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a b s t r a c t

We show that Mallows model averaging estimator proposed by Hansen (2007) can be written as a
least squares estimation with a weighted L1 penalty and additional constraints. By exploiting this
representation, we demonstrate that the weight vector obtained by this model averaging procedure
has a sparsity property in the sense that a subset of models receives exactly zero weights. Moreover,
this representation allows us to adapt algorithms developed to efficiently solve minimization problems
with many parameters and weighted L1 penalty. In particular, we develop a new coordinate-wise
descent algorithm for model averaging. Simulation studies show that the new algorithm computes the
model averaging estimator much faster and requires less memory than conventional methods when
there are many models.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

For a set of candidate models, model averaging aims to provide
accurate predictions by combining the results from individual
models. Subsequent to the seminal work of Mallows model av-
eraging (MMA) (Hansen, 2007), model averaging has received
a great deal of attention from econometricians and statisticians
with an array of model averaging estimators proposed under var-
ious contexts; see Claeskens and Hjort (2008) and Moral-Benito
(2015) for an overview. Among existing studies, researchers have
mainly focused on the asymptotic properties of model averag-
ing methods. However, there are open questions remaining for
model averaging estimators. First, the finite sample behavior of
model averaging is not yet considered. Second, the number of
models to be averaged may be significant in practice, but the
existing results and algorithms can only handle a relatively small
number of models. For instance, a typical approach to solving
the optimization problem of MMA is quadratic programming
(QP) as described in Hansen (2007). However, while QP works
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well for low-dimensional problems, it becomes computationally
prohibitive, and the memory requirements grow rapidly as the
number of models under consideration increases. For example,
suppose that we average linear regression models where the
models differ in the set of regressors. If we are unwilling to place
any structural assumptions on the candidate model set, there are
then 2p models where p is the number of regressors. This can be
extremely large, even for a moderate p.

This letter demonstrates that the optimization problem in-
volved in MMA to compute the weight vector can be viewed as
a constrained least squares estimation with weighted L1 penalty,
i.e., constrained weighted Lasso. Lasso (Tibshirani, 1996) has re-
ceived much attention from researchers in many different fields.
The constrained Lasso representation of MMA may be of inter-
est in its own right as it connects Lasso to model averaging, a
matter not yet acknowledged in the literature. Moreover, this
observation provides three crucial implications.

First, we show that in MMA, the estimated weight vector is
sparse in finite samples for both underfitted and overfitted mod-
els. An important implication of the sparsity property is that MMA
can handle a large number of models. Second, the constrained
weighted Lasso representation of MMA suggests opportunities
to adapt efficient algorithms developed for Lasso. Because Lasso
has been widely used, several fast algorithms, such as Friedman
et al. (2009), have been developed to compute the estimator. In
particular, for MMA, we propose a new coordinate-wise descent
(CD) algorithm, which is much faster and requires less memory
than the commonly used QP algorithm. Third, with the new rep-
resentation of MMA, we expect that the fields of MMA and Lasso
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can borrow strength from each other and the new representation
would provide interesting future research topics. For example, we
may be able to develop theoretical properties of MMA by taking
advantage of rich literature on the theory of Lasso. Also, MMA
may provide some insights on the tuning parameter selection
problem for Lasso as it corresponds to a particular value of the
tuning parameter.

Zhang and Liu (2019) showed that the elements of the weight
vector of MMA on underfitted models converge to zero asymptot-
ically at a rate faster than that for the coefficients. Our results are
nonasymptotic, and we show that the weight vector is sparse in
finite samples. We also show that some overfitted models also
receive zero weights in MMA. Note that Zhang and Liu (2019)
also considered a modification of MMA so that the weights on
the overfitted models converge to zero quickly, but this is still an
asymptotic result and not a finite sample.

Another example of weighted Lasso is the recently proposed
SLOPE (Bogdan et al., 2015; Bellec et al., 2018), which was moti-
vated by controlling the false discovery rate for model selection.
In particular, SLOPE uses the so-called sorted L1 penalty, where
the penalty level depends on the ordering of the estimated co-
efficients with the larger estimated coefficients receiving higher
penalties. On the other hand, the penalty level corresponding
to MMA depends on the size of each candidate model with the
larger models receiving higher penalties. Therefore, MMA and
SLOPE correspond to two very different weighting schemes in
penalization.

The remainder of this letter is organized as follows. Section 2
shows that the MMA estimator can be viewed as a constrained
weighted Lasso problem. We show the estimator to be sparse
with the sparsity set identified in Section 3. To solve the opti-
mization problem, Section 4 proposes a CD algorithm that turns
out to be more efficient in terms of both memory and speed than
the commonly used QP algorithm. The sparsity property of the
CD and its computational advantages over QP are demonstrated
via simulation studies in Section 5. We conclude the letter with
a short discussion in Section 6.

2. MMA as a constrained weighted Lasso problem

Suppose we have a real-valued random sample {(xi, yi), i = 1,
. . . , n}, where xi = (xi1, xi2, . . .) has countable elements. We con-
sider the following linear model as described in Hansen (2007):

yi = fi + ei, (1)

where fi =
∑

∞

j=1 θjxij, in which some θj can equal zero, and ei is
a zero-mean unobservable random error with E(e2i |xi) = σ 2. The
goal is to use the random sample to obtain an estimate µ̂ for the
true mean response µ = (f1, . . . , fn)T .

First, we provide a brief review of model averaging. Assume
there are M candidate models and estimates of µ based on these
models are available. For m = 1, . . . ,M , let µ̂m and km be the
estimate of µ and the number of parameters in the mth model,
respectively. The premise of model averaging is to identify a
weight vector w = (w1, . . . , wM )T such that

∑M
m=1 wmµ̂m is a

good estimate of µ.
MMA as proposed by Hansen (2007) uses linear regression

models with different sets of predictors as candidate models.
Suppose Xm is the design matrix corresponding to model m, then
the ordinary least square estimate is β̂m = (XT

mXm)−1XT
my and the

corresponding predicted value is µ̂m = Xmβ̂m = Xm(XT
mXm)−1XT

my.
MMA chooses w to minimize

Cn(w) =
1
2

y −

M∑
m=1

wmµ̂m


2

2

+ σ̂ 2
M∑

m=1

wmkm, (2)

s.t. w ∈ HM =

{
w ∈ [0, 1]M |

M∑
m=1

wm = 1

}
,

where ∥·∥2 is the Euclidean norm and σ̂ 2 is an estimate of σ 2. In
simulation studies, we use the average of squared residuals from
the largest model as σ̂ 2.

The key insight of this letter is to show that the MMA can
be viewed as a constrained weighted Lasso problem. First, we
review the standard weighted Lasso. For the classic linear model
yn×1 = Zn×MwM×1 + ϵn×1, the standard weighted Lasso seeks the
vector w that minimizes

C̃n(w) =
1
2

∥y − Zw∥
2
2 +

M∑
m=1

λm|wm|, (3)

where (λ1, . . . , λM ) is the penalty parameter vector for differ-
ent elements of w. Next, we see the correspondence between
Lasso and MMA. Let Z = (µ̂1, . . . , µ̂M )n×M be the matrix whose
columns are the fitted response vector from the M candidate
models. Then, the MMA optimization problem has the following
equivalent representation.

Cn(w) =
1
2

∥y − Zw∥
2
2 + σ̂ 2

M∑
m=1

km|wm|, (4)

s.t. w ∈ HM =

{
w ∈ [0, 1]M |

M∑
m=1

wm = 1

}
.

This representation illustrates the correspondence between the
weight estimation problem of MMA and a constrained weighted
Lasso where the regression coefficients are the weights (w). Re-
garding the weighted penalty, we have λm = σ̂ 2km as the penalty
level for wm, which is proportional to the number of param-
eters for the mth model and hence promotes smaller models.
Comparing (4) to the vanilla weighted Lasso problem (3), it has
additional constraints for w, namely w ∈ HM , which leads to
further regularization on w.

3. Sparsity of MMA

In this section, we analyze the sparsity of the weights for
MMA. We first derive the Karush–Kuhn–Tucker (KKT) condition
for MMA. We then examine the condition to investigate the
source of the sparsity.

The Lagrangian of the minimization problem (4) is

1
2

∥y − Zw∥
2
2 + σ̂ 2

M∑
m=1

km|wm| − v′w + l(w′1M − 1),

where v = (v1, . . . , vM)T is the vector of Lagrange multipliers
for the constraints w ≥ 0 and l is the Lagrange multiplier for∑M

m=1 wm = 1. The corresponding KKT condition is as follows:

−Z ′ (y − Zw) + σ̂ 2Ωs − v + l1M = 0, (5)

w′1M = 1, −wm ≤ 0, vm ≥ 0, vmwm = 0, (6)

where Ω is a diagonal matrix whose mth diagonal element
is km, 1M is an M × 1 vector with all elements being 1 and
s = (s1, . . . , sM)T with sm being the subgradient of |wm|: sm =

sign(wm) if wm ̸= 0 and sm ∈ [−1, 1] if wn = 0. Note that, from
(5), for wm > 0, we have µ̂T

m (y − Zw) + vm − l = σ̂ 2km.

Proposition 1. Define A =
{
m ∈ {1, . . . ,M} :

⏐⏐µ̂T
m (y − Zw)

+vm − l| < σ̂ 2km
}
. We have wm = 0 for m ∈ A.
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Proposition 1 provides a sufficient condition for the weight wm
being zero. We analyze the set A for the following two scenarios.

(a) If vm > 0, by (6), we have wm = 0.
(b) If vm = 0, we have

⏐⏐µ̂T
m (y − Zw) − l

⏐⏐ < σ̂ 2km. A larger
model tends to obtain a zero weight as the corresponding km is
larger. Note that this finding differs from the asymptotic result
in Zhang and Liu (2019), which characterized the asymptotic dis-
tribution of the weight of an overfitted model but did not discuss
the sparsity. In addition, we have the following observation. Note
that

µ̂T
m (y − Zw) = wmµ̂T

m(y − µ̂m) + (1 − wm)µ̂T
m

⎡⎣y −

∑
j̸=m

w̃jµ̂j

⎤⎦ ,

= (1 − wm)µ̂T
m

⎡⎣y −

∑
j̸=m

w̃jµ̂j

⎤⎦ ,

where w̃j = wj/
∑

j̸=m wj. If the mth model is redundant given
the other models that are considered, µ̂m should be uncorre-
lated with the residual y −

∑
j̸=m w̃jµ̂j. As a result, we expect

µ̂T
m(y−

∑
j̸=m w̃jµ̂j) = Op(

√
n). Conversely, where the mth model

provides important information given the other models that are
considered, µ̂T

m(y −
∑

j̸=m w̃jµ̂j) would be the sum of random
variables with nonzero mean, and is thus of order Op(n). As a
result, a redundant model tends to be inside set A compared with
the informative models.

We now demonstrate the sparsity phenomenon of MMA in
Section 5 via extensive numerical studies.

4. A coordinate-wise descent algorithm

In this section, we introduce a new CD algorithm for calcu-
lating the MMA estimate. The idea of CD has been successfully
applied to solve high-dimensional problems where the solution
could be sparse, e.g., the glmnet algorithm (Friedman et al.,
2009) for Lasso. However, our problem (4) could not be directly
solved using CD optimization owing to the equality constraint∑M

m=1 wm = 1, which makes the optimization nonseparable for
w’s. Here, we recast the original problem (4) by converting the
equality constraint

∑M
m=1 wm = 1 to a quadratic penalty term

while retaining the positive constraints for w’s as follows.

min
w

{
f (w) =

1
2

∥y − Zw∥
2
2 + σ̂ 2

M∑
m=1

km|wm| +
γ

2
(1T

Mw − 1)2
}

,

(7)
s.t. wm ≥ 0,m = 1, . . . ,M,

for γ > 0. As long as γ is sufficiently large, the optimization prob-
lem (7) is equivalent to the original problem (4) (Ruszczyński,
2006). The subgradient with respect to wm becomes
∂ f (w)
∂wm

= −µ̂T
m(y − Zw) + σ̂ 2kmsm + γ (1T

Mw − 1). (8)

Then, for an initial estimate w0, we update only the mth coordi-
nate as

ŵm =

[
µ̂T

m(y − Z−mw−m) − γ (1T
Mw−m − 1) − σ̂ 2km

]+

γ + µ̂T
mµ̂m

, (9)

where Z−m corresponds to Z without the mth column, w−m is w

without the mth element, and a+
= a if a > 0 and 0 otherwise.

Algorithm 1 summarizes the process.
The CD algorithm requires much less memory than the com-

monly used QP algorithm to solve MMA when the number of
models is large. Consider cases in which there are p regressors,

Algorithm 1 Coordinate-wise Descent Algorithm for MMA
Input: {(xi, yi), i = 1, · · · , n}, penalty parameter γ , conver-

gence threshold ϵ, maximum iteration number K .
Output: ŵ, µ̂.

1: Initialize ŵ0
= 1/M · 1M .

2: For iteration number k = 1, · · · , K .
3: For m = 1, · · · ,M , update wm according to (9). Denote

the estimate as ŵk.
4: If ∥ŵk

− ŵk−1
∥ < ϵ, stop the iteration for k.

and we average all subset models (i.e., M = 2p). In general,
the dimension of the largest matrix considered in an algorithm
determines its memory cost. In Algorithm 1, the dimension of
the largest matrix Z is n × 2p, so we can see that the memory
cost of CD is Θ(n2p).1 Alternatively, for QP we use quadprog in
MATLAB, in which the Hessian matrix is the largest matrix whose
dimension is 2p

×2p, hence the memory cost of QP here is Θ(22p).
Thus, the ratio of the memory cost of CD against that of QP is
Θ(n/2p), which decreases to zero as long as n does not increase
exponentially with p.

5. Simulation

In this section, we conduct simulation studies to compare
the newly proposed CD algorithm with the QP algorithm for
calculating MMA estimates. In particular, we examine their com-
putation speeds and memory requirements.2 We also illustrate
the sparsity property of the weight vector chosen by MMA. In the
CD algorithm, we set K = 1010, ϵ = 10−10, and γ = 103. Each
experiment is repeated 1000 times.3

Consider the data generation process in (1) with sample size
n = 500, xi1 ≡ 1 corresponds to the intercept, xij

i.i.d.
∼ N(0, 1) for

j ≥ 2, and the true coefficient vector is θ = c · (1, 1, 1, 1/2, 1/2,
1/2, 1/3, 1/3, 1/3, 0, . . .)T , where c is chosen to obtain a specific
R2 value and θj = 0 for j > 9. To make a comprehensive
comparison, we vary R2 from 0.1 to 0.9 with increment 0.1 and
the number of observed regressors p from 6 to 15 with increment
1. For each p, the candidate models consist of all subsets of the
first p regressors with the first regressor being always included,
i.e., we consider all submodels that include the intercept. As a
result, the number of models considered here ranges from 25 (for
p = 6) to 214 (for p = 15).

In Fig. 1, we depict the median computation time comparison
between CD and QP. From the figure, for all R2 considered, we see
the computation times increase at a log-linear rate in p, although
the log-linear slope for CD is much smaller than that for QP,
which represents a significant advantage of CD compared with
QP, especially for a large p. For example, when p = 15, the median
time for QP is over 1000 s while CD only takes about 100 s. This
gap will become even larger as we further increase p. In Fig. 2,
we plot the memory cost of QP and CD. As shown, CD requires
much less memory than QP, e.g., when p = 15, the memory cost
of QP is around 30 times that of CD. Note that when p > 15, the
QP failed to run as its memory requirement exceeds the available
memory (16 GB).

In Fig. 3, we present the proportion of zero weights over 1000
repetitions. Let Mm be the set of regressors in model m. Note

1 ap = Θ(bp) if there exist constants 0 < c < C < ∞, cbp ≤ ap ≤ Cbp .
2 Both algorithms produce nearly identical mean squared errors throughout

all settings considered.
3 All numerical experiments were performed on HP Enterprise XL170r with

CPU E5-2650v4 (2.20 GHz) and 16 GB memory. The operating system is Unix
and the software is MATLAB.
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Fig. 1. Comparison of the computation cost (in log seconds) of the CD algorithm vs. QP over 1000 repetitions.4

Fig. 2. Comparison of the memory usage (in MB) of the CD algorithm vs. QP
for R2

= 0.5.

that the set of regressors in the correct model, denoted by M∗
p ,

is the set of the first min(p, 9) predictors. We divide all candidate
models into the following four types:

• Correct fit (CF): Mm = M∗
p .

• Overfit (OF): Mm ⊃ M∗
p . The model contains all informative

and some redundant regressors.
• Underfit With Noise (UWN): Mm \ M∗

p ̸= ∅ and M∗
p \ Mm ̸=

∅. The model does not contain some of the informative
regressors but does contain some redundant regressors.

• Underfit Without Noise (UWoN): Mm \ M∗
p = ∅ and M∗

p \

Mm ̸= ∅. The model does not contain any redundant regres-
sors but omits some informative regressors.

Note that for p ≤ 9, we only have CF and UWoN types. It is
interesting to observe that as R2 increases, the proportion of zero
weights for the CF model gradually decreases. For p = 9, the
proportion of zero weights for UWoN models is close to one. For
p = 12 and 15, the proportions of zero weights for both UWN
and UWoN are very close to one, which means the models with
positive weights are largely of the CF or OF type. It is worth noting
that as p increases, the proportions of zero weights for CF become
larger, which is intuitive as we have more models with similar
explanative power as the true model. Moreover, the proportions
of zero weights for OF are always larger than 0.75, showing that

4 The time is wall clock time and calculated using the tic/toc functions in
Matlab.
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Fig. 3. Average proportion of models that receive zero weights over 1000 repetitions for the CD algorithm.

the weight vector is sparse for not only underfitted models but
also for overfitted models.

6. Discussion

Some extensions are worth investigating. First, it would be
interesting to pin down the relationship between the sparsity
of the weights with the values of the coefficients and the error
variance. Second, while this letter focuses on the original form
of MMA for simplicity, similar arguments should be applicable
to other model averaging procedures such as heteroscedasticity
robust Cp model averaging (Liu and Okui, 2013).
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