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Alignment of protein mass spectrometry data by
integrated Markov chain shifting method

YANG FENG, WEIPING MA, ZHANFENG WANG,
ZHILIANG YING*, AND YANING YANG

Mass spectrometers such as SELDI-TOF (surface
enhanced laser desorption/ionization time-of-flight) and
MALDI-TOF (matrix assisted laser desorption and ioniza-
tion time-of-flight) measure the relative abundance of dif-
ferent protein ions or protein fragments (peptides) indexed
by the mass-to-charge ratio (m/z). A special characteris-
tic of the MS spectra is its variabilities in both m/z values
and intensity magnitudes. We propose modelling the log-
intensities by a semiparametric model and the m/z by the
integrated Markov chain shifting (IMS) model, for which
the second-order differences of the random effects are as-
sumed to follow a second-order Markov chain. Alignment of
spectra is done through averaging over the random shifts
conditional on the observed intensity information. The un-
known parameters are estimated by an iterative nonpara-
metric maximum profile likelihood method and a Gaussian
kernel approximation. The bandwidths in kernel approxima-
tion are taken to be 0.04%-0.08% of the m/z values. Simu-
lation results show that the proposed approach can achieve
satisfactory alignment by reducing the intensity variations
of the misalignment spectra by a factor of around 75%. Most
alignment algorithms align spectra by clustering neighbor-
ing peaks and do not incorporate peak height information.
Our semiparametric random shifting method builds a model
taking into consideration of both the random shift effects of
neighboring m/z values and similarity of the intensity mag-
nitudes of common peaks within the ranges of about 50% of
the intensity values.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62P10,
62G99; secondary 92F05.

KEYWORDS AND PHRASES: MS spectra, semiparametric
model, markov chain, integrated markov chain shifting, pro-
file likelihood.

1. BACKGROUND

The field of proteomics is an evolving area, which may
shed light on the proteins associated with diseases and tu-
mors. A powerful tool for proteomic profiling is the mass
spectrometer (MS). It produces high throughput relative
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abundance of protein ions or peptides (fragment of proteins)
of the studied sample, in the form of spectrum. Screening
multiple MS spectra can provide insight into the protein ion
composition of different samples under different conditions.

Mass spectrometers such as SELDI-TOF (surface
enhanced laser desorption/ionization time-of-flight) and
MALDI-TOF (matrix assisted laser desorption and ioniza-
tion time-of-flight) measure the relative abundance of differ-
ent protein ions or peptides indexed by the mass-to-charge
ratio (m/z). MS spectra can reveal proteomic patterns or
features (e.g. biomarker ions) which may be related to spe-
cific characteristics of biological samples and can be used for
diagnostic purposes. They can also be used for prognosis and
for monitoring disease progression and evaluating treatment
or intervention. Other applications of MS spectrum include
pharmaceutical analysis, biomolecule characterization, envi-
ronmental assessment and forensic analysis.

High throughput MS spectra data have raised challeng-
ing issues such as data preprocessing, baseline correction and
peak alignment, among others (Baggerly et al., 2003, 2004;
Diamandis, 2004). An outstanding feature of a typical MS
spectrum is that both the z- and y-axes have measurement
variabilities (Fig. 1). The y-axis of a spectrum is the inten-
sity (relative abundance) of protein/peptide, the z-axis the
mass-to-charge ratio. It is known that the SELDI intensity
measures have errors up to 50% and that the m/z may shift
its value by up to 0.1%-0.2% (Yasui et al., 2003). The vari-
ability of the intensity is largely due to measurement errors,
which can be modelled by adding an additive noise term.
On the other hand, the shift of m/z may cause migration of
important features, resulting in, among other things, diffi-
culties in data analysis. To characterize the MS spectrum of
a sample from a population or to compare spectral patterns
under different conditions, it is essential to identify the same
informative peaks or signals by shifting or aligning the m/z
values properly. Alignment by internal and/or external cali-
bration is usually a first step for aligning MS spectra. This is
done by aligning one or several reference peptides, known as
the landmark registration and implemented in standard MS
softwares (Guilhaus, 1995). However, more delicate align-
ment is needed after the first round calibration due to at
least the following three reasons. First, reference signal(s)
of known peptides may not be accurately spotted; second,
alignment of the reference peptides or protein ions does not
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Figure 1. Illustration of MS spectra.

necessarily imply that other signals are properly aligned;
third, the shifting of m/z is random and cannot be decided
in a deterministic way. In this connection, several alignment
algorithms have been proposed in the literature. They rely
heavily on locating peaks in a given spectrum and align the
spectra accordingly (Yasui et al., 2003; Tibshirani et al.,
2004; Jeffries, 2005; Wolski et al., 2005).

In functional data analysis in areas such as image process-
ing and speech recognition, alignment of several curves with
different time scales via suitable transformation is called
curve registration (Ramsay and Li, 1998; Ramsay and Sil-
verman, 2005). The transformation function for time or
phase is called a warping function. There are many warp-
ing methods for functional data registration. Landmark reg-
istration (Kneip and Gasser, 1992) uses internal/external
references (landmarks) as the guide for warping. The self-
modelling method is an automatic alignment procedure
without using such landmark registration (Lawton et al.,
1972; Ramsay and Silverman, 2005; Ronn, 2001; Gervini
and Gasser, 2004; Ramsay and Li, 1998; Wang and Gasser,
1999). Other methods include shape invariant modelling
(Kneip and Engel, 1995), local regression (Kneip et al.,
2000), among others. All the above mentioned methods as-
sume that the shifting effect is deterministic.

TOF MS spectra demonstrate some special character-
istics. Ideally the m/z value of a TOF MS spectrum is a
quadratic function of the time of flight (Jeffries, 2005; Guil-
haus, 1995). However, we found that the observed m/z val-
ues deviate from these theoretical values randomly, which
can not be properly captured by a few deterministic param-
eters (fixed-effects), and on average the observed m/z values
tend to shift to the right. In this paper, we propose mod-
elling the TOF MS spectra data by a random shift model
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Figure 2. First and second order differences of 75 consecutive
m/z values.

to incorporate the randomness of the shift effect. It contains
a random effect model on the m/z shifts, the second-order
difference of random effect is a second-order Markov chain,
for which the current state depends on previous states only
through the last two states. It also contains a nonparametric
part for the log-intensity curves, representing the true spec-
trum. An important advantage of the random shift model is
its flexibility and efficiency. It models the errors in m/z val-
ues by many small random shift effects. These random vari-
ables are averaged out through marginalization, resulting
in only a few parameters for m/z shifts. Therefore the com-
plexity and delicate structure can be captured appropriately
by these random effects without losing efficiency. Random
shifting method using normal random effects in functional
data analysis can be found in Ronn (2001), Brumback and
Lindstrom (2004).

2. METHODS

The second-order Markov chain property for the second-
order m/z differences is a key to our method. Exploratory
analysis of several SELDI-TOF MS data sets produced from
Ciphergen instrument (Biosystems, Inc.) shows that the m/z
spacings (difference of two consecutive m/z values) deviate
randomly from linearity discretely, jumping up and down
with only a few states. Figure 2 illustrates the first-order
and second-order differences of m/z from a typical spec-
trum. The first-order differences have an overall linear trend,
compatible with the quadratic property of theoretical m/z
values as a function of TOF (Guilhaus, 1995; Jeffries, 2005).
The slight oscillations can be seen clearly from the plot of
second-order differences. Table 1 illustrates the frequencies



Table 1. Distribution of random jumps of A?(m/z)

Jump (x10™"Da) -1 0 1 2
Frequency 0.186 0.494 0.315 0.005

of the four states of jumps in one such case we examined
(m/z values between 2,000-10,000Da). This distribution dif-
fers slightly for different spectra.

Further examination of the second-order differences
shows that transition from one state to another presents
a second-order Markovian property, i.e, the current jump
depends on the previous two. For example, at the scale of
10~%Da, if the previous two jumps are 0, then the next one
could be —1, 0, 1 with probabilities 0.003, 0.642 and 0.355;
if the previous two jumps are 0 and +1, then the next one
could be —1 and 0 with probability 0.744 and 0.256 respec-
tively. Patterns of (0,1,1) or (0,1,2) never occurs for three
consecutive jumps. In summary, second-order difference of
m/z is a constant if there are no errors, the observed m/z de-
viate from this constant by a random discrete jump, which
takes only a few distinct values and all the jumps form a
second-order Markov chain. The cumulative effect of these
small random errors of the second-order differences results
in random shifting of m/z measurements.

Based on these findings, we propose to align multiple
SELDI MS spectra data by a semiparametric random effect
model, and the random effects are the integrated Markov
chain of random jumps on the second-order differences. The
likelihood for the spectra is the marginal likelihood of ob-
served intensities and m/z values with the random effects
being integrated out. We develop an iterative nonparamet-
ric maximum profile likelihood method for solving the in-
terested parameters and a Monte Carlo simulation method
for calculating the conditional expectations. The nonpara-
metric maximum likelihood estimates (NPMLE) of the un-
known parameters turn out to be related to expectations
with respect to conditional distribution of the random shift
effects given the observed intensities. For simplicity, we use
one-sample and multi-sample cases as illustrations to our
method.

2.1 The one-sample integrated Markov
chain shifting model

As demonstrated in the previous section, there exist
random shifts in MS spectra. Consequently, cross-sectional
means of multiple spectra can be very misleading and align-
ment of spectral curves is crucial for analysis of protein mass
spectrometry data. In the sequel, we assume preprocessing
such as normalization, baseline subtraction and external cal-
ibration had been performed with the MS data.

Let t denote the TOF, the time before the particle hits
the detector, and let z;(t) and y;(t) be respectively the
m/z and log-intensity function for the i-th spectrum. Let

zi(t) = %ait2 +bit+ ¢4, t > to, be the true m/z with second-
order difference A?z;(t) = a;, a constant that is not depen-
dent on time t. Note that we allow different spectra to have
different mean values of second-order differences a;’s, and
therefore different b; or ¢;’s. The discrepancy of these coeffi-
cients causes different systematic drifts in true m/z values.
Our algorithm below can automatically account for this kind
of machine drifts besides the random shifts.

Recall that the second-order differences of observed m/z
values deviate from the mean value by a discrete error term,
denoted by 6;(t), with second-order Markovian property. We
therefore assume the following model for the observed m/z
(the z-axis of a spectrum)

(1)

Equivalently we assume the following random shift model

(2)

where the random shift term has the representation

sit) = /Ot /O 5i (w)dudv,

with 6;(¢) being a mean 0 discrete error term satisfying
second-order Markovian property, P(0;(tx) = z|0;(t;),t; <
tr) = P(6;(tr) = x|0;(tk—1), 0:i(tk—2)). We call the random
shift effect s;(t) an integrated Markov chain shifting (IMS)
process.

Suppose there are n individual MS curves from a sam-
ple or group that share the same shape function m(-). For
the log-intensities, we assume the following semiparametric
model

(4)

where m(-) is the true spectrum, ¢;(¢) is the random error
of log-intensity and we assume ¢;(t)’s are independent and
follow normal distribution N(0,0?). Parameters a; and £3;
are respectively the individual magnitude and scale effect for
spectrum ¢. This model describes a functional relationship
between two processed y; and ;.

Combining equations (2) and (4), we have the following
random shift model

(5) si(t)) + €i(t).

Notice here that the §; and «; are not fully identifiable for
all . So we must designate a baseline for them, such as
ﬁl = 1, o] = 0.

In deriving the estimates of the unknown quantities in
this model, we use a nonparametric profile maximum likeli-
hood method, in which we use a Gaussian kernel approxima-
tion method to estimate the shape function m(-). A band-
width parameter, h, in the kernel approximation determines
the smoothness of the curve fitting. To incorporate the m/z

A%zi(t) = a; + (1),  BE(d:(t)) = 0.

Ii(t) = Zz(t) + Si(t)v

(3)

yi(t) = i + Bim(2i(t)) +e(t), i=1,...,n,

yi(t) = a; + Bim(x;(t) —
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variabilities, we recommend choices in the range of 0.04%—
0.08% of the m/z values for bandwidths. This choice can ef-
fectively keep the peak signals of the curves (see Section 2.3
for details).

2.2 The multi-sample Integrated Markov
chain shifting model

A more important issue in proteomic study is to com-
pare proteomic structures under different conditions. The
one-sample semiparametric model can be extended to in-
corporate multiple samples (groups) by introducing differ-
ent shape functions for different samples. Suppose there are
G different samples, and there are n, individual MS curves
in sample g. Let the shape function for sample g be mgy(-)
and assume the following semiparametric model for observed
curves

(6)

where €4; ~ N(0,0?) are independent normal errors, z;(t)
the observed m/z values and s4;(t) the unobserved ran-
dom shift effects at time ¢, where ¢ = 1,...,G and i
1,2,...,n4. The random shift is the double integral of a
second-order Markov chain as described above. In order for
the model to be identifiable, assume ag = 0 and F41 = 1.
Algorithm for fitting this model is similar to the one-sample
case (see Methods).

2.3 Algorithm

We describe our algorithm for the one-sample model (5).
The algorithm for multi-sample model (6) remains almost
the same (see the Remarks at the end of this section). For
the one-sample model (5), we develop a nonparametric pro-
file likelihood method (Ronn, 2001) to estimate parameters
6 and unknown shape function m(t). It has three impor-
tant ingredients: (i) an iterative algorithm, alternating be-
tween estimation of the parametric component 6 and the
nonparametric component m(-); (ii) kernel smoothing for
dimension reduction for the (nonparametric) shape func-
tion m(-); and (iii) integration via Monte Carlo importance
sampling. For given m(+), 0 is estimated using Monte Carlo
method. For given 6 and posterior probability function of the
shift variables given observations, the shape function is es-
timated by nonparametric maximum likelihood method, re-
sulting in a kernel-like estimate, with the “kernel” estimated
from data. Let y; = (y;(u),u =1,...,N), x; = (x;(u),u =
1,...,N),m(x;—s;) = (m(z;(u)—s;(u)),u=1,...,N), and
Gi = Yumy Yi(w) /N, i = Bgpy, [S0,_y mli(w) —si(w) /N
Let fs,y.(si) be the conditional probability function of s;
given y;. Using the nonparametric maximum profile likeli-
hood method and the kernel approximation (Supplementary
Notes), we have the following algorithm:

Ygi(t) = agi + Bgimg(4i(t) — s4i(t)) + €gi

(a) Initialize estimate m(®) by the cross-sectional mean.
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(b) Given m®*~1 k =1,2,..., calculate
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5 _ Zaor Pupy m* D(aiw) = siw) )
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(c) For a pre-specified kernel function K(-), bandwidth h,

(k

estimated values of ﬁi(k), o; ), and ¢2(*) | estimate m(-) by

b

where A%V (¢, u) = mE=D(8) — =D (2, (u) — 5;(u)).

(d) Repeat steps (b) and (c) until Bi(k), dgk), ") and m(*
converge.

Remarks: The NPMLE algorithm for multi-sample model
(6) is basically the same as that for the one-sample model.
The only differences are that the updating formula for m,
in the original algorithm should take summation over ob-
servations i = 1,2,...,n4, and in each iteration ag41, Bg1,
g=1,2,...,G, should be normalized.

In steps (b) and (c) of the algorithm, for a specific func-
tion 1, one can approximate the conditional expectation

(™) e

by Monte Carlo importance sampling method. Specifically,
one can approximate this integral by generating random
numbers repeatedly from s; instead of directly from fq, |y,
and average over the quantities in the bracket.

We found that the importance sampling method is advan-
tageous in reducing the amount of computational resources.
We use the marginal distribution of the random shift as the
proposal distribution instead of drawing random samples

Esi|yiw<si>



from target distribution fj,y,, for which a Gibbs sampler
is preferred in updating various parameters and samples re-
peatedly. The advantage of using this proposal is that the
distributions of random effects do not depend on the un-
known parameters. The resulting Monte Carlo simulation
of the conditional means can be relatively stable than up-
dating the proposed distribution iteratively.

The bandwidth specifies the number of neighboring m/z
values around a point that are used for local smoothing. A
suitable choice for the bandwidth should take into consid-
eration of the trade-off between smoothness and accuracy.
For example, if h is large, the fitted spectrum m(-) will be
smooth and the accuracy will be low; on the other hand if
it is small, then the fitted curve lacks smoothness and has
high accuracy of retaining the original signals. Since it is
desirable for an alignment algorithm to keep the intensity
signals, we suggest using relatively small bandwidths that
are comparable to the common choice of 0.1%-0.2% slid-
ing window method. When a Gaussian kernel function is
used, the 99% confidence interval is treated as a window
which has width of 2 x 2.576h. Therefore a suitable choice
of bandwidth analogous to the 0.1%-0.2% sliding window
method is h = 0.001/2.576 ~ 0.04% to 0.002/2.576 ~ 0.08%
of the m/z values.

3. RESULTS

3.1 One-sample case

Extensive simulations are conducted to check perfor-
mance of the proposed method. Special attention is being
paid to the unbiasedness and accuracy of the estimates of
parameters «, § and function m(-). We first generate a ref-
erence spectrum, mimicking the underlying true MS spec-
trum. We then generate n random copies from model (5).
Estimates of a, 8 and m(-) are obtained using the proposed
algorithm in the last section.

To run a large number of simulation replicates, the com-
putational burden becomes prohibitively heavy when the
number of m/z points is also large. To ease the computa-
tional intensity, we choose N = 100 m/z points. The refer-
ence spectrum (true spectrum) contains many spikes and is
shown in Fig. 3. From this, all simulated spectrum curves
yi(t) are generated by including random shifting effects in
m/z (z-axis of a spectrum) and random errors for the inten-
sities (y-axis). Since smaller bandwidth in the kernel func-
tion is usually preferred in order to keep the original signals,
we use 0.04%-0.08% bandwidths in our simulations.

We take the sample size (number of spectral curves) n =
20. The true values of the parameters «;, 5;, 1 =1,2,....,n
are chosen as in columns 2-3 of Table 2. The true stan-
dard deviation of the random errors is set at ¢ = 0.1. For
the random shifting effects, the transition probability ma-
trices for the second-order Markov chains are taken to be
the estimated frequencies from a sample of 20 sets of m/z
values estimated from a real data set, all of which have four
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Figure 3. True curve (top row) and simulated curves (bottom
row).

states 0,+1,2 (we use the scale of 0.005Da instead of the
true scale 107*Da, in our simulation in order for the ran-
dom shifts to be discernable). Analogous to the true mass
spectrometry data, here we use the log-intensity for the anal-
ysis because it has peaks of the similar width and has sta-
ble variances. In each replicate of the simulations, the log-
intensities are generated according to model (5), in which
€(t),1=1,...,20,t =1,...,100, are independent and iden-
tically distributed (iid) as N(0,0%). And we generate the
m/z’s from the second-order Markov chain with the given
transition probabilities. As an illustration, four simulated
spectra are plotted in Fig. 3. Random shifts in the m/z’s
can be seen in this realization. Apparently, alignment of the
spectra is needed for estimating the true spectra and for
any statistical inference. Note that the random shifts will
be more evident if the number of m/z values is larger.

We run 500 simulation replicates using the settings as
described. To evaluate the conditional expectations in the
expression of estimates, we generate 100 copies of m/z start-
ing from 5500 with second-difference jumping at the scale
of 0.005Da for each spectral curve by importance sampling
method. To estimate the true curve, we use the Gaussian
kernel with bandwidth set at h? = 5 for getting a spiky es-
timate and h? = 20 for a slightly smoother estimate. These
values correspond to 0.11% and 0.21% sliding windows, re-
spectively.

The fitted curves and the true log-intensity values are
shown in Fig. 4. It shows that the algorithm can produce
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Table 2. Regression parameter estimates

h? =5 h? =20
D o« 3 & &
1 0 1 0.000(0.000) 1.000(0 000)  0.000(0.000) 1.000(0 000)
2 0 1 0.000(0.014)  0.999(0.048)  —0.001(0.015)  1.000(0.051)
3 0 1 —0.003(0.014)  0.988(0.048) —0.003(0.014) 0.998(0.051)
4 0 1 —0.003(0.014)  0.993(0.046) —0.002(0.014)  0.997(0.049)
5 —025 1.25 —0.251(0.016) 1.248(0.053) —0.25(0.017)  1.252(0.055)
6 —025 1.25 —0.251(0.016) 1.248(0.053) —0.25(0.017)  1.258(0.06)
7 025 125  0.246(0.015) 1.236(0.053)  0.247(0.018) 1.247(0.058)
8 0.25 1.25  0.247(0.015) 1.240(0.054)  0.248(0.017) 1.251(0.056)
9 —05 1.5 —0.500(0.017) 1.498(0.061) —0.501(0.020) 1.504(0.066)
10 —05 1.5 —0.500(0.017) 1.497(0.055) —0.499(0.020) 1.505(0.062)
11 05 15 0.494(0.018)  1.484(0.060)  0.496(0.021)  1.496(0.066)
12 05 15 0.497(0.017)  1.487(0.062)  0.498(0.021) 1.497(0.064)
13 —0.75 1.75 —0.750(0.020) 1.748(0.068) —0.750(0.023) 1.757(0.073)
14 —0.75 1.75 —0.751(0.019) 1.746(0.067) —0.751(0.024) 1.757(0.076)
15 075 1.75  0.743(0.020) 1.728(0.066)  0.745(0.024) 1.749(0.076)
16 0.75 1.75 0.746(0.020)  1.734(0.065) 0.747(0.023)  1.744(0.074)
17 -1 2 —1.001(0.021)  1.997(0.078) —1.000(0.026)  2.007(0.083)
18 -1 2 —1.002(0.021)  1.992(0.076) —1.001(0.028)  2.007(0.085)
19 1 2 0.993(0.022) 1.978(0.072)  0.995(0.027) 1.997(0.081)
20 1 2 0.996(0.022)  1.979(0.073)  0.996(0.025)  1.997(0.079)
*Standard deviations are in parentheses
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Figure 4. The true value and the fitted value of the Figure 5. Two sample spectra and estimated spectra when

intensities versus m/z.

rather accurate estimate of the true curve. The signals rep-
resented by the spikes are retained in the estimated curves
for small choice of bandwidths (h? = 5). Furthermore, larger
bandwidth (h? = 20) leads to smoother estimate.

The true and the mean estimated values «;, 3;, and their
variances are shown in Table 2. We can see that the param-
eter estimates are close to the true values and that there
is no systematic bias. However, the variances of the B tend
to increase as true value (3 increases, this is caused by the
standardization in step (b) of the algorithm and the greater
variabilities of the intensities for large (3. Variances of & have
the same trend since it is a linear function of 3. The esti-
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h? =5.

mated value of o is 0.124 (sd = 0.0016) for h*> = 5 and
0.193 (sd = 0.0017) for h* = 20. These values tend to over-
estimate the true variance of noises, mainly due to the local
smoothing effect.

Figure 5 illustrates the effect of alignment. The dotted
lines are two sample spectra curves with random errors in
both z-axis and y-axis, while the solid line is the fitted curve.
To make the alignment more evident, we normalize the two
sample spectra curves to the same level and scale by sub-
tracting the estimated « and rescaling by estimated 8. The
fitted curve looks very similar to the two sample curves in
the shape and they only differs in the m/z values. This im-
plies alignment have been achieved. Therefore the IMS al-



Table 3. Regression parameter estimates (h? = 5)

Sample 1 Sample 2
D« 3 & i & i
1 0 1 0.000(0.000)*  1.000(0.000) 0.000(0.000)  1.000(0.000)
2 0 1 0.000(0.014) 1.004(0.049) 0.002(0.015)  0.996(0.041)
3 —025 1.25 —0.255(0.017)  1.243(0.058) —0.244(0.016) 1.255(0.048)
4 025 125  0.245(0.019) 1.251(0.058)  0.255(0.016) 1.258(0.050)
5 —05 1.5  —0.502(0.019)  1.505(0.054) —0.497(0.015) 1.487(0.056)
6 05 15 0.498(0.019)  1.509(0.060)  0.502(0.017) 1.487(0.055)
7 —0.75 175 —0.756(0.021)  1.742(0.072) —0.742(0.021)  1.750(0.065)
8 0.75 1.75 0.746(0.022) 1.747(0.065) 0.758(0.018)  1.746(0.068)
9 -1 2 —1.001(0.022)  2.004(0.076) —0.996(0.023)  1.986(0.073)
10 1 2 0.996(0.023)  2.010(0.077)  1.002(0.022)  1.990(0.075)
*Standard deviations are in parentheses
gorithm does the alignment automatically by averaging over 2
the random shift effect. -
We have simulated N = 100 m/z values with the in- é 0 |
tegrated Markovian shifts and demonstrated that the IMS ;2 °
algorithm can estimate the reference spectrum and the loca- én °
tion and scale parameters rather accurately. The amount of é S 7
signal information retained in the estimated curves depends = o
on the bandwidth specification. The reference curve is cho- £ S
sen to be rather spiky. Since keeping the spike information S —— True curve for sample 1
is important for subsequent analysis, the curve have been e | —— True curve for sample 2
estimated using small bandwidths in the alignment proce- : T T T T 1
dure. 5500 5510 5520 5530 5540
3.2 Two-sample case m/z
The following contains some simulation results for the e
two-sample case. The true regression parameters (a, 3) are . T
shown in Table 3, the true standard deviation for the error ‘é 0 |
terms is taken to be o = 0.1. The two true curves m;(-) and & ©
ma(t) for the two groups are displayed in the top panel of L
Fig. 6. The peak patterns are similar at most of the m/z val- g S
ues for these two samples, though the intensity values differ 8
for some of the m/z values. The major difference lies at m/z % .
value around 5530 where group 1 has a peak and group 2is & ' — Sample 1
flat. We repeatedly generate 10 curves from each group, and o | — Sample 2
implement 500 replicates of simulation. The bottom panel i T T T T T
of Fig. 6 displays two observed curves for each group (thin 5500 5510 5520 5530 5540
lines), the fitted curves using h? = 5 for the two groups '
m/z

are the two thick lines, which are seen to be very accu-
rate estimates of the true curves as shown in the top panel.
Variabilities in both m/z and intensities can be clearly seen
from the observed curves in both groups. Especially at the
right end, the two observed curves in each group are shifted
prominently.

To keep the signal information we have used a small band-
width h? = 5, which corresponds to a 0.11% sliding window
in the common peak alignment algorithm. This is because
we have used Gaussian kernel, the 99% confidence interval
has width 2 x 2.576h = 11.52 which is about +0.11% of the
m/z values ranging between 5500 to 5540 we had simulated.

Figure 6. Two-sample curve estimation with IMS alignment
(Top panel: true curves; bottom panel: observed (thin lines)
and fitted (thick lines, h> = 5) curves for the two groups).

Figure 7 compares the fitted curves and the true curves for
the two samples. It can be seen that the estimated curve
for each sample fits the true curve almost perfectly, while
the sample/group differences are kept. These fitted curves
are obtained from randomly shifted curves. Table 3 lists the
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Table 4. Estimates of a;(x10~%) and f3; of the twenty curves

ID 1 2 3 4 5 6 7 8 9 10
&; 0.000 0.033 4.640 4.457 2.920 0.085 4.949 2.754 0.062 4.653
Bi 1.000 1.164 1.259 1.222 1.272 1.416 1.351 1.204 1.303 1.262
ID 11 12 13 14 15 16 17 18 19 20
&;  4.617 3.223 0.026 4.721 4.923 4.358 —5.555 4.907 0.032 4.299
Bi 1.264 1.395 1.128 1.291 1.332 1.196 1.372 1.328 1.158 1.180
o |
g
> :
’5) o | T -
[ o o
£ 3
£ & o4
| £
g o B
o © "
[0}
N
‘_g 0 5500 5600 5700 5800 5900
GC) S m/z
) ! —— True curve for sample 1
- - - Fitted curve for sample 1
o True curve for sample 2
- - - - - Fitted curve for sample 2
! T T T T
5500 5510 5520 5530 5540 7
m/z ]

Figure 7. Observed and fitted curves for two-sample (thick
lines: fitted curves; thin lines: observed curves with random
shifts).

estimated regression parameters for h? = 5. All the esti-
mates are close to the true values. The standard deviation
of the noise is estimated to be 6 = 0.123 with standard error
0.0026.

It is worth noting that the proposed IMS model is in
fact a marginal model for log-intensities. The dependence
structure of neighboring intensities is hard, if not impossible,
to capture, and the normality assumption may not be true in
a strict sense in practice. In some sense, the independence
and normality assumptions in our model are only used to
derive an effective algorithm. Validity of this approach is
analogous to the validity of least squares method when the
latter is applied to data that may be neither independent
nor normally distributed.

3.3 A real data example

The data set we use is from a liver cancer study con-
ducted in Changzheng Hospital, Shanghai, in 2004. Normal-
ization, baseline subtraction had been done by using version
3.1.1 of Ciphergen ProteinChip Software (Biosystems, Inc.).
For the purpose of demonstrating our proposed method, we
randomly choose 20 of the MS spectra from the liver can-
cer group, and implement the alignment algorithm on these
spectra for 1000 m/z values.
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fitted log—intensity

5500 5600 5700 5800 5900

m/z

Figure 8. The original centralized log-intensities (upper row)
and the fitted values (lower row) for 20 liver cancer patients.

The data show great variabilities as seen in Fig. 8 (up-
per panel) for 1000 m/z values. These variabilities arise
from both the errors in intensity values and misalignment.
Clearly, the spectra need to be aligned first. We designate
the first spectrum as the reference curve in the IMS method,
and choose the bandwidth h? = 5. The estimated o and 3
values of the twenty spectra are as in Table 4. We can see
from the table that the values of ; range from 1 to 1.416,
which is consistent with the approximately 50% variation
from true intensities as claimed by the vendor. Figure 8
(bottom panel) displays the centralized fitted log-intensities,
alignment can be spotted in the fitted values. Furthermore,
all the characterized peaks have been extracted out while
the small fluctuations are smoothed out.

Since unaligned spectrum curves presumably exhibit
larger variation across multiple spectra at each observed
m/z, the coefficients of variation (cv), which is the ratio
of standard deviation and mean, of the log-intensities is a
proper measure of alignment algorithms (Jeffries, 2005). We
emphasize that the variation in the original curves consists



Table 5. Quantiles of coefficients of variation

Quantiles 25% 50% 75%
cvy (original data) 0.201 0.307 0.716
cvy (aligned data) 0.081 0.081 0.081
cvy/cva 2.482 3.790 8.840

of both the variations from noises and from misalignment
of the curves. To assess the accuracy of the alignment, we
calculate the cv at each of the 1000 m/z’s across the 20
original spectra and the aligned ones. See Table 5 for sum-
maries of the cv values. Note that our method assumes that
all the 20 spectra share the same shape curve m(-) because
they belong to the same group and all the variations of the
aligned spectra rooted from variations of the estimated [3;’s.
Therefore, the cv of the aligned spectra is the cv of the es-
timated [3’s, which is 0.081. The median of the cv’s is 0.307
for the original data and 0.081 for aligned data by the IMS
algorithm. The median ratio of the two sets of cv’s is 3.790,
implying that our algorithm can in general reduce variation
by a factor of 1 —1/3.790 = 73.6%. The data show great
variabilities as seen in Fig. 8 (upper panel) for 1000 m/z
values. These variabilities arise from both the errors in in-
tensity values and misalignment. Clearly, the spectra need
to be aligned first. We designate the first spectrum as the
reference curve in the IMS method, and choose the band-
width h? = 5. The estimated o and 3 values of the twenty
spectra are as in Table 4. We can see from the table that
the values of ; range from 1 to 1.416, which is consistent
with the approximately 50% variation from true intensities
as claimed by the vendor. Figure 8 (bottom panel) displays
the centralized fitted log-intensities, alignment can be spot-
ted in the fitted values. Furthermore, all the characterized
peaks have been extracted out while the small fluctuations
are smoothed out.

Since unaligned spectrum curves presumably exhibit
larger variation across multiple spectra at each observed
m/z, the coefficients of variation (cv), which is the ratio
of standard deviation and mean, of the log-intensities is a
proper measure of alignment algorithms (Jeffries, 2005). We
emphasize that the variation in the original curves consists
of both the variations from noises and from misalignment
of the curves. To assess the accuracy of the alignment, we
calculate the cv at each of the 1000 m/z’s across the 20
original spectra and the aligned ones. See Table 5 for sum-
maries of the cv values. Note that our method assumes that
all the 20 spectra share the same shape curve m(-) because
they belong to the same group and all the variations of the
aligned spectra rooted from variations of the estimated 3;’s.
Therefore, the cv of the aligned spectra is the cv of the es-
timated [’s, which is 0.081. The median of the cv’s is 0.307
for the original data and 0.081 for aligned data by the IMS
algorithm. The median ratio of the two sets of cv’s is 3.790,
implying that our algorithm can in general reduce variation
by a factor of 1 —1/3.790 = 73.6%.

4. DISCUSSION

Data preprocessing such as normalization and baseline
subtraction is usually the first step for analyzing MS data.
Besides internal/external calibration, more delicate spectral
alignment is needed in order to carry out data analysis. The
IMS method proposed in this paper appears to be capa-
ble of achieving better alignment of the whole curves, not
merely peaks. A key ingredient is the integrated Markov
chain model for the random shifts in m/z values. Our ex-
perience with TOF MS data indicates that this model does
capture important features of MS spectral data. The peak
differences among several groups can be efficiently detected
by the IMS model for multi-sample problems.

The IMS algorithm computes estimates iteratively, alter-
nating between the nonparametric component and paramet-
ric component of the model. The distribution of the inte-
grated Markov chain of shifts is obtained from the observed
m/z values, and the random shifting effect is averaged out
naturally by the conditional expectation of shifts. In this
connection, the IMS algorithm is a self-modelling alignment
(warping) method, making use of the natural connection of
shifts with intensity magnitudes through computing expec-
tations with respect to the conditional distribution of the
random shift given the corresponding intensity information.

Results of simulation studies and real data analysis show
that the proposed IMS method is rather satisfactory in
aligning multiple TOF MS spectra. Random shifts resulted
from accumulations of minor random jumps of second-
order differences of m/z are accounted for by the integrated
Markov chain shifting effects. There is a substantial reduc-
tion in the variability (from both the random errors in in-
tensities and the misalignment) among multiple spectra as
measured by coefficients of variation. As shown in the real
data example, even if the data have been normalized in pre-
processing step, inclusion of the baseline (a;) and scale (5;)
parameters is still needed in order to account for individual
baseline variabilities.

A large bandwidth choice smoothes out the curves but
may cause losses in signals or peaks which is regarded as in-
formative in mass spectrometry. We propose using 0.04%—
0.08% bandwidths when Gaussian kernel function is used
in smoothing, which is compatible with the common 0.1%—
0.2% sliding window method. In this sense, our method can
achieve similar alignment effect with the sliding window
method. This bandwidth selection rule has been shown to be
efficient in keeping signal information. In some applications
alignment of the spectra instead of peaks may be required
for subsequent data analysis, but peak picking methods may
overlook some small peaks that are informative for differen-
tiating different groups. An advantage of the proposed IMS
method is that it can simultaneously perform alignment of
entire spectra curves and local smoothing, rather than just
alignment of peaks.

We have assumed that the errors in the proposed model
are independent and normally distributed. Apparently,
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nearby intensities are likely to be correlated with one an-
other. Rationale for this assumption can be seen from a
marginal modelling viewpoint, for which dependent data is
modelled marginally with a working independence assump-
tion. Useful methods of this kind include the generalized es-
timating equation method (GEE, Liang and Zeger, 1986) for
modelling longitudinal data and the Naive Bayesian Classi-
fier (NBC) in machine learning. The approach may be best
understood via the least squares (LS) method, which is most
efficient if the errors are independent and identically nor-
mally distributed. But LS method is still valid if the inde-
pendence or the normality assumption is dropped as long as
the mean functions are correctly specified (misspecification
of variance-covariances only causes some efficiency losses).
We have used similar marginal methods in building the ran-
dom shift model. The parameter and curve estimates are
correct (unbiased) when the mean function is correctly spec-
ified. The validity of the proposed model can also be seen
from the simulation studies.

We have demonstrated estimation of curves with random
shifts mainly for the one-sample problem. We have also con-
sidered application of the IMS algorithm in multi-sample
problem by introducing different shape functions for differ-
ent samples. It is shown that the algorithm can effectively
align multiple spectrum curves and detect the differences
among different samples. Adjustment of other factors can
be done by adding extra covariate variables in the semi-
parametric random effect model. This issue will be pursued
elsewhere.
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APPENDIX A. DERIVATIONS OF THE
NPMLE ESTIMATES IN THE
ONE-SAMPLE MODEL
To simplify expression, we denote D;(u) = x;(u) — s;(u)
and D; = (D;(u),u =1,...,N). The likelihood function for
the spectra can be written as

(1) Lm,6) = [Ty =TT [ Ao 5 futss

llys —ai —Bim(D5)||?
n exXp { — 252 fSi (Si)dsi
il ( )

(2m02) % ’

where y; = (yi(u),u = 1,...,N), x; = (x;(u),u =
1,...,N), m(D;) = (m(z;(u) — s;(u)),u = 1,...,N). Let
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fsily. (si) be the conditional probability function of s; given
yi:

f (S) _ f)’i|5i(yi)fsz‘ (Sl>
silya i f f)’ilsi (vi) fs: (Si)dsi’

where
Fyuton (i) = e exp (= = [ly: — o — Brm (D)2
Yi|S1, Yi) = (27T02)N/2 €xXp 20_2 Yi Q; 31 7 .

We then proceed with estimating the unknown quantities as
follows.

Given m, we maximize the profile likelihood over the re-
maining parameters to get

o ol By, [m(Dy(w) — malyi(u)

Yoot B wly [m(Di(w)) — )2
(9) & = i — mafi,
and

n N
(10) 5 = =2 33" Eosuy () — s — (D (w))?

i=1 u=1

_ N _ N

where g; =3, yi(u)/N, m; = Es,)y, > u—q m(D;(u))/N].
As we mentioned before, for all parameters to be identifiable,
we need to set

Bi = Bi/ B, Q=0 —ag, t=1,...,n.

To derive the score function for m, we use the Hadmard
derivatives for functionals. Given an arbitrary direction h(-),
the score for m(-)

dlogL, . 1 OLi(m+ uh,0)
om (h)_;Li(m,H) ou fu=o

1 En: J Bi(h(Di),yi — i = Bim(Dy)) fy,1s, (i) fs; (si)ds;

02 =1 f‘fy’tlsl(yl)fsl (si)dsi
= % Eq, |y, Bi(h(D:),y: — a; — Bim(Dy))

i=1

n N
1

= = DD BBy, () — as = Bm(Di ()] A (Di(w)).

1=1 u=1
Since this is linear in h, we may choose various h in the score
to obtain a series of equations. In particular, letting h(r) =
d:(r), the Dirac function, in the score equation al,d(’TiL (h) =
0, we get

i Y Bolys(w) — i) fos s (wa(w) — 1)
> e 25:1 5z'2fsq,(U)\yi (zi(u) —1)

which can be shown to be the solution to ag)—ngf(h) = 0 for
any h.

(11)  mn(t)

)



APPENDIX B. KERNEL APPROXIMATION

TO THE NPMLE IN THE
ONE-SAMPLE MODEL

Calculation of the conditional density fq, (u)|y, (zi(u) — 1)
is rather involved and inaccurate. One may approximate it
by a kernel method. Let K(-) be a kernel density function
such that K > 0, [ K(u)du = 1, symmetric and attains
the maximum at 0. For example, the kernel function can
be taken as the Gaussian density function K(x) = e
The NPMLE for m(-) in (11) can be approximated through
taking hi(u) = K(Ju — t|/h) in the score equation for an
arbitrarily small A > 0. Intuitively as h — 0, h;(u) converges

to the Dirac function d;(u), i.e., as h — 0,

/ o(2)K (|2 — t]/h)dz — g(t) = / 9(2)8:(x)de,

if g is continuous. This may be best understood when the
kernel is taken to be the Gaussian density function, for which
h is the standard deviation, and as the standard deviation
approaches 0, mass concentrates around the center/mean ¢,

and the expectation Eg(x) approaches g(t). Then

(12)
n N
Z Z BiEs, |y, {(yi(u) — o — Bim(Di(u))he(Di(u)))}
i=1 u=1
n N
~ 330~ LYORY
I~ ;;ﬁz(yz(u) (071 Blm(t))EsinK ( .

From (11) and (12), we obtain the following approximate

estimate of m

_ X Sl Bilwilu) — 0) By K (P

mh(t) - ) —
Zi:l Zivzl 51'2Esqc\y7:K( ‘DZ(h) tl)

Remark: Approximation (12) can be improved by noting

D> BBy, {wiw) — @i = Bem™ (Di()))he(Di(w)) }

i=1 u=1

n

=1 u=1

£33 BB, { [Bem® D (¢) - Bim ™) (Di(w))]

x (2=}

This results in the following iterative process for calculating

=~ Z ZﬂiEs,ini {(yz(u) — oy — ﬁim(k) (K (%) }

the NPMLE:

151'2Esi\yiK (Si(u)*(zi(u)*t))

=1
3 50 BBy, {ACD (1)K ()

n N
Z:l Z:l ﬁiQESf,lyz‘K (w)

where AF=D (¢, u) = mFE=D () — mE=D (2;(u) — 5;(u)).

This is what we have used in the algorithm. We found
that with this iterative modification for estimating m(-), the
fitting process tends to converge more quickly and the re-
sulting estimates tend to be more accurate.
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