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Abstract Regularization is a popular variable selection technique for high dimen-
sional regression models. However, under the ultra-high dimensional setting, a
direct application of the regularization methods tends to fail in terms of model
selection consistency due to the possible spurious correlations among predictors.
Motivated by the ideas of screening (Fan and Lv, J R Stat Soc Ser B Stat Methodol
70:849–911, 2008) and retention (Weng et al, Manuscript, 2013), we propose a
new two-step framework for variable selection, where in the first step, marginal
learning techniques are utilized to partition variables into different categories, and
the regularization methods can be applied afterwards. The technical conditions of
model selection consistency for this broad framework relax those for the one-step
regularization methods. Extensive simulations show the competitive performance of
the new method.

Keywords Independence screening • Lasso • Marginal learning • Retention •
Selection • Sign consistency

1 Introduction

With the booming of information and vast improvement for computation speed,
we are able to collect large amount of data in terms of a large collections of n
observations and p predictors, where p ! n. Recently, model selection gains
increasing attention especially for ultra-high dimensional regression problems.
Theoretically, the accuracy and interpretability of selected model are crucial in
variable selection. Practically, algorithm feasibility and efficiency are vital in
applications.

A great variety of penalized methods have been proposed in recent years. The
regularization techniques for simultaneous variable selection and estimation are
particularly useful to obtain sparse models compared to simply apply traditional
criteria such as Akaike’s information criterion [1] and Bayesian information
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criterion [18]. The least absolute shrinkage and selection operator (Lasso) [19] have
been widely used as the l1 penalty shrinks most coefficients to 0 and fulfills the
task of variable selection. Many other regularization methods have been developed;
including bridge regression [13], the smoothly clipped absolute deviation method
[5], the elastic net [26], adaptive Lasso [25], LAMP [11], among others. Asymptotic
analysis for the sign consistency in model selection [20, 24] has been introduced
to provide theoretical support for various methods. Some other results such as
parameter estimation [17], prediction [15], and oracle properties [5] have been
introduced under different model contexts.

However, in ultra-high dimensional space where the dimension p D exp.na/
(where a > 0), the conditions for sign consistency are easily violated as a con-
sequence of large correlations among variables. To deal with such challenges, Fan
and Lv [6] proposed the sure independence screening (SIS) method which is based
on correlation learning to screen out irrelevant variables efficiently. Further analysis
and generalization can be found in Fan and Song [7] and Fan et al. [8]. From the
idea of retaining important variables rather than screening out irrelevant variables,
Weng et al. [21] proposed the regularization after retention (RAR) method. The
major differences between SIS and RAR can be summarized as follows. SIS makes
use of marginal correlations between variables and response to screen noises out,
while RAR tries to retain signals after acquiring these coefficients. Both of them
relax the irrepresentable-type conditions [20] and achieve sign consistency.

In this paper, we would like to introduce a general multi-step estimation
framework that integrates the idea of screening and retention in the first step to learn
the importance of the features using the marginal information during the first step,
and then impose regularization using correspondingweights. The main contribution
of the paper is two-fold. First, the new framework is able to utilize the marginal
information adaptively in two different directions, which will relax the conditions
for sign consistency. Second, the idea of the framework is very general and covers
the one-step regularization methods, the regularization after screening method, and
the regularization after retention method as special cases.

The rest of this paper is organized as follows. In Sect. 2, we introduce the model
setup and the relevant techniques. The new variable selection framework is elabo-
rated in Sect. 3 with connections to existing methods explained. Section 4 develops
the sign consistency result for the proposed estimators. Extensive simulations are
conducted in Sect. 5 to compare the performance of the new method with the
existing approaches.We concludewith a short discussion in Sect. 6. All the technical
proofs are relegated to the appendix.
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2 Model Setup and Several Methods in Variable Selection

2.1 Model Setup and Notations

Let .Xi;Yi/ be i.i.d. random pairs following the linear regression model:

Yi D Xiˇ C "i; i D 1; : : : ; n;

where Xi D .X1i ; : : : ;X
p
i /

T is pn-dimensional vector distributed as N.0;†/, ˇ D
.ˇ1; : : : ; ˇp/

T is the true coefficient vector, "1; : : : ; "n
i:i:d:" N.0; !2/; and fXigniD1 are

independent of f"igniD1. Note here, we sometimes use pn to emphasize the dimension
p is diverging with the sample size n. Denote the support index set of ˇ by S D f j W
ˇj ¤ 0g and the cardinality of S by sn, and†ScjS D †ScSc #†ScS.†SS/

!1†SSc : Both
pn and sn are allowed to increase as n increases. For conciseness, we sometimes use
signals and noises to represent relevant predictors S and irrelevant predictors Sc (or
their corresponding coefficients) respectively.

For any set A, let Ac be its complement set. For any k dimensional vector w
and any subset K $ f1; : : : ; kg, wK denotes the subvector of w indexed by K, and
let kwk1 D Pk

iD1 jwij; kwk2 D .
Pk

iD1 w
2
i /
1=2; kwk1 D maxiD1;:::;k jwij: For any

k1 % k2 matrixM, any subsets K1 $ f1; : : : ; k1g, K2 $ f1; : : : ; k2g,MK1K2 represents
the submatrix of M consisting of entries indexed by the Cartesian product K1 % K2.
Let MK2 be the columns of M indexed by K2 and Mj be the j-th column of M.
Denote kMk2 D fƒmax.MTM/g1=2 and kMk1 D maxiD1;:::;k

Pk
jD1 jMijj: When

k1 D k2 D k, let ".M/ D maxiD1;:::;k Mii, ƒmin.M/ and ƒmax.M/ be the minimum
and maximum eigenvalues ofM, respectively.

2.2 Regularization Techniques

The Lasso [19] defined as

Ǒ D argmin
ˇ

(
.2n/!1

nX

iD1
.Yi # XT

i ˇ/
2 C #n

pnX

jD1
jˇjj

)
; #n & 0 (1)

is a popular variable selection method. Thanks to the invention of efficient algo-
rithms including LARS [4] and the coordinate descent algorithm [14], Lasso and its
variants are applied to a wide range of different scenarios in this big data era. There
is a large amount of research related to the theoretical properties of Lasso. Zhao and
Yu [24] proposed almost necessary and sufficient conditions for the sign consistency
for Lasso to select true model in the large pn setting as n increases. Considering the
sensitivity of tuning parameter #n and consistency for model selection, Wainwright
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[20] has identified precise conditions of achieving sparsity recovery with a family
of regularization parameters #n under deterministic design.

Another effective approach to the penalization problem is adaptive Lasso
(AdaLasso) [25], which uses an adaptively weighted l1-penalty term, defined as

Ǒ D argmin
ˇ

(
.2n/!1

nX

iD1
.Yi # XT

i ˇ/
2 C #n

pnX

jD1
!jjˇjj

)
; #n & 0: (2)

where !j D 1=j Ǒ initj$ for some $ & 0, in which Ǒ init is some initial estimator.
When signals are weakly correlated to noises, Huang et al. [16] proved AdaLasso
is sign consistent with !j D 1=j ǑMj j ' 1=j. QXj/TYj, where QX is the centered
and scaled data matrix. One potential issue of this weighting choice is that when
the correlations between some signals and response are too small, those signals
would be severely penalized and may be estimated as noises. We will use numeric
examples to demonstrate this point in the simulation section.

2.3 Sure Independence Screening

To reduce dimension from ultra-high to a moderate level, Fan and Lv [6] proposed
a sure independence screening (SIS) method, which makes use of marginal correla-
tions as a measure of importance in first step and then utilizes other operators such
as Lasso to fulfill the target of variable selection. In particular, first we calculate
the component-wise regression coefficients for each variable, i.e., ǑM

j D . QXj/T QY ,
j D 1; : : : ; pn, where QXj is the standardized j-th column of data X and QY is the
standardized response. Second, we define a sub-model with respect to the largest
coefficients

M$ D f1 ( j ( pn W j ǑMj j is among the first b$nc of allg:

Predictors that are not in M$ are regarded as noise and therefore discarded for
further analysis. SIS reduces the number of candidate covariates to a moderate level
for the subsequent analysis. Combining SIS and Lasso, Fan and Lv [6] introduced
SIS-Lasso estimator,

Ǒ D arg min
ˇ2M$

(
.2n/!1

nX

iD1
.Yi # XT

i ˇ/
2 C #n

X

j2M$

jˇjj
)

D argmin
ˇ

(
.2n/!1

nX

iD1
.Yi # XT

i ˇ/
2 C #n

X

j2M$

jˇjj C1
X

j2Mc
$

jˇjj
)
: (3)

yangfeng@stat.columbia.edu



Regularization After Marginal Learning for Ultra-High Dimensional Regression Models 7

Clearly, $ should be chosen carefully to avoid screening out signals. To deal with
the issue that signals may be marginally uncorrelated with the response in some
cases, iterative-SIS was introduced [6] as a practical procedure but without rigorous
theoretical support for the sign consistency. As a result, solely relying on marginal
information is sometimes a bit too risky, or greedy, for model selection purpose.

3 Regularization After Marginal Learning

3.1 Algorithm

From Sect. 2, one potential drawback shared between AdaLasso and SIS-Lasso is
that they may miss important covariates that are marginally weakly correlated with
the response.

Now, we introduce a new algorithm, regularization after marginal (RAM)
learning, to solve the issue. It utilizes marginal correlation to divide all variables
into three candidate sets: a retention set, a noise set, and an undetermined set. Then
regularization is imposed to find signals in the uncertainty set as well as to identify
falsely retention signals and falsely screened noises.

A detailed description of the algorithm is as follows:

Step 0 (Marginal Learning) Calculate the marginal regression coefficients after
standardizing each predictor, i.e.,

ǑM
j D

nX

iD1

.Xj
i # NXj/

O!j
Yi; 1 ( j ( pn; (4)

where NXj D 1
n

Pn
iD1 X

j
i and O!2j D

qPn
iD 1.X

j
i! NXj/2

n!1 .

Define a retention set by OR D f1 ( j ( p W j ǑMj j & $ng, for a positive constant

$n; a noise set by OND f1 ( j ( p W j ǑMj j ( Q$ng, for a positive constant Q$n < $n;

and an undetermined set by OU D . OR [ ON/c.

Step 1 (Regularization After Screening Noises Out) Search for signals in OU by
solving

Ǒ OR; OU1 D argmin
ˇ OND0

(
.2n/!1

nX

iD1

!
Yi #

X

j2 OU
Xijˇj #

X

k2 OR
Xikˇk

"2
C#n

X

j2 OU
jˇjj

)
; (5)

where the index OU1 is denoted as the set of variables that are estimated as signals
in OU , namely OU1 D f j 2 OU j. Ǒ OR; OU1 /j ¤ 0g. After Step 1, the selected variable set is
OR [ OU1.
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Step 2 (Retrieve Falsely Discarded Signals) Reevaluate the set ON to check
whether it contains any signals. Solve

Ǒ OR; OU1; ON1
D argmin

ˇ OU2D0

(
.2n/!1

nX

iD1

!
Yi #

X

j2 ON
Xijˇj #

X

k2 OR[ OU1

Xikˇk

"2
C #?n

X

j2 ON
jˇjj

)
;

(6)

where OU2 D OUn OU1.
This step is used to retrieve important variables which are weakly correlated to
response marginally. This step can be omitted if we are sure about the noise set
ON. The selected variable set is now OR[ OU1 [ ON1.

Step 3 (Remove Falsely Retained Signals) Inspect the retention set OR to check
whether it contains any noises. Solve

Ǒ OR1; OU1; ON1
D argmin

ˇ OU2[ ON2
D0

(
.2n/!1

nX

iD1

!
Yi #

X

j2 OR
Xijˇj #

X

k2 OU1[ ON1

Xikˇk

"2
C #??n

X

j2 OR
jˇjj

)
;

(7)

where ON2 D ONn ON1.

This step is used to remove noises which are highly correlated with the response
marginally. This step can be omitted if we are sure about the retention set OR. The
final selected variable set is OR1 [ OU1 [ ON1.

The final estimator Ǒ OR1; OU1; ON1
is called the regularization after marginal (RAM)

learning estimator. Note that the optimization problem described Step 2 in the
RAM algorithm is of the same complexity as the original Lasso problem. A more
efficient version of the algorithm where we remove Step 2 is called RAM-2. The
corresponding selected variable set of RAM-2 is OR1 [ OU1 as ON1 D ;.

3.2 Connections to SIS and RAR

In the preparation Step 0 of RAM, marginal correlation provides us with a first
evaluation of the importance for all variables. Usually, we expect that the variables
with highmarginal correlations are likely to be signals, while noises tend to have low
marginal correlations. The choice of the thresholds $n and Q$n are critical to ensure
the accuracy of the retention set and the noise set. We follow Weng et al. [21] to
select $n using a permutation-based approach. In particular, denote Y.1/; : : : ;Y.n/ as
randomly permuted responses. Let $n be the largest marginal regression coefficient
between permuted response and original data, i.e.,

$n D max
1"j"pn

(
jDjj

ˇ̌
Dj D

nX

iD1

.Xj
i # NXj/

O!j
Y.i/

)
: (8)
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In practice, we may adjust the threshold to ensure at most dn1=2e variables are
included in the retention set, considering the root n consistency of classical least
square estimators as well as SIS-based models. For Q$n, we can set it as the n-th
largest coefficient in magnitude so that the cardinality of OR [ OU is n # 1.

RAM-2 is closely connected to SIS. Technically, it utilizes marginal information
to remove as many noises as possible. In addition, RAM-2 can be viewed as a greedy
implementation of RAR+ [21], which is summarized in the following.

– (Retention) Define a retention set OR which represents the coefficients strongly
correlated to response marginally.

– (Regularization) Apply penalization on ORc to recover signals

Ľ D argmin
ˇ

(
.2n/!1

nX

iD1
.Yi # XT

i ˇ/
2 C 0

X

j2OR
jˇjj C #n

X

j2ORc

jˇjj
)
: (9)

– (Redemption) Denote Q D f j 2 ORc W Ľ j ¤ 0g, additional signals detected from
the second step. Calculate the following penalized least square problem:

Q̌ D argmin
ˇ.OR[Q/cD0

(
.2n/!1

nX

iD1

!
Yi#

X

j2OR
Xijˇj#

X

k2Q
Xikˇk

"2
C##

n

X

j2OR
jˇjj

)
; (10)

where #?n is the penalty parameter and is in general different from #n in the
previous step.

The regularization step only imposes penalty to variables that are not in OR. When
all covariates in OR are signals, we need only to recover the sparsity in ORc. Although
RAR performs well when the retention set OR $ S, it could fail to recover the true
sparsity pattern when OR contains noises. Hence, the redemption step is necessary to
rule out falsely selected noises.

As the intrinsic idea for RAR is retention, RAR+ can be regarded as a
bidirectional and self-corrected version of RAR. Motivated by SIS-Lasso (3) and
RAR+ (10), RAM first explores data by dividing variables into three sets in
which one contains signal-like variables, one contains noise-like variables, and one
contains the remaining undetermined variables. In Steps 1 and 3, RAM-2 combines
advantages of SIS and RAR: on one hand, in terms of computational efficiency, like
SIS, it is very efficient, thanks to the many noises screened out in the first step; on
the other hand, RAM-2 could relax the regularity condition for sign consistency due
to the retention set.

yangfeng@stat.columbia.edu
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3.3 From RAM-2 to RAM

Though RAM-2 takes advantages of both SIS and RAR+, it shares the same
drawback as SIS since signals that are marginally uncorrelated with the response
could be removed during Step 1. To avoid fully replying on marginal correlation,
RAM adds Step 2 to recover such signals.

Instead of re-examining OR immediately, the optional Step 2 is designed to
reexamine the “noise” set ONand find signals in it. Intuitively, the retention of signals
in OU1 [ OR gives “weak” signals in ON1 an opportunity to show their significance
in regression. Furthermore, noises in OR will also be weakly correlated with the
residues Y#XU1[N1ˇU1[N1 in Step 3. Thus, we do not start to eliminate unnecessary
variables in OR until all the other signals have been identified. Step 2 in RAM reduces
the risk of signal losses, and increases the reliability of the model selection process.

We provide a brief comparison in Table 1 to show the similarities as well as
differences among SIS-Lasso, RAR/RAR+, and RAM-2/RAM. The last row of
Table 1 shows the final variable selection result. Note that, though some of the
notations for differentmethods are same in Table 1, they are not necessarily identical
since different procedures may lead to different results. Among these methods,
RAM-2 and SIS-Lasso remove the variables in the noise set detected via marginal
learning; RAR retains all variables inR; RAM and RAR+ perform a recheck on all
the candidate sets.

Table 1 Differences among 5 regularization methods using marginal information

RAM-2 RAM SIS-Lasso RAR RAR+
R: Retention set N c: Candidates

R: Retention set
U : Undetermined set Rc: Candidates
N : Noise set N : Noise set

Retain R Retain R Check N c

Check U Check U Remove N
Remove N

Retain R[ U1 Retain R
Check N Check Rc

Retain U1 [N1 Retain .Rc/1

Check R Check R
R1 [ U1 R1 [ U1 [N1 .N c/1 R[ .Rc/1 R1 [ .Rc/1

The subscript 1 for each set denotes the signals recovered from the corresponding sets

yangfeng@stat.columbia.edu
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4 Asymptotic Analysis

4.1 Sure Independence Screening Property

Considering the linear regression model under the scaling log pn D O.na1 /, sn D
O.na2/; a1 > 0; a2 > 0; a1 C 2a2 < 1, which is also required for achieving Strong
Irrepresentable Condition in Zhao and Yu [24]. Under the conditions below, Fan
and Lv [6] showed that SIS asymptotically achieves to screen only noises out. This
result is necessary for the consistency in SIS-Lasso (3) as well as in RAM-2.

Condition 1 var.Y1/ D ˇT
S†SSˇS D O.1/.

Condition 2 ƒmax.†/ ( Cn% for a sufficiently large C; % & 0.

Condition 3 minj2Sjcov.ˇ!1
j Y1;X

j
1/j & c for some positive constant c.

Corollary 1 Under Conditions 1–3, if minj2Sjˇjj & Cn!a3=2 for some a3 2 .0; 1 #
a1/, then there exists some & < 1 # a1 # a3 such that when $ ) n!& , we have

pr.S * M$ /! 1 as n ! 1:

Condition 1 implies that there cannot be too many variables that have marginal
regression coefficients exceeding certain thresholding level as in Fan and Song [7].
When Condition 2 fails, there is heavy collinearity in X, which leads to difficulty
for differentiating signals from linearly correlated noises. Condition 3 rules out the
situation that signals are jointly correlated with Y but their marginal correlations are
relatively weak.

4.2 Sign Consistency for RAM-2

Given the success of screening in the first step, the following conditions are
necessary to achieve sign consistency for RAM-2.

Condition 4 k†ˇk1 D O.n.1!2'/=8/, where 0 < ' < 1
2
is a constant.

Condition 5 minj2Sjˇjj & Cn!ıC a2=2 for a sufficiently large C, where 0 < ı <
f1# max.a1; a2/g=2.

Condition 6 ƒmin.†S[Z;S[Z/ & Cmin > 0, where the strong noise set is defined
as Z D f j 2 Sc W jˇM

j j & $n # c1n!'g with cardinality zn.

Condition 7 k†ZS†
!1
SS k1 ( 1 # ˛, where ˛ > 0.

Condition 8 maxS$Q$S[Zkf†QcQ.†QQ/
!1gS\Rck1 ( 1 # $1, where the strong

signal set is defined as R D f j 2 S W jˇM
j j > $n C c1n!'g and $1 > 0.

yangfeng@stat.columbia.edu
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Theorem 1 If Conditions 1–8 are satisfied and $ D Q$n holds for Corollary 1,
then when zn=sn ! 0; sn ! 1 and #n ) n!ı;###

n ) n!ı, RAM-2 achieves sign
consistency

pr. Ǒ OR1; OU1; ON1
is unique and sign. Ǒ OR1; OU1; ON1

/ D sign.ˇ//! 1; as n ! 1:

Under the scaling conditions described in Theorem 1, Conditions 1 and 4 are
required for establishing the uniform deviation results for marginal regression
coefficients. Condition 5, which is a similar condition as that in Corollary 1,
imposed a lower bound for magnitudes of the marginal regression coefficients.
When strong noises in Z are not highly correlated to the signals, the probability
of sign consistency converges to 1 as n ! 1. In fact, when Z is an empty set,
Conditions 6–8 are generalizations of some key conditions inWainwright [20]. They
relax the irrepresentable condition in Zhao and Yu [24] and give a toleration level
on Z.

4.3 Sign Consistency for RAM

The key point for achieving sign consistency is the restriction for OU1 in Condition 8.
In Step 2, we require similar restrictions on ON1 to guarantee the sign consistency of
RAM. Different with RAM-2, we will take a second look on ONso that the success
of RAM does not heavily depend on the screening step. We still control the scale as
log pn D O.na1 /, sn D O.na2 /; a1 > 0; a2 > 0; a1 C 2a2 < 1.

Theorem 2 Under Conditions 4–8, when zn=sn ! 0; sn ! 1 and #n;##
n ;#

##
n )

n!ı, RAM achieves sign consistency

pr. Ǒ OR1; OU1; ON1
is unique and sign. Ǒ OR1; OU1; ON1

/ D sign.ˇ//! 1; as n ! 1:

5 Numerical Study

5.1 Tuning Parameter Selection

In Weng et al. [21], the reports of successes are with respect to the oracle
performance, namely the existence of an estimator that recovers the true model on
the solution path. When comes to practice, it is necessary to choose an effective
criterion for assessment of models under different tuning parameters #n. Chen and
Chen [3] proposed an extended Bayesian information criterion (EBIC),

BIC$ D BICC 2$ log %.Sk/; 0 ( $ ( 1; (11)

yangfeng@stat.columbia.edu
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where Sk is the collection of all models with k covariates, and %.Sk/ is the size
of Sk. Clearly, in our linear model, %.Sk/ D

#pn
k

$
. EBIC (BIC$ ) usually leads to a

model with smaller size than BIC, since the additional term penalizes heavily on the
model size. Therefore it is suitable for the ultra-high dimensional scenario we are
considering. Chen and Chen [3] also established EBIC’s consistency property. For
all the penalize solution path calculation in the numeric studies, we apply EBIC for
choosing the penalty parameter. Note that beside using a criterion function to select
tuning parameter, another popular way is to use cross-validation-based approaches
including Friedman et al. [14], Feng and Yu [12], and Yu and Feng [23].

5.2 Simulations

Note that in the RAM algorithm, we can replace the Lasso penalty with the adaptive
Lasso penalty for all regularization steps. We implement both versions and call
the corresponding estimators RAM-2-Lasso, RAM-2-AdaLasso, RAM-Lasso, and
RAM-AdaLasso.

We compare the performances of model selection and parameter estimation under
various ultra-high dimensional linear regression settings. The methods included for
comparison are Lasso, AdaLasso, SIS-Lasso, RAR, RAR+, RAM-2-Lasso, RAM-
2-AdaLasso, RAM-Lasso, and RAM-AdaLasso. We set n D 100, 200, 300, 400,
500, and pn D b100 exp.n0:2/c, where bkc is the largest integer not exceeding k. The
number of repetitions is 200 for each triplet .n; sn; pn/. We calculate the proportion
of exact sign recovery and compare the MSE of the coefficient estimates, i.e., k Ǒ #
ˇk22 . All the penalization steps are implemented by using the R package glmnet
[14] with corresponding weights. Note that other solution path calculation methods
can also be used, including LARS [4] and APPLE [22]. The following scenarios are
considered.

(1) The covariance matrix † is

† D
%
†11 0

0 I

&
; where†11 D

2

64
1 : : : r
:::
: : :

:::

r : : : 1

3

75

2sn%2sn

:

Set r D 0:6; ! D 3:5; sn D 4; ˇS D .3;#2; 2;#2/T ; ˇ D .ˇT
S ; 0

T/T . After
calculation, the absolute value of correlations between response and predictors
are .0.390, 0.043, 0.304, 0.043, 0.130, 0.130, 0.130, 0.130, 0, 0, : : :/T .

yangfeng@stat.columbia.edu



14 Y. Feng and M. Yu

(2) The covariance matrix † is

† D
%
†11 0

0 I

&
; where†11 D

2

6664

1 : : : r 0
:::
: : :

:::
:::

r : : : 1 0
0 : : : 0 1

3

7775

.2sn!1/%.2sn!1/

:

(2a) Set r D 0:5; ! D 2:5; sn D 5; ˇS D .3; 2; 1;#1; 0:75/T; ˇ D .0; 0; 0; 0;
ˇT
S ; 0

T/T . After calculation, the absolute value of correlations between
response and predictors are .0.483, 0.483, 0.483, 0.483, 0.772, 0.676,
0.579, 0.386; 0.145, 0, 0, : : :/T .

(2b) Set r D 0:5; ! D 2; sn D 5; ˇS D .2:5; 2; 1;#1; 0:5/T ; ˇ D .0, 0, 0,
0, ˇT

S ; 0
T/T . After calculation, the absolute value of correlations between

response and predictors are .0:497, 0.497, 0.497, 0.497, 0.773, 0.718,
0.607, 0.387, 0.110, 0, 0, . . . /T .

For SIS-Lasso, we select the top n # 1 variables with largest absolute value of
marginal correlations for fair comparison with RAMs. For AdaLasso, the weights
are !j D 1=j ǑMj j as shown in (4). According to Weng et al. [21], the threshold $n
for RAR/RAR+ is determined by one time permuted data,

$n D max
1"j"p

(
jD#

j j
ˇ̌
D#

j D
nX

iD1

.Xj
i # NXj/

Pn
iD1.X

j
i # NXj/2

Y.i/

)
:

For all penalized estimators, EBIC is used to select the tuning parameter. Tables 2
and 3 show the sign recovery proportion and MSE for each method.

In Scenario 1, only RAR+ and RAM-Lasso perform well especially when the
dimension pn becomes large. As the consequence of small marginal correlation
coefficients ˇ2 and ˇ4, the two corresponding signals are screened out at the
beginning, leading to the failure of SIS-Lasso and RAM-2. Their weak marginal
correlations also lead to heavy penalties in regularization, which leads to the low
sign recovery proportion and large MSE of AdaLasso as well as RAM-AdaLasso.
In this scenario, RAR+ and RAM-Lasso perform the best in terms of both sign
recovery proportion and the MSE.

In Scenario 2, an independent signal is included in both Scenario 2a and Scenario
2b, which leads to some interesting findings. For Scenario 2a, RAM-2-AdaLasso
has impressive high success rates as RAM-AdaLasso does. This emphasizes the
important role of marginal learning (RAM-AdaLasso v.s. AdaLasso) and the
advantage from screening (RAM-2-AdaLasso v.s. AdaLasso). Noteworthy, RAM-
2-Lasso is also comparable to RAR+ and RAM-Lasso, so it indicates that the
more efficient version RAM-2 is a worthwhile alternative for variable selection.
In Scenario 2b, with respect to the sign recovery proportion and the MSE criteria,
RAR+ takes the lead while RAM-Lasso and RAM-2-Lasso follow closely.
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Table 2 Sign recovery
proportion over 200
simulation rounds of each
method

n 100 200 300 400 500

Scenario 1
Lasso 0.000 0.000 0.045 0.235 0.450
SIS-Lasso 0.000 0.000 0.015 0.065 0.095
AdaLasso 0.000 0.000 0.010 0.025 0.035
RAR 0.015 0.245 0.370 0.320 0.360
RAR+ 0.025 0.515 0.870 0.900 0.935
RAM-2-Lasso 0.000 0.040 0.125 0.130 0.145
RAM-Lasso 0.090 0.630 0.890 0.880 0.870
RAM-2-AdaLasso 0.000 0.015 0.050 0.065 0.090
RAM-AdaLasso 0.000 0.050 0.190 0.290 0.330
Scenario 2a
Lasso 0.000 0.000 0.005 0.010 0.035
SIS-Lasso 0.000 0.000 0.000 0.005 0.030
AdaLasso 0.000 0.125 0.380 0.625 0.675
RAR 0.000 0.000 0.000 0.000 0.000
RAR+ 0.000 0.095 0.295 0.550 0.665
RAM-2-Lasso 0.000 0.080 0.300 0.530 0.675
RAM-Lasso 0.000 0.100 0.300 0.505 0.645
RAM-2-AdaLasso 0.000 0.105 0.420 0.680 0.835
RAM-AdaLasso 0.000 0.125 0.425 0.710 0.850
Scenario 2b
Lasso 0.000 0.000 0.005 0.105 0.300
SIS-Lasso 0.000 0.000 0.005 0.090 0.255
AdaLasso 0.000 0.075 0.200 0.335 0.390
RAR 0.000 0.000 0.000 0.000 0.000
RAR+ 0.000 0.160 0.330 0.560 0.720
RAM-2-Lasso 0.000 0.110 0.315 0.495 0.630
RAM-Lasso 0.005 0.125 0.350 0.535 0.680
RAM-2-AdaLasso 0.000 0.100 0.300 0.445 0.575
RAM-AdaLasso 0.000 0.120 0.315 0.470 0.645

Note: By setting pn D b100 exp.n0:2/c, the number of
variables are 1232, 1791, 2285, 2750, and 3199, respectively.
The bold values represent the best performing methods under
each scenario

6 Discussion

In this work, we propose a general framework for variable selection in ultra-
high dimensional linear regression model by incorporating marginal information
before regularization. It is shown to have sign consistency under a weaker condition
compared with the one-step procedure if the marginal information is helpful.

The framework is quite general and can be easily extended to the case of
generalized linear models as well as any other penalty form. Another important
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Table 3 Mean square error k Ǒ ! ˇk22 over 200 simulation rounds of each method

n 100 200 300 400 500

Scenario 1
Lasso 4.0218 3.5174 2.3559 1.3320 0.8017
SIS-Lasso 4.0606 3.5962 3.1029 2.9109 2.7388
AdaLasso 3.9857 3.6522 3.2897 3.0739 2.7821
RAR 3.3556 1.6786 0.9485 0.7303 0.6733
RAR+ 3.4226 1.5673 0.7130 0.5413 0.4585
RAM-2-Lasso 3.9420 3.3433 2.9404 2.8482 2.7078
RAM-Lasso 3.0516 1.3942 0.7336 0.6030 0.5093
RAM-2-AdaLasso 3.9469 3.4311 3.0538 2.9292 2.7711
RAM-AdaLasso 3.7514 2.9639 2.0931 1.7351 1.5575
Scenario 2a
Lasso 1.7728 1.5525 1.3311 1.1789 1.0086
SIS-Lasso 1.7684 1.5488 1.3385 1.1724 0.9764
AdaLasso 1.7296 1.3663 0.8032 0.5767 0.4101
RAR 1.6421 0.9908 0.7189 0.6048 0.5104
RAR+ 1.8041 1.3893 0.9026 0.6154 0.4390
RAM-2-Lasso 1.8471 1.4442 1.0207 0.6850 0.5125
RAM-Lasso 1.8900 1.4271 1.0111 0.6608 0.4937
RAM-2-AdaLasso 1.8362 1.4144 0.8883 0.5946 0.4340
RAM-AdaLasso 1.8279 1.4105 0.8534 0.5873 0.4351
Scenario 2b
Lasso 1.5437 1.4189 1.2009 0.8720 0.5943
SIS-Lasso 1.5344 1.4152 1.1709 0.8118 0.5503
AdaLasso 1.5372 0.8574 0.5612 0.4743 0.4279
RAR 1.2475 0.7910 0.6334 0.5047 0.4399
RAR+ 1.5458 0.9677 0.6210 0.4027 0.3242
RAM-2-Lasso 1.5932 1.0729 0.6631 0.4806 0.4106
RAM-Lasso 1.6032 1.0598 0.6585 0.4759 0.3867
RAM-2-AdaLasso 1.5786 0.9240 0.5973 0.4957 0.4237
RAM-AdaLasso 1.5781 0.9262 0.5999 0.4880 0.4026

The bold values represent the best performing methods under each scenario

extension would be the high dimensional classification [9, 10]. How to develop the
parallel theory for those extensions would be an interesting future work.
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Appendix

Proof of Theorem 1 Denote the design matrix by X, response vector by Y, and error
vector by ". The scale condition is log pn D O.na1 /, sn D O.na2 /; a1 > 0; a2 >
0; a1 C 2a2 < 1.

Step I: Recall the index of variables with large coefficients

MQ$n D f1 ( j ( p W j ǑMj j is among the firstb Q$nc of all g D Nc:

Under Corollary 1,

pr.S * MQ$n D Nc D R [ U/! 1 as n ! 1:

Hence with high probability the set ONcontains only noises.
Step II: Next we will show that RAM-2 succeeds in detecting signals in ONc . Let

S D f1 ( j ( p W ˇj ¤ 0g. Denote the compositions S D OR1 [ OU1 and define the
set of noises left in ONc as . OR n OR1/ [ . OU n OU1/ PD OR2 [ OU2, where OR1 and OU1 are
signals from OR and OU , respectively.
Firstly, we would like to introduce an important technique in RAR+. Define the

set of true signals as S, and in an arbitrary regularization, define the set that is hold
without penalty as H while the set that needs to be checked with penalty as C. Let

Ľ D argmin
ˇ

(
.2n/!1kY # Xˇk22 C #nkˇCk1

)
; (12)

Ň D argmin
ˇ.S[H/cD0

(
.2n/!1kY # Xˇk22 C #nkˇC\Sk1

)
: (13)

Now we define Q D S[H which are the variables we would like to retain, and then
the variables that are supposed to be discarded are Qc D C n S.

By optimality conditions of convex problems [2], Ľ is a solution to (12) if and
only if

n!1XT.Y # X Ľ/ D #n@k ĽCk; (14)

where @k Ľ
Ck is the subgradient of kˇCk1 at ˇ D Ľ . Namely, the ith (1 ( i ( pn)

element of @k ĽCk is

.@k ĽCk/i D

8
ˆ̂<

ˆ̂:

0 if i 2 CI
sign. Ľ i/ if i 2 Cc and Ľ i ¤ 0I
t otherwise,
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18 Y. Feng and M. Yu

where t can be any real number with jtj ( 1. Similarly, Ň is the unique solution
to (13) if and only if

Ň
Qc D 0; n!1XT

Q.Y # XQ
Ň
Q/ D #nsig. ŇQ/; (15)

where sig. ŇQ/, a vector of length card(Q), is the subgradient of kˇ NQck1 at ˇQ D ŇQ.
Then it is not hard to see that the unique solution Ň is also a solution for (13) if

kn!1XT
Qc.Y # XQ ŇQ/k1 < #n; (16)

simply because (15) and (16) imply Ň satisfies (14). Solving the equation in (15)
gives

ŇQ D .XT
QXQ/

!1 'XT
QY # n#nsig. ŇQ/

(
: (17)

Using (17) and Y D XSˇS C ", (16) is equivalent to

kXT
QcXQ.XT

QXQ/
!1sig. ŇQ/

C .n#n/!1XT
Qc.I # XQ.XT

QXQ/
!1XT

Q/.XSˇS C "/k1 < 1 (18)

Since .I # XQ.XT
QXQ/

!1XT
Q/XQ D 0, (18) can be simplified as

kXT
QcXQ.XT

QXQ/
!1sig. ŇQ/C .n#n/!1XT

Qc.I # XQ.XT
QXQ/

!1XT
Q/"k1 < 1: (19)

Note that, if there is a unique solution for (12), say Ľ , and Ň satisfies (19), then Ň
is indeed the unique solution for (12). This is equivalent to ĽQc D 0. Furthermore, if
minj2Q jˇjj > kˇj # Ň

jk1 also holds, we can conclude Ľ
Q ¤ 0. Thus (12) achieves

sign recovery. In the following, we will make use of this idea repeatedly.
Secondly, consider the Step 1 (5),

Ǒ OR; OU1 D argmin
ˇ OND0

(
.2n/!1

nX

iD1

)
Yi #

X

j2 OU
Xijˇj #

X

k2 OR
Xikˇk

*2
C #n

X

j2 OU
jˇjj

)
;

D argmin
ˇ OND0

(
.2n/!1kY # Xˇk22 C #nkˇ OUk1

)
: (20)

Here, denote Ľ D Ǒ OR; OU1 . After this step, the ideal result is that with high probability,

Ľ OU1 ¤ 0 and Ľ OUn OU1 D 0: (21)
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Regularization After Marginal Learning for Ultra-High Dimensional Regression Models 19

Therefore, define an oracle estimator of (20),

Ň D argmin
ˇ. OR[ OU1/cD0

(
.2n/!1kY # X OQˇ OQk22 C #nkˇ OU1k1

)
; (22)

where OQ D OR [ OU1 D S [ OR2. Now, we plug Ľ ; Ň , and OQ back to (12), (13),
and (19), then it is sufficient to prove (20) has a unique solution and it achieves sign
consistency with Q D OQ.

Let

F D XT
OQc #† OQc OQ†

!1
OQ OQX

T
OQ;

K1 D † OQc OQ†
!1
OQ OQsig.

Ň OQ/;

K2 D FX OQ.X
T
OQX OQ/

!1sig. Ň OQ/C .n#n/!1FfI # X OQ.X
T
OQX OQ/

!1XT
OQg":

Then, (19) is equivalent to

kK1 C K2k1 < 1:

To be more clear that, since we have already screen ON out, OQc is in fact the
complement of OQ under the “universe” OR[ OU . We write OQc instead of . OR[ OU/n OQ D
OU2 to show a close connection with the analysis in first part above.
Now let

A D fR * OR1 * S; S * OQ * S [ Zg;
B D fS * OQ * S [ Zg;
TA D f.R1;Q/jR * R1 * S; S * Q * S [ Zg:

From Conditions 1 and 4, P.A/! 1 as a direct result of Proposition 2 in Weng et al.
[21]. Since Condition 8 implies

pr.kK1k1 ( 1 # $1/ & pr.fkK1k1 ( 1 # $1g \ A/ D pr.A/! 1 (23)

as given A

kK1k1 D k† OQc OQ†
!1
OQ OQsig.

Ň OQ/k1 ( kf† OQc OQ†
!1
OQ OQg OU1k1

is always less than 1 # $1.
Denote K2.R1;Q/ as the analogy of K2 and ŇQ as the analogy of Ň OQ by replacing

OR1 and OQ in (22) with R1 and Q. Since given XQ and ", the j-th element of
K2.R1;Q/, namely

F. j/XQ.XT
QXQ/

!1sig. ŇQ/C .n#n/!1F. j/fI # XQ.XT
QXQ/

!1XT
Qg"; (24)
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is normally distributed with mean 0 and variance Vj, where

Vj ( .†QcjQ/jj
h
sig. ŇQ/T.XT

QXQ/
!1sig. ŇQ/C .n#n/!2"TfI # XQ.XT

QXQ/
!1XT

Qg"
i

( sig. ŇQ/T.XT
QXQ/

!1sig. ŇQ/C .n#n/!2k"k22:

Hence, we let

H D
[

.R1;Q/$TA

n
sig. ŇQ/T.XT

QXQ/
!1sig. ŇQ/C .n#n/!2k"k22

>
sn C zn
nCmin

.8.sn C zn/1=2n!1=2 C 1/C .1C s1=2n n!1=2/=.n#2n/
o
:

Next, we want to show

pr
!
kK2k1 >

$1

2

"
( pr

!n
kK2k1 >

$1

2

o
\ A

"
C pr.Ac/

( pr
!n [

.R1;Q/$TA

kK2.R1;Q/k1 >
$1

2

o
\ A

"
C pr.Ac/

( pr
! [

.R1;Q/$TA

kK2.R1;Q/k1 >
$1

2
j Hc

"
C pr.H/C pr.Ac/

#! 0: (25)

By the tail probability inequality of Gaussian distribution (inequality (48) in
Wainwright [20]), it is not hard to see that

pr
! [

.R1;Q/$TA

kK2.R1;Q/k1 >
$1

2
j Hc

"

(
X

.R1;Q/$TA

pr.kK2.R1;Q/k1 >
$1

2
j Hc/

( 2snC zn + max
.R1;Q/$TA

pr.kK2.R1;Q/k1 >
$1

2
j Hc/

( 2snC zn + 2. pn # sn/ exp.#$21 =8V/; (26)

where V D .1 C s1=2n n!1=2/=.n#2n/ C snC zn
nCmin

.8.sn C zn/1=2n!1=2 C 1/ & Vj under
conditionHc. Since logŒ2snC znC 1. pn#sn/( D o.$21 =8V/ under our scaling, (26) ! 0.
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To bound pr.H/, note that

pr.H/ ( pr
![

.R1;Q/$TA

n
sig. ŇQ/T.XT

QXQ/
!1sig. ŇQ/

>
sn C zn
nCmin

.8.sn C zn/1=2n!1=2 C 1/
o"

C pr
!
.n#n/!2k"k22 > .1C s1=2n n!1=2/=.n#2n/

"
(27)

Since k"k22 " )2.n/, using the inequality of (54a) in Wainwright [20], we get

pr
!
.n#n/!2k"k22 > .1C s1=2n n!1=2/=.n#2n/

"
( pr

!
k"k22 & .1C s1=2n n!1=2/n

"

( exp.# 3

16
sn/; (28)

whenever sn=n < 1=2. For any given Q that satisfying S * Q * S [ Z,

sig. ŇQ/T.XT
QXQ/

!1sig. ŇQ/ ( .sn C zn/k.XT
QXQ/

!1k2

( .sn C zn/=n
!
k.XT

QXQ=n/!1 #†!1
QQk2 C k†!1

QQk2
"

( .sn C zn/=n
!
k.XT

QXQ=n/!1 #†!1
QQk2 C 1=Cmin

"
:

holds for any R1 that satisfying R * R1 * S. Therefore, by the concentration
inequality of (58b) in Wainwright [20],

pr

 
[

.R1;Q/$TA

n
sig. ŇQ/T .XT

QXQ/
!1sig. ŇQ/ >

sn C zn
nCmin

#
8.sn C zn/1=2n!1=2 C 1

$o
!

(
X

S$Q$S[Z

pr

 
[

R$R1$S

n
sig. ŇQ/T.XT

QXQ/
!1sig. ŇQ/ >

sn C zn
nCmin

#
8.sn C zn/1=2n!1=2 C 1

$o
!

(
X

S$Q$S[Z

pr
!
k.XT

QXQ=n/!1 #†!1
QQk2 & 8

Cmin
.sn C zn/1=2n!1=2

"

(
X

S$Q$S[Z

pr
!
k.XT

QXQ=n/!1 #†!1
QQk2 & 8

Cmin
.Card.Q//1=2n!1=2

"

( 2znC 1 exp
!
# sn
2

"
: (29)

Hence, (28) and (29) imply pr.H/ ( 2znC 1 exp.# sn
2
/C exp.# 3

16
sn/! 0.
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Since P.Ac/ D 1 # P.A/ ! 0, the inequalities (26)–(29) imply (25) under the
scaling in Theorem 1. Thus kK1CK2k1 < 1 achieves with high probability, which
also means Ľ OUn OU1 D 0 achieves asymptotically.

From our analysis in the first part, the following goal is the uniqueness of (20).
If there is another solution, let’s call it Ľ 0. For any t such that 0 < t < 1, the linear
combination Ľ.t/ D t Ľ C .1 # t/ Ľ 0 is also a solution to (20) as a consequence of
the convexity. Note that, the new solution point Ľ.t/ satisfies (16) and Ľ.t/Qc D 0,
hence it is a solution to (13). From the uniqueness of (13), we conclude that Ľ D Ľ 0.

The last part of this step is to prove ŇU1 ¤ 0 with high probability. By (17) and
Y D XSˇS C " D X OQˇ OQ C ", we have

kˇ OQ # Ň OQk1 D k#n.XT
OQX OQ=n/

!1sig. Ň OQ/# .XT
OQX OQ/

!1XT
OQ"k1

( #nk.XT
OQX OQ=n/

!1k1 C k.XT
OQX OQ/

!1XT
OQ"k1

( #n.sn C zn/1=2k.XT
OQX OQ=n/

!1k2 C k.XT
OQX OQ/

!1XT
OQ"k1

( #n.sn C zn/1=2.k.XT
OQX OQ=n/

!1 #†!1
OQ OQk2 C 1=Cmin/

Ck.XT
OQX OQ/

!1XT
OQ"k1 (30)

for any OQ satisfying S * OQ * S [ Z. In (29), we have already got

pr
#
k.XT

OQX OQ=n/
!1 #†!1

OQ OQk2 & 8

Cmin
.sn C zn/1=2n!1=2$ ( 2 exp.# sn

2
/ (31)

Let G D
n
k.XT

OQX OQ/
!1k2 > 9=.nCmin/

o
, by the inequality (60) in Wainwright [20],

pr.G/ ( pr.k.XTX/!1k2 > 9=.nCmin// ( 2 exp.#n=2/:

Since .XT
OQX OQ/

!1XT
OQ" j X OQ " N.0; .XT

OQX OQ/
!1/, then when we condition on G and

achieve

pr
!
k.XT

OQX OQ/
!1XT

OQ"k1 >
.sn C zn/1=2

n1=2C1=2min

"

( pr
!
k.XT

OQX OQ/
!1XT

OQ"k1 >
.sn C zn/1=2

n1=2C1=2min

j Gc
"
C pr.G/

( 2.sn C zn/e!.snC zn/=18 C 2e!n=2; (32)

since under Gc, each component of .XT
OQX OQ/

!1XT
OQ" j X OQ is normally distributed with

mean 0 and variance that is less than 9=.nCmin/.
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Hence (30)–(32) together imply that,

k Ň OQ#ˇ OQk1 ( Un PD#n.snCzn/1=2
! 8

Cmin
.snCzn/1=2n!1=2C1=Cmin

"
C .sn C zn/1=2

n1=2C1=2min

holds with probability larger than 2.sn C zn/e!.snC zn/=18 C 2e!n=2 C 2 exp!sn=2.
Therefore,

pr.k Ň OQ # ˇ OQk1 & Un/

( pr
! [

S$Q$S[Z

fk ŇQ # ˇQk1 & Ung \ B
"
C pr.Bc/

( 2zn
!
2.sn C zn/e!.snC zn/=18 C 2e!n=2 C 2 exp!sn=2

"
C pr.Bc/ (33)

Under the scaling of Theorem 1, we have pr.B/ & pr.A/ ! 1 and 2zn.2.sn C
zn/e!.snC zn/=18 C 2e!n=2 C 2 exp!sn=2/ ! 0. From Condition 5, it is easy to verify
that

min
j2S

jˇjj > Un;

for sufficiently large n. Thus with high probability minj2S jˇjj > k Ň OQ # ˇ OQk1 as n

increases, which also implies Ľ OQ ¤ 0 with high probability.

Finally, Ǒ OR; OU1 exactly recover signals with high probability as n ! 1.

Step III: We need to prove that RAM-2 succeeds in detecting signals via Step 3.
Similar to Step II, we need to define proper Ľ in (12) and Ň in (13). Since the
main idea is the same as the procedure above, we only describe the key steps in
the following proof. Recall the estimator (7),

Ǒ OR1; OU1; ON1
D argmin

ˇ OU2[ ON2
D0

(
.2n/!1

nX

iD1

!
Yi #

X

j2 OR
Xijˇj #

X

k2 OU1[ ON1

Xikˇk

"2
C #??n

X

j2 OR
jˇjj

)

D argmin
ˇ ON[ OUn OU1D0

(
.2n/!1kY # Xˇk22 C #??n kˇ ORk1

)
: (34)

This is a new “ Ľ” in (12), and we denote it as Q̌ . After this step, the ideal result
is that with high probability,

Q̌ OR1
¤ 0 and Q̌ ORn OR1

D 0: (35)
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Therefore, define an oracle estimator of (34),

V̌ D argmin
ˇScD0

(
.2n/!1kY # XSˇSk22 C #??n kˇ OR1

k1
)
: (36)

Now, we plug Q̌ and V̌ back to (12), (13), and (18), then it is sufficient to
prove (34) has a unique solution and it achieves sign consistency with Q D S.
Let

F0 D XT
OR2

#† OR2S
†!1

S XT
S ;

K0
1 D † OR2S

†!1
SS sig. V̌S/;

K0
2 D F0XS.XT

S XS/
!1sig. V̌S/C .n#??n /

!1F0fI # XS.XT
S XS/

!1XT
S g":

Similarly,

pr
!
kK0

1k1 ( 1 # ˛
"

& pr
!˚

kK0
1k1 ( 1 # ˛

+
\ D

"
& pr.D/ & pr.A/! 1;

(37)

where D D f OR2 * Zg and it implies kK0
1k1 ( 1 # ˛ under Condition 7. Let

H0 D
[

R$R2$S

n
sig. V̌S/T.XT

S XS/
!1sig. V̌S/C .n#??n /

!2k"k22 >
sn

nCmin

#
8s1=2n n!1=2 C 1

$

C
#
1C s1=2n n!1=2$=

#
n.#??n /

2
$o
:

Then,

pr
!
kK0

2k1 >
˛

2

"
( pr

!˚
kK0

2k1 >
˛

2

+
\ A

"
C pr.Ac/

( pr
! [

.R2;R1/
R2$Z

R$R1$S

n
k QK2.R2;R1/k1 >

˛

2

o"
C pr.Ac/

( pr
![

.R2;R1/
R2$Z

R$R1$S

n
k QK2.R2;R1/k1 >

˛

2

o
j QHc

"
C pr. QH/C pr.Ac/

( 2znC snC 1zne!˛2=8V0 C 2e! sn
2 C e! 3

16 sn C pr.Ac/

#! 0; (38)
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where the last step of (38) follows from (26), (28), and (29) in the proof of Step
II, and V 0 D sn

nCmin
.8s1=2n n!1=2 C 1/C .1C s1=2n n!1=2/=.n.#??n /

2/.

Equations (37) and (38) indicate Q̌ ORn OR1
D 0. We skip the proof of uniqueness

and move to the next step of proving Q̌ OR1
¤ 0.

k V̌S # ˇSk1 D k.XT
S XS/

!1.XT
S Y # n#??n sig. V̌S// # ˇSk1

( k.XT
S XS/

!1XT
S "k1 C k#??n .XT

S XS=n/!1k1:

Let Wn D #??n s1=2n
#

8
Cmin

s1=2n n! 1
2 C 1

Cmin

$
C s1=2n

n1=2C1=2min

D o.na2=2!ı/. In the same way,

we can show that as n ! 1

pr
#
k V̌

S # ˇSk1 ( Wn
$
! 0

Hence, Condition 5 ensures that as n ! 1,

pr
#
min
j2S

jˇjj > k V̌
S # ˇSk1

$
! 1; (39)

which is equivalent to Q̌ OR1
¤ 0.

Finally, combining Step I, Step II, and Step III, we conclude that

P
# Ǒ OR1; OU1; ON1

is unique and sign. Ǒ OR1; OU1; ON1
/ D sign.ˇ/

$
! 1; as n ! 1:

ut
Proof of Theorem 2 Denote the compositions S D OR1 [ OU1 [ ON1 and define the set
of noises left in OU c as . OR n OR1/ [ . ONn ON1/ PD OR2 [ ON2, where OR1, OU1, and ON1 are
signals from OR, OU , and ON, respectively.

Step I: Consider the Step 1 in (5), which is exactly the same as (20). Since there
is no difference from the Step II in the proof of Theorem 1, we skip the details
here.

Step II: Let’s consider the Step 2 in (6).

Ǒ OR; OU1; ON1
D argmin

ˇ OUn OU1D0

(
.2n/!1

nX

iD1

!
Yi #

X

j2 ON
Xijˇj #

X

k2 OR[ OU1

Xikˇk
"2

C #?n
X

j2 ON
jˇjj

)

D argmin
ˇ OUn OU1D0

(
.2n/!1kY # Xˇk22 C #?nkˇ ON k1

)
: (40)

Here, denote Ľ D Ǒ OR; OU1; ON1
. After this step, the ideal result is that with high

probability,

Ľ ON1
¤ 0 and Ľ ON n ON1

D 0: (41)
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Then, define an oracle estimator of (20),

Ň D argmin
ˇ. OR[ OU1[ ON1/

cD0

(
.2n/!1kY # X OQˇ OQk22 C #?nkˇ ON1

k1
)
; (42)

where OQ D . OR [ OU1/[ ON1 D S [ OR2. Similar to Step II in proof of Theorem 1,
let

F D XT
ON2

#† OQc OQ†
!1
OQ OQX

T
OQ;

K1 D † ON2 OQ†
!1
OQ OQsig.

Ň OQ/;

K2 D FX OQ.X
T
OQX OQ/

!1sig. Ň OQ/C .n#n/!1FfI # X OQ.X
T
OQX OQ/

!1XT
OQg";

and

A D fR * OL1 PD OR1 [ OU1 * S; S * OQ * S [ Zg;
B D fS * OQ * S [ Zg;
TA D f.L1;Q/jR * L1 * S; S * Q * S [ Zg:

Similarly, we get

pr.kK1k1 ( 1 # $1/ & pr.fkK1k1 ( 1 # $1g \ A/ & pr.A/! 1: (43)

To obtain pr.kK2k1 > $1
2
/! 0, we define event H as

H D
[

.L1;Q/$TA

n
sig. ŇQ/T.XT

QXQ/
!1sig. ŇQ/C .n#n/!2k"k22

>
sn C zn
nCmin

#
8.sn C zn/1=2n!1=2 C 1

$
C
#
1C s1=2n n!1=2$=.n#2n/

o
:

Then, following (25)–(29),

pr
#
kK2k1 >

$1

2

$
( pr

!˚
kK2k1 >

$1

2

+
\ A

"
C pr.Ac/

( pr
! [

.L1;Q/$TA

kK2.L1;Q/k1 >
$1

2
j Hc

"
C pr.H/C pr.Ac/

( 2snC zn + 2. pn # sn/ exp.#$21 =8V/C 2znC 1 exp
#

# sn
2

$

C exp
#

# 3

16
sn
$

#! 0; (44)

where V D .1C s1=2n n!1=2/=.n.#?n/
2/C snn!1C!1

min.8s
1=2
n n!1=2 C 1/.
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Again, we skip the uniqueness of Ľ and move to bound k Ň OQ # ˇ NQk1. By (30)–
(32) in the proof of Theorem 1, we have

pr
#
k Ň OQ # ˇ OQk1 & Un

$

( 2zn
#
2.sn C zn/e!.snC zn/=18 C 2e!n=2 C 2 exp!sn=2

$
C pr.Bc/! 0;

where Un D #n.sn C zn/1=2
!

8
Cmin

.sn C zn/1=2n!1=2 C 1=Cmin

"
C .snC zn/1=2

n1=2C1=2min

. As

minj2S jˇjj ! Un with sufficiently large n, we conclude that with high probability
minj2S jˇjj > k Ň OQ # ˇ OQk1 as n increases, which also implies Ľ OQ ¤ 0 with high
probability.

Therefore, Ǒ OR; OU1; ON1
successfully recover signals from ONwith high probability

when n is large enough.

Step III: Following the same steps as in Step III in the proof of Theorem 1, we
have

P
# Ǒ OR1; OU1; ON1

is unique and sign. Ǒ OR1; OU1; ON1
/ D sign.ˇ/

$
! 1; as n ! 1:

ut
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