un-
der” refers to random undersampling, and “Hybrid” refers
to a hybrid of random undersampling and SMOTE. Note
here we chose random undersampling, SMOTE, and
BLSMOTE as representatives of undersampling and over-
sampling methods due to their popularity among practi-
tioners. The readers can easily study other types of resam-
pling technique and classification method combinations
by adapting the companion code from this review.

In the numerical studies, we will conduct a compara-
tive study on those 20 combinations described in Figure 1
under each of the three paradigms introduced in Section 2
with the IR varying from 1 to 128, in terms of differ-
ent evaluation metrics which will be introduced in the
next section. A flowchart demonstrating our imbalanced
classification system can be found in Figure 2.

4 | EVALUATION METRICS

In this section, we will review several popular evaluation
metrics to compare the performance of different classifica-
tion algorithms.

For a given classifier, suppose that it classifies the ith
observation X; to lAG (Y; denotes the true label). Then,
the classification results can be summarized into the
four terms: true positives TP = Y I(Y; = 1, Y = 1), false
positives FP = Y | 1(Y; = 0, Yi=1), false negatives FN =
S I(Y; = 1,Y; = 0), and true negatives TN = Y I(Y; =
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Minority Class

Majority Class

FIGURE 2 A flowchart for
imbalanced classification with a
paradigm-oriented view

Training data

Classical
Classification
Paradigm

Cost-Sensitive
Learning
Paradigm

Resampling
Techniques+Base
Classification
Methods

Classifer

Labels

TABLE 2  Confusion matrix for a two-class problem
Predicted class 0 Predicted class 1
True class 0 TN FP
True class 1 FN TP

0, 171 = 0). These four terms are usually summarized in the
so-called confusion matrix (Table 2).

Note that in Table 2, the class 0 is being regarded as the
“negative class.” In practice, sometimes we may need to set
class 0 as the “positive class.”

Neyman-Pearson
Paradigm

New data

Then, the empirical risk can be denoted as

FP + FN

R =Ry + 1Ry = ,
TOROT M = 1 T FP + TN + FN

where 7y = (TN + FP)/(TP + FP + TN + FN), 7; = (FN +
TP)/(TP + FP + TN + FN) are the empirical proportions
of class 0 and 1; Ry and R; are the empirical type I and II
errors, respectively, that is,

§o=—FP s ﬁ1=—FN .
TN + FP FN + TP
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TABLE 3  Various evaluation metrics F-measure, [7]) for class 0, which is the harmonic mean of
Metric Formula Precision and Recall: where Precisiony = TN/(TN + FN)
Risk (P + EN)/(TP + FP + TN + FN) and Recall, = TN/(TN + FP). Similarly, we can also define

= F-score for class 1 as
Type I error (Ry) FP/(TN + FP)
Type II error (R,) FN/(FN + TP) F-score (class 1) =
Cost C();[\()ﬁo ar Clﬁ-\lﬁl

F-score (class 0) 2/(Precisiony" + Recall;")

F-score (class 1) 2/ (Precision{1 + Recalll‘l)

ROC-AUC The area under the ROC curve

PR-AUC (class 0) The area under the PR curve when

class 0 is negative

PR-AUC (class 1) The area under the PR curve when

class 0 is positive

Similarly, for given costs Cy and Cy, the empirical misclas-
sification cost is expressed as

ﬁc = Coi/l'\oﬁo + Cli/l'\lﬁl.

Another popular synthetic metric in the imbalanced
classification literature is the F-score (also Fi-score or

0.92-
0.921 1
0.91-
0.920 -
0.90-
0.919 1
0.89-
i 2 4
0.90 -
0.92275-
0.89 -
0.88 - 0.92250 -
0.87 -
0.92225 -
0.86 - .
1 2 4 8 16 32 64 128 12
IR
Method -~ BLSMOTE -e-
Classifier ¢ SvM
FIGURE 3

RF(0.0004, 0.0007), SVM(0.0003, 0.0029), XGB(0.0005, 0.0013)

8 16 32 64 128 1 2 4

Method @ Original

. . p— -1
Precision; + Recall;"

where Precision; = TP/(TP + FP) and Recall; = TP/
(TP + FN). Here, we set F-score (class 0) or F-score
(class 1) to 0 if the corresponding precision or recall is
undefined or equal to 0.

When the parameter in a classification method (e.g.,
the threshold of scoring functions) is varied, we usu-
ally get different trade-offs between type I and type II
errors. A popular tool to visualize these trade-offs is
the receiver operating characteristic (ROC) curve [7, 29].
The area under the ROC curve (ROC-AUC) provides
an aggregated measure for the method’s performance.
ROC-AUC has been used extensively to compare the per-
formance of different classification methods. However,
when the data are highly imbalanced, the ROC curves

0.90 1

0.854

0.80 4

0.754

0.704

8 16 32 64 128

IR IR
Optimal
¢ .

*
1

8 16 32 64 128
IR

Hybrid -e- Original - SMOTE -® - Under

® Under

ROC-AUC of different methods in Example 1(a). The minimum and maximum of standard error: LR(0.0003, 0.0005),
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RF(0.0003, 0.0006), SVM(0.0003, 0.0010), XGB(0.0005, 0.0008)
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ROC-AUC of different methods in Example 1(b). The minimum and maximum of standard error: LR(0.0003, 0.0005),

Risk of different methods under CC paradigm in Example 1(a). The minimum and maximum of standard error: LR(0,
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FIGURE 7 TypeIerror of different methods under CC paradigm in Example 1(a). The minimum and maximum of standard error:
LR(0, 0.0037), RF(0, 0.0032), SVM(0, 0.0034), XGB(0, 0.0027)
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TABLE 4 The frequency of winning methods in Example 1(a)
Method

Metric LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under
AUC 0 0 8 0 0 0 1 0 7
PR-AUC(0) 0 5 3 0 1 0 6 0 1
PR-AUC(1) 0 0 8 0 0 0 1 0 7
CC-Type I 8 0 0 0 3 0 1 0 4
CS-Type I 4 0 4 0 2 0 1 0 5
NP-Type I 0 8 0 0 1 0 7 0 0
Type I 12 8 4 0 6 0 9 0 9
CC-Type II 1 0 7 0 0 0 8 0 0
CS-Type I 1 0 4 3 1 0 7 0 0
NP-Type II 0 1 7 0 0 0 1 0 7
Type II 2 1 18 3 1 0 16 0 7
CS-Cost 8 0 0 0 0 0 8 0 0
CC-Risk 2 3 3 0 0 0 8 0 0
NP-Risk 0 1 7 0 0 0 1 0 7
Risk 2 4 10 0 0 0 9 0 7
CC-F-score(0) 3 4 0 1 5 0 1 2 0
CS-F-score(0) 2 0 4 2 1 0 7 0 0
NP-F-score(0) 0 2 6 0 0 0 1 0 7
F-score(0) 5 6 10 3 6 0 9 2 7
CC-F-score(1) 2 1 5 0 0 0 8 0 0
CS-F-score(1) 1 0 4 3 1 0 7 0 0
NP-F-score(1) 0 1 7 0 0 0 1 0 7
F-score(1) 3 2 16 3 1 0 16 0 7
Total 32 26 77 9 15 0 75 2 52

can present an overly optimistic view of classifiers’ perfor-
mance [18]. Precision-Recall (PR) curves and their AUCs
(PR-AUC) have been advocated as an alternative metric
when dealing with imbalanced data [24, 55]. Note that we
also have two versions of PR-AUC, depending on which
class we call “positive”: PR-AUC (class 0) and PR-AUC
(class 1).

Now, we summarize all of the metrics discussed in
Table 3.

5 | SIMULATION

In this section, we conduct extensive simulation studies
to compare the matrix of 20 combinations of classifica-
tion methods and resampling approaches introduced in
Section 3 under each of the three classification paradigms
described in Section 2 when the IR varies, using evaluation
metrics reviewed in Section 4.

5.1 | Datageneration process

We consider the following two examples with different
data generation mechanisms.

Example 1. The conditional distributions for each class
are multivariate t, distributions with a common covari-
ance matrix but different mean vectors. Concretely,

Class 0 : X|(Y = 0) ~ t4(u°, %),
Class 1: X|(Y =1) ~ tz(u}, ),

where 4° = (0,0,0,0,0)7, 4! =(2,2,2,0,0)7, and

1 05 025 0 O
05 1 05 0 O
=025 05 1 0 o0}
0 0 0 1 0
0 0 0 01
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TABLE 5 The frequency of winning methods in Example 1(b)

Method
Metric LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under
AUC 0 0 8 0 0 0 0 0 8
PR-AUC(0) 0 5 3 0 0 0 8 0 0
PR-AUC(1) 0 0 8 0 0 0 0 0 8
CC-Type I 8 0 0 0 7 0 0 0 1
CS-Type I 8 0 0 0 0 0 0 0 8
NP-Type I 0 8 0 0 1 0 7 0 0
Type I 16 8 0 0 8 0 7 0 9
CC-Type II 2 2 4 0 1 0 5 2 0
CS-Type II 0 0 8 0 0 0 8 0 0
NP-Type II 0 0 8 0 0 0 0 0 8
Type II 2 2 20 0 1 0 13 2 8
CS-Cost 3 0 5 0 1 0 6 0 1
CC-Risk 2 2 4 0 1 0 5 2 0
NP-Risk 0 0 8 0 0 0 0 0 8
Risk 2 2 12 0 1 0 5 2 8
CC-F-score(0) 3 2 3 0 2 0 4 2 0
CS-F-score(0) 2 0 6 0 0 0 8 0 0
NP-F-score(0) 0 0 8 0 0 0 0 0 8
F-score(0) 5 2 17 0 2 0 12 2 8
CC-F-score(1) 1 2 5 0 1 0 6 1 0
CS-F-score(1) 1 0 7 0 0 0 8 0 0
NP-F-score(1) 0 8 0 0 0 0 0 8
F-score(1) 2 2 20 0 1 0 14 1 8
Total 30 21 93 0 14 0 65 7 58
a. To have a precise control on the IR, we explicitly gen-  Gaussian. Concretely,

erate no = 300 observations from the minority class
(class 0) and n; observations from the majority class,
where IR = n;/ny is a pre-specified value varying in
{2, i=0,1, ...,7}. This leads to a training sample
{(X:,Y:), i=1, ... ,n} where n = ny+ n;. Following Class 1: X|(Y =0)~ lN‘(MO,Z) + 1]\/‘(#1,2)’ (2)
the same mechanism, we also generate a test sample 2 2
with size m consisting of my = 2000 and m; = my X IR
observations from class 0 and 1, respectively. This gen-
eration mechanism guarantees the same IR for both
training and test samples.

b. To observe the influence of different IR for test samples,
we fix IRypin = 8 for training samples and vary IR in
{21i=0,1, ... ,7} for test samples. The parameters n,
and m, are 300 and 2000 respectively; and n; = 300 X 52 |
8 = 2400, m; = Mg X IRegt.

Class 0: X[(Y=1)~ N (%(MO + /,11),2> . (D)

where u°, u', and T are the same as Example 1. The
remaining data generation mechanisms are the same as in
Example 1. As a result, we also have Example 2(a) with
the same training and testing IR and 2(b) where we fix the
training IR and vary the testing IR.

Implementation details

Example 2. The conditional distributions for each class =~ Regarding the resampling methods, we consider the fol-
are multivariate Gaussian versus a mixture of multivariate ~ lowing four options.
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TABLE 6 The frequency of winning methods in Example 2(a)

Method
Metric LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under
AUC 0 0 8 0 0 0 1 0 7
PR-AUC(0) 0 0 8 0 0 0 1 0 7
PR-AUC(1) 0 0 8 0 0 0 1 0 7
CC-Type I 0 0 8 0 0 0 1 0 7
CS-Type I 6.1 0 1.9 0 0.9 1.4 1 2.4 2.3
NP-Type I 3 5 0 0 2 0 5 0 1
Type I 9.1 5 9.9 0 2.9 1.4 7 2.4 10.3
CC-Type IT 7 0 1 0 0 0 8 0 0
CS-Type 11 0 0 3 5 1 0 7 0 0
NP-Type II 0 5 3 0 0 2 1 0 5
Type 11 7 5 7 5 1 2 16 0 5
CS-Cost 0 3 4 1 6 0 1 1 0
CC-Risk 7 0 1 0 0 0 8 0 0
NP-Risk 0 4 4 0 0 2 1 0 5
Risk 7 4 5 0 0 2 9 0 5
CC-F-score(0) 0 0 8 0 0 0 1 0 7
CS-F-score(0) 0 0 7 1 5 0 1 1 1
NP-F-score(0) 0 5 3 0 0 2 1 0 5
F-score(0) 0 5 18 1 5 2 3 1 13
CC-F-score(1) 7 0 1 0 0 0 8 0 0
CS-F-score(1) 0 0 3 5 1 0 7 0 0
NP-F-score(1) 0 5 3 0 0 2 1 0 5
F-score(1) 7 5 7 5 1 2 16 0 5
Total 30.1 27 74.9 12 15.9 9.4 55 4.4 59.3
« No resampling (Original): we use the training dataset as training set consists of n;, minority and majority obser-
it is without any modification. vations with ny, = [y/ng * ni/ng] * no where |-] is the
« Random undersampling (Under): we keep all the ng floor function.
observations in the minority class and randomly sample Regarding the base classification methods, we apply

ny observations without replacement from the majority  the following R packages or functions with their default
class. Then, we have a balanced dataset in which each  parameters.

class is of size ny.

« Oversampling (SMOTE, BLSMOTE): we keep all the
n; observations in the majority class. We use SMOTE
and BLSMOTE (R Package smotefamily, v1.3.1 [56]) to [36])-
generate new synthetic data for the minority class until ~ * Support vector machine (R Package 1071, v1.7.2 [43]).
the new training set is balanced. Then, we have a bal- + XGBoost (R Package xgboost, v0.90.0.2 [15]).
anced dataset in which each class is of size n; . Following
the default choice in smotefamily, we set the number
of nearest neighbors K = 5 in the oversampling process.

« Hybrid methods (Hybrid): we conduct a combination ¢ CS learning paradigm: we specify the cost Cp = IR and
of random undersampling and SMOTE with the final Ci=1

+ Logistic regression (g1m function in base R).

+ Random forest (R Package randomForest, v4.6.14

Regarding the classification paradigms, some specifics
are listed below.
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TABLE 7

Method

The frequency of winning methods in Example 2(b)

Metric LR

z
:

XGB
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« NP paradigm: we use the NP umbrella algorithm as
implemented in R package nproc v2.1.4, and set a =
0.05 and the tolerance level 6 = 0.05.

Denote by |S| the cardinality of a set S. Let O =
{CC,CS,NP}, T = {Original, Under, SMOTE, BLSMOTE,
Hybrid}, C = {LR,RF,SVM,XGB}, and B= {2}, i=
0,1,2, ... ,7}. Hence, there are |O| x |T| X |C| x |B| (480)
classification systems studied in this paper for a given
imbalanced classification problem.

For each ensemble system, we evaluate the perfor-
mance of different classifiers in terms of the following
metrics reviewed in Section 4: overall classification error
(Risk), type I error, type II error, expected misclassification
cost (Cost), F-score (class 0), and F-score (class 1). When
the threshold varies for each classification method, we also
report the area under ROC curve (ROC-AUC) and the area
under PR curve (PR-AUC [class 0] and PR-AUC [class 1]).
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We repeat the experiment 100 times and report the
average performance in terms of mean, standard error,
and winning methods for each metric and classification
paradigm combination. The results are summarized in
Figures 3-15 as well as in Tables 4-7.

5.3 | Results and interpretations
For each figure, we present the results of classification
methods under each IR in the first four panels, while the
last panel shows the optimal combination of resampling
technique and base classification method under each IR.
Next, we provide some interpretations and insights
from the figures and tables under each classification
paradigm.
For Example 1(a), where we vary the training and test-
ing IR at the same time, we present the ROC-AUC in
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TABLE 8 The frequency of winning methods when IR of test data varies in credit fraud detection
Method
Metric LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under
AUC 0 8 0 0 0 2 0 6 0
PR-AUC(0) 0 8 0 0 0 0 0 8 0
PR-AUC(1) 0 8 0 0 0 8 0 0 0
CC-Type I 7 0 0 1 0 0 0 0 8
CS-Type I 0 0 8 0 0 0 0 0 8
NP-Type I 0 8 0 0 0 0 8 0 0
Type I 7 8 8 1 0 0 8 0 16
CC-Type II 0 0 4 4 0 0 8 0 0
CS-Type II 0 0 0 8 0 0 8 0 0
NP-Type II 0 6 2 0 0 6 0 0 2
Type 11 0 6 6 12 0 6 16 0 2
CS-Cost 0 1 0 7 0 2 3 3 0
CC-Risk 1 3 0 4 0 3 1 4 0
NP-Risk 0 6 2 0 0 6 0 0 2
Risk 1 9 2 4 0 9 1 4 2
CC-F-score(0) 1 3 0 4 0 4 1 3 0
CS-F-score(0) 0 0 0 8 0 0 6 2 0
NP-F-score(0) 0 8 0 0 0 8 0 0 0
F-score(0) 1 11 0 12 0 12 7 5 0
CC-F-score(1) 1 4 0 3 0 3 1 4 0
CS-F-score(1) 0 0 0 8 0 0 6 2 0
NP-F-score(1) 0 6 2 0 0 6 0 0 2
F-score(1) 1 10 2 11 0 9 7 6 2
Total 10 69 18 47 0 48 42 32 22
Figure 3 as an overall measure of classification methods ~ 5.3.1 | CC paradigm

without the need to specify the classification paradigm.
First of all, LR is surprisingly stable for all resampling
techniques across all IRs. Another study on the robust-
ness of LR for imbalanced data can be found in Owen
[46]. Then, from the panels corresponding to RF, SVM,
and XGB, we suggest that it is essential to apply specific
resampling techniques to keep the ROC-AUC at a high
value when IR increases. For Example 1(b) where we fix
the training IR and vary the testing IR, the ROC-AUC in
Figure 4 is more robust across the board. In addition, we
report the range of the standard errors for each base clas-
sification method in the captions of Figures 3 and 4, and
they are all very small. Thus, the standard error does not
affect the determination of the optimal combination. We
omit the plots of ROC-AUC for Example 2 as they look
similar.

We first focus on analyzing the results for Example 1.
Figures 5 and 6 exhibit the risk of different methods. We
observe that the empirical risk of all classifiers without
resampling is smaller than that with any resampling tech-
nique in most cases, and decreases as IR increases. This
is in line with our intuition that if the risk is the primary
measure of interest, we would be better off not applying
any resampling techniques. In addition, we observe that
only undersampling leads to a stable risk when the IR
increases for all four base classification methods consid-
ered. Finally, the resampling techniques can make risk
more stable across all IRs in Figure 6.

As mentioned in Section 2, minimizing the risk with
imbalanced data could lead to large type I errors, demon-
strated clearly in Figure 7. By using the resampling
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techniques, however, we can have much better control
over type I error as IR increases. In particular, undersam-
pling works well for all four classification methods. Lastly,
we note that the optimal choices when IR > 1 all involve
resampling techniques.

The figures for Example 2 convey a similar message as
in Example 1 that we do not need any resampling if the
goal is to minimize the risk. On the other hand, applying
certain resampling techniques is critical to bring down the
type I error and increase the ROC-AUC value. Again, we
omit these figures to save space.

5.3.2 | CSlearning paradigm

When we are in the CS learning paradigm, the objective is
to minimize the expected total misclassification cost. We
again firstlook at the results from Example 1. Naturally, we
would like to see the impact of the resampling techniques
on different classification methods in terms of empirical
cost, which is summarized in Figures 8 and 9. From the

8 16 32 64 128

IR
Under

Classifier ®m RF

ROC-AUC of different methods in real data. The minimum and maximum of standard error: LR(0.0005, 0.0089),

figures, we observe that no resampling leads to the smallest
cost in most cases. When IR is large, BLSMOTE leads to
the smallest cost for SVM.

Now, we look at the results for type I error in Figures 10
and 11, where we discover that all classification meth-
ods benefit significantly from resampling techniques with
undersampling being the best choice for most scenarios.

5.3.3 | NP paradigm

The NP paradigm aims to minimize type II error while con-
trolling type I error under a target level «. In the current
implementation, we set « = 0.05. From Figures 12 and 13,
we observe that the type I errors are well controlled under
a throughout all IRs for all base classification methods in
Example 1(a) and (b).

When we look at Figure 14, the benefits that resam-
pling techniques can bring are apparent in most cases.
Undersampling or hybrid resampling leads to a type
IT error well under control. Moreover, type II error is
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more robust when different IRs are selected for the test
dataset.

For Example 2, we have the same conclusion that
resampling techniques can help to reduce type II error
with the type I error well controlled under a.

534 | Summary

In addition to the plots, we summarize in Tables 4-7 the
winning frequency of resampling techniques and classifi-
cation methods in terms of each evaluation metric of all
IRs in Examples 1(a), (b) and 2(a), and 2(b), respectively.
The number in each cell of tables represents the win-
ning frequency for each base classification method or each
resampling technique for the given metric. The numbers
in bold represent the most frequent winning combina-
tion of resampling techniques and classification methods.
Clearly, the optimal choices differ for different evaluation
metrics, IRs, and data generation mechanisms. From these

tables and the above figures, we can draw the following
conclusions:

a. All the classifiers can control the type I error under a
certain level « under the NP paradigm (see Figures 12
and 13).

b. For most base classification methods, ROC-AUC can
usually benefit from resampling techniques, whether
or not the test class proportion is at the same
level of imbalance as the training set (see Figures 3
and 4).

c. Resampling techniques, in general, bring down the type
I error regardless of the classification paradigm (see
Figures 7 and 11).

d. The optimal combination of base classification method
and resampling technique should be interpreted
together with both the paradigm and evaluation
metric. For example, in Table 4, the combination
“LR + Under” leads to the minimal type I error under
the CC paradigm.
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e. When the training class proportion is fixed and IR
varies for the test dataset, the results are robust in most
cases (see Figures 6, 11, and 15).

6 | REAL DATA-CREDIT CARD
FRAUD DETECTION

The credit card transaction data are available at http://
kaggle.com/mlg-ulb/creditcardfraud. It includes credit
card transactions made in September 2013 by European
cardholders. In particular, it contains transactions that
occurred in 2days, where we have 492 frauds out of
284,807 transactions. Therefore, this dataset is highly
imbalanced with an IR about 578 (284,315/492). Due to
confidentiality issues, the website does not provide the
original features and more background information about
this dataset. Features V1, V2, ..., V28 are the principal
components obtained with PCA. The only features which
have not been transformed with PCA are “Time” and
“Amount.” Feature “Time” contains the seconds elapsed
between each transaction and the first transaction in the
dataset. The feature “Amount” is the transaction amount.
They are scaled to zero mean and unit variance. Using the
feature “Class,” we redefine “0” as the fraud class (class 0)
and “1” as the no-fraud class (class 1). We use the features
V1,V2, ..., V28, Time and Amount as predictor variables
for the classification methods.

We specify the IR as 128 for training dataset and extract
a subsample from this large dataset. In particular, we ran-
domly sample ny = 300 data points from class 0 (fraud) and
n; = ny * IR = 38,400 from class 1 (no-fraud). This proce-
dure creates our training dataset. The test dataset contains
a random sample of my = 192 for class 0 and m; = my *
IR(est for class 1 from the remaining data, where IReg
varies in {2}, i=0,1, ... ,7}. This splitting mechanism
implies that IR will be different for the training and test
datasets.

The remaining implementation details are the same as
in Section 5.2. We still repeat the experiment 100 times and
report the average performance and frequency of winning
methods by the mean for each metric and classification
paradigm combination. The frequency of winning meth-
ods were summarized in Table 8 and report Figures 16 and
17 and omit the other figures since they convey similar
information to that in Section 5.3.

From Figures 16 and 17, resampling techniques are
in general beneficial for the metrics in most cases. In
addition, most of the results are robust when the test IR
increases. This is consistent with the simulation results.
Table 8 shows that the combination “RF + Hybrid” has
the top performance. Note that this appears to be different

from the choices implied by Tables 4-7, which again show
that the best performing method highly depends on the
data generation process. This actually agrees with our
understanding of SVM versus RF in that RF may be more
effective than SVM in a more complex scenario. Moreover,
the optimal methods depend on the learning paradigm
and evaluation metrics. For example, if our objective is
to minimize the overall risk under the CC paradigm,
“RF + SMOTE” is the best choice in Table 8; if our objec-
tive is to minimize the type II error while controlling the
type I error under a specific level, “RF + Hybrid” performs
the best. Therefore, there is no universal best combination
for the imbalanced classification problem.

7 | DISCUSSION
In this paper, we review the imbalanced classification with
a paradigm-based view. In addition to the few take-away
messages we offered in the simulation section, the main
message from the review is that there is no single best
approach to imbalanced classification. The optimal choice
for resampling techniques and base classification methods
highly depends on the classification paradigms, evaluation
metric, as well as the severity of imbalancedness (IR).

Admittedly, we only considered a selective list of
resampling techniques and base classification methods.
There are many other combinations that are worth fur-
ther consideration. In addition, we presented results from
two simulated data generation processes as well as a real
dataset, which could be unrepresentative for specific appli-
cations. We suggest practitioners adapt our analysis pro-
cess for evaluating different choices for imbalanced classi-
fication to align with their data generation mechanism.

Furthermore, in our numerical experiments, all base
classification methods were applied using the correspond-
ing R-packages with their default parameters. Note that
although we did not tune the parameters due to the
already-extensive simulation settings, it is well known that
parameter tuning could further improve the performance
of a classifier in certain situation. For example, the param-
eter k in SMOTE [13] can be selected via cross-validation.
We leave a systematic study of the impact of parameter
tuning on imbalanced classification as a future research
topic.

Lastly, we focused on binary classification throughout
the review. We expect similar interpretations and conclu-
sions from multi-class imbalanced classification.
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