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Abstract In family studies with multiple continuous phenotypes, heritability can be
conveniently evaluated through the so-called principal-component of heredity (PCH,
for short; Ott and Rabinowitz in Hum Hered 49:106–111, 1999). Estimation of the
PCH, however, is notoriously difficult when entertaining a large collection of phe-
notypes which naturally arises in dealing with modern genomic data such as those
from expression QTL studies. In this paper, we propose a regularized PCH method
to specifically address such challenges. We show through both theoretical studies and
data examples that the proposed method can accurately assess the heritability of a
large collection of phenotypes.

Keywords Expression quantitative trait loci · Family study · High dimensional
data · Linear discriminant analysis · Principal components · Sparsity

1 Introduction

For many common diseases, defining genetically relevant phenotypes and appropri-
ately assessing their heritability is important yet challenging (e.g., Winawer 2006).
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456 Y. Fang et al.

A common practice is to first obtain information on a variety of phenotypes, and
then seek the most genetically relevant phenotypes by combining them through the
so-called principal-components of heredity (Ott and Rabinowitz 1999).

Let d be the number of phenotypes under consideration, and let d dimensional
vector Yi j be the collection of phenotypes for subject j in family i such that

Yi j = μ + Ai + Ei j , i = 1, . . . , n and j = 1, . . . , mi , (1)

where n is the number of families in the sample, and mi is the number of subjects
in family i . It is clear that the heritability of any linear combination of phenotypes,
βTYi j , can be given as

h(β) := βT�Aβ

βT(�A + �E )β
, (2)

where �A and �E are the covariance matrix of the family effect A and subject effect
E respectively. The overall heritability of the phenotypes can then be assessed by

hmax := max
β:‖β‖=1

h(β),

where ‖ · ‖ is Euclidean norm, and the maximizer of β, denoted by β0, is referred to
as the principal component of heritability (PCH, for short).

In practice, covariance matrices �A and �E are often estimated by their respec-
tive sample version, leading to the sample PCH. More specifically, let Y i. =∑

j Yi j/mi , Y .. = ∑
i
∑

j Yi j/N , and N = ∑n
i=1 mi . The sample covariance matri-

ces of the family and subject effects are given by

�̂E =
∑ ∑

(Yi j − Y i.)(Yi j − Y i.)
T/(N − n),

and

�̂A =
∑ ∑

(Yi j − Y ..)(Yi j − Y ..)
T/(N − 1) − �̂E ,

respectively. The sample PCH is then defined as

β̂ Sample = arg max
β:‖β‖=1

hn(β),

where

hn(β) = βT�̂Aβ

βT(�̂A + �̂E )β
.

For brevity, in what follows, we shall write �T = �A + �E and correspondingly

�̂T =
∑ ∑

(Yi j − Y ..)(Yi j − Y ..)
T/(N − 1).
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Regularized principal components of heritability 457

It is clear that h(β) is the Rayleigh quotient of positive definite matrices �A and
�T . Similarly, the sample heritability measurement hn(β) is the Rayleigh quotient of
positive definite matrices �̂A and �̂T .

Although the sample PCH approach is effective when dealing with a handful of
phenotypes, it may perform rather poorly when the number of phenotypes is large (see,
e.g., Jin and Fang 2011). In particular, β̂Sample is only well defined if �̂T is of full rank,
or in other words, the number of phenotypes to be smaller than N . This assumption,
however, may not be appropriate for many modern genomic studies. Consider, for
example, an expression QTL experiment where the expression levels of thousands
of genes are treated as the so-called “gene expression phenotypes” (Cheung et al.
2003). Given that a typical experiment has only hundreds of subjects, the sample PCH
approach cannot be applied.

To overcome this problem, we propose in this paper a novel regularization approach
to estimating the PCH β0. The approach is based on the notion that β0 is sparse and
therefore can be well approximated by linear combination of only a small number of
phenotypes. Sparsity is a common phenomenon in high dimensional problems and
a plausible assumption in most applications. We show that by appropriately exploit-
ing the sparsity of β0, the proposed regularization estimator can provide an accurate
description of the overall heredity of a large number of phenotypes.

The rest of the paper is organized as follows. In Sect. 2, we describe the details of
the proposed PCH estimate. In Sect. 3, we evaluate the empirical performance of the
proposed method by both simulations and two real data analyses. We present a short
discussion in Sect. 4 and relegate all technical details relegated to the “Appendix”.

2 Regularized PCH

To exploit the sparsity of the PCH, we consider, as an alternative to the usual sample
PCH, the following regularized principal component of heritability:

β̂(λ) = arg max‖β‖=1
hn,λ(β), (3)

where

hn,λ(β) = βT�̂Aβ

βT�̂T β + λ‖β‖2
�1

where ‖ · ‖�1 stands for the vector �1 norm and λ ≥ 0 is a tuning parameter to be
determined later. Obviously β̂(λ) reduces to the usual sample PCH when λ = 0. By
adding an extra term proportional to the squared �1 norm of β, we encourage sparsity
in the resulting PCH estimate. Moreover, the benefit of using the squared �1 norm of β

is that β̂(λ) is scale invariant if the units of phenotypes are changed. We first provide
some theoretical justification to the proposed estimate β̂(λ).
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2.1 Theoretical properties

Since the PCH β0 is a d dimensional unit length vector, write β0 = (β01, β02, . . . ,

β0d)T. We shall assume that β0 is sparse in that most of β0 j s are zero. In particular,
write

supp(β0) = {1 ≤ j ≤ d : β0 j �= 0}

and denote by s0 the cardinality of supp(β0).

Theorem 1 Assume that s0 = o((n/ log d)1/2) and (n−1 log d)1/2 � λ � s−1
0 . Then

h(β̂(λ)) →p hmax.

In addition,

hn,λ(β̂(λ)) →p hmax.

The first part of Theorem 1 suggests that, with appropriate choice of the tuning para-
meter, β̂(λ) would indeed provide an accurate summary of the overall heritability. The
second statement indicates that the overall heritability hmax can also be consistently
estimated by hn,λ(β̂(λ)).

2.2 Computation

We now describe how β̂(λ) can be computed in practice. Following Fan et al. (2012),
we consider the following approximation to (3),

β̃(λ) = arg min
{
βT�̂T β + λ‖β‖2

�1
+ γ (βT�̂Aβ − 1)2

}
, (4)

for some γ > 0. It is clear that β̃(λ)/‖β̃(λ)‖ → β̂(λ) as γ → ∞. In practice, our
experience suggests that the two become fairly close for moderate or large γ . Similar
observations were also made in a different context by Fan et al. (2012).

We note that the minimization problem in defining β̃(λ) is in general non-convex.
We consider solving it by a coordinate descent type of algorithm. Without loss of gen-
erality, suppose that the first component of β, β(1), is being updated, and the remaining
components, stacked as β(−1), are given. Accordingly, rewrite

�̂A =
(

a11 A12
A21 A22

)

and �̂T =
(

t11 T12
T21 T22

)

.

Then the objective function in terms of x = β(1) becomes

g(x) = t11x2 + 2t∗12x + t∗22 + λ(|x | + r∗)2 + γ (a11x2 + 2a∗
12x + a∗

22 − 1)2, (5)
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where r∗ = ‖β(−1)‖�1 , t∗12 = T12β(−1), t∗22 = βT
(−1)T22β(−1), a∗

12 = A12β(−1), and

a∗
22 = βT

(−1) A22β(−1). The objective function g can then be minimized analytically.
Details are given in the “Appendix”. We iteratively update the coordinates until a
certain convergence criterion is met. In the numerical experiments conducted in Sect. 3,
we stop the iteration when |G(β̃new) − G(β̃old)|/G(β̃old) < 10−6, where G(β) is the
objective function in (4).

2.3 Tuning

Although our general theoretical results from Sect. 2.1 suggests a fairly wide range of
choices of λ would be sufficient for our purposes, in practice, fine tuning of λ may lead
to further improved finite sample performance. To this end, we introduce a bootstrap
based method for choosing λ. The basic idea is that we compute β̃(λ) for a fine grid
of λs, evaluate the heritability of the resulting estimated PCH for each λ, and then
choose the one that yields the highest heritability.

Let Yi = {yi1, . . . , yimi } be the set of observations from family i . Assume that
X = {Y1, . . . , Yn} is sampled from a population P . To emphasize the dependence on
P , rewrite �A and �T as �A(P) and �T (P), and to emphasize the dependence on
X, rewrite β̃(λ) as β̃λ(X). Let P̂ be the empirical distribution with probability 1/n on
each Yi . The oracle guided optimal λ is

λoracle = arg max
λ

h(β̃λ(X)). (6)

To estimate the expected heritability associated with β̃λ(X),

θλ(P) = EX∼P

{
β̃T

λ (X)�A(P)β̃λ(X)

β̃T
λ (X)�T (P)β̃λ(X)

}

, (7)

we advocate the plug-in estimate of θλ(P) (Efron 1979),

θλ(P̂) = EX∗∼P̂

{
β̃T

λ (X∗)�A(P̂)β̃λ(X∗)
β̃T

λ (X∗)�T (P̂)β̃λ(X∗)

}

. (8)

Noting that �A(P̂) = �̂A and �T (P̂) = �̂T , we have the following bootstrap proce-
dure.
Bootstrap procedure for selecting λ

Step 1. Generate B independent bootstrap samples, X∗
b, b = 1, . . . , B.

Step 2. Obtain solutions, β̃λ(X∗
b), b = 1, . . . , B, over a same grid of λs.

Step 3. Estimate h(β̃λ(X)) by ĥ(β̃λ(X)) = 1
B

∑B
b=1

β̃T
λ (X∗

b)�̂Aβ̃λ(X∗
b)

β̃T
λ (X∗

b)�̂T β̃λ(X∗
b)

.

Step 4. Select λ as λboot = arg maxλ ĥ(β̃λ(X)).

Since the bootstrap is used for approximating the expectation only, moderate B, say 10
or 20, will be good enough. In practice, we should also consider “one-standard-error”
rule (e.g., Hastie et al. 2009, p. 244).
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Table 1 An example of the
insensitiveness of γ in (4)

∗ β̂ = β̃(λoracle)

γ h(β̂) #{ j : β̂ j �= 0} |β̂1| |β̂6|

10 0.548 8.65 0.444 0.004

20 0.549 8.35 0.440 0.000

30 0.543 8.00 0.438 0.000

50 0.542 8.30 0.455 0.000

100 0.537 8.75 0.417 0.000

3 Numerical results

3.1 Simulations

We conduct extensive simulations to examine the performances of the regularized PCH
approach, compared with the usual sample PCH approach. The data are generated
from model (1), with Ai and Ei j generated from normal distributions. We consider
the following three settings, where σas are chosen to obtain heritability h(β0) = 0.55.

Setting 1 (independent). Let �A = σ 2
a ννT and �E = Id , where ν = (1T

5 , 0T
d−5)

T

and σa = 0.5. Let n = 100, mi ≡ 4, and d = 50, 100, or 500. In this setting,
β0 = ν/‖ν‖.

Setting 2 (auto regression). Let �A = σ 2
a ννT and �E = (ekl), where ν =

(1T
5 , 0T

d−5)
T and ekl = ρ|k−l|, for 1 ≤ k, l ≤ d. Let n = 100, mi ≡ 4, d = 100,

and (ρ, σa) = (0.2, 0.581), (0.5, 0.681), or (0.8, 0.623). In this setting, the first five
components of β0 are positive, the sixth component is negative, and the others are
zero.

Setting 3 (equal correlation). Let �A = σ 2
a ννT and �E = (ekl), where ν is to be

decided, ekl = ρ and ekk = 1 for 1 ≤ k �= l ≤ p. Let n = 100, mi ≡ 4, d = 100,
and (ρ, σa) = (0.2, 0.671), (0.5, 0.866), or (0.8, 1.025). In this setting, in order to
get a sparse β0 like the one in Setting 1, let ν̃ = �Eβ0 and ν is the scaled ν̃ with first
component being 1.

First, we conduct a simulation to show that the approximation (4) is not sensitive
to γ by generating 100 repetitions under Setting 1 with d = 100. Under this setting,
β0 = 0.447(1T

5 , 0T
95)

T. Given γ = 10, 20, 30, 50, or 100, λ is chosen as λoracle in
(6), and for convenience denote the solution β̃(λoracle) as β̂. Table 1 summarizes the
average heritability and Rayleigh quotient associated with β̂, average angle between
β̂ and β0, average number of non-zero components of β̂, and average absolute values
of its 1st and 6th components. This simulation backs up our claim and hereafter we
use γ = 20.

Then we report the main simulation results in Tables 2, 3 and 4. For each setting,
100 repetitions are generated. For the regularized PCH, tuning parameter λ is selected
via the proposed bootstrap procedure with B = 20 (the one-standard-error rule is
applied). Note that for heritability, the closer to 0.55 the better, and for angle, the
closer to 0 the better. The numbers of selected phenotypes and the false negative rates
are also reported.
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Table 2 Simulation Setting 1

d Method h(β̂)a Ang(β̂, β0) #{ j : β̂ j �= 0} FNc

50 PCH 0.456 (0.025)b 34.776 (4.088) 50 (0) 0

Regularized PCH 0.539 (0.011) 14.082 (4.539) 10.80 (4.81) 0

100 PCH 0.324 (0.050) 51.456 (5.098) 100 (0) 0

Regularized PCH 0.534 (0.011) 16.348 (4.246) 7.94 (4.30) 0

500 PCH 0.002 (0.003) 88.130 (1.441) 500 (0) 0

Regularized PCH 0.531 (0.014) 17.274 (4.899) 22.75 (14.86) 0

a β̂ = β̃(λboot); b Average (standard deviation); c Average false negatives

Table 3 Simulation Setting 2

ρ Method h(β̂) Ang(β̂, β0) #{ j : β̂ j �= 0} FN

0.2 PCH 0.332 (0.044) 55.485 (4.349) 100 (0) 0

Regularized PCH 0.532 (0.011) 20.170 (4.667) 21.07 (9.25) 0

0.5 PCH 0.319 (0.057) 60.466 (6.148) 100 (0) 0

Regularized PCH 0.523 (0.017) 25.347 (7.594) 22.04 (9.36) 0.12

0.8 PCH 0.332 (0.051) 54.394 (5.493) 100 (0) 0

Regularized PCH 0.501 (0.096) 17.907 (11.359) 21.07 (11.83) 1.16

Table 4 Simulation Setting 3

ρ Method h(β̂) Ang(β̂, β0) #{ j : β̂ j �= 0} FN

0.2 PCH 0.332 (0.054) 60.705 (4.762) 100 (0) 0

Regularized PCH 0.536 (0.012) 22.943 (7.795) 12.43 (7.57) 0.03

0.5 PCH 0.328 (0.059) 71.636 (6.191) 100 (0) 0

Regularized PCH 0.527 (0.011) 49.711 (11.422) 19.57 (7.20) 0.59

0.8 PCH 0.320 (0.061) 80.292 (4.820) 100 (0) 0

Regularized PCH 0.534 (0.007) 75.801 (10.406) 21.76 (7.48) 2.67

From Table 2, we see that the regularized PCH performs much better than the
usual PCH, especially when the dimension d is large, in that the regularized PCH,
β̃(λboot), has heritability close to hmax = 0.55 and is close to β0. In addition, the
sparsity property of the regularized PCH is promising, because it is easier to interpret
the results when only a few phenotypes are involved. Moreover, when achieving the
sparsity, the regularized PCH have never missed the genetically related phenotypes,
as shown by the zero false negative rate.

From Tables 3 and 4, we also see that the regularized PCH performs much better
than the usual PCH. However, the regularized PCH misses some important phenotypes
in a few repetitions, especially under Setting 3 when ρ = 0.8, where the β̃(λboot) is
not very close to β0. One explanation is that when the important phenotypes and the
unimportant phenotypes are highly correlated, it is hard to distinguish them.
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3.2 Asthma data

Asthma is a complex disease that is likely genetically heterogeneous. The asthma data
used here were originally collected as part of the Collaborative Study on the Genetics of
Asthma (CSGA 1997). As in Reilly et al. (2007), we use only the 27 multi-generational
Caucasian families that were collected in Minnesota. These families had 169 asthmatic
members, and the average family size was 6.3. Four phenotypes considered in Reilly
et al. (2007) were the logarithm of the percent predicted of the following variables:
volume exhaled during the first second of a forced expiratory maneuver (FEV1), forced
expiratory vital capacity (FVC), maximum expiratory flow when half of the FCV has
been exhaled (FEFM) and forced expiratory flow rate over the middle half FCV (FF25).

The F-test statistics for these four phenotypes are 1.759, 2.173, 1.281, and 2.102,
respectively. When we apply the regularized PCH starting from λmax = 5.002 (formula
for λ is in the “Appendix”), first FVC enters, then FF25, and then FEFM. The bootstrap
procedure (without one-standard-error rule because of low-dimension) selects λboot =
0.048, and the final selected subset is (FVC, FF25, FEFM).

3.3 Gene-expression data

The dataset was provided by Genetic Analysis Workshop 15 in 2006, and it was
originally analyzed in Cheung et al. (2003, 2005) and Morley et al. (2004). In the
dataset, gene expression levels of 3,554 genes in 14 large families were measured.
There were 194 subjects in the sample and the average family size was 13.9.

As pointed out by Morley et al. (2004), “the correlation in expression level of these
genes supports the observation that they share common transcriptional regulators.
However, the regulatory regions defined by mapping are still large, and these might be
subgroups of co-regulated phenotypes that are influenced by distinct, but every closely
linked, regulators.” Therefore, linear combinations of these phenotypes showing high
familial aggregation can have larger power in linkage analysis (Wang et al. 2007).

First we conduct F-test for 3,554 gene expressions individually. The five-number
summary of the F scores is: 0.26 (Min), 1.69 (1st Quartile), 2.48 (Med), 3.44 (3rd
Quartile) and 18.43 (Max). To demonstrate the application of the regularized PCH,
for simplicity, here we consider only the top 300 gene expressions of the largest F-
scores (range 4.83–18.43). In practice, it is also reasonable to consider such reduced set
of phenotypes, in the spirit of Sure Independence Screening (SIS; Fan and Lv 2008).

For this reduced set of phenotypes, we apply the regularized PCH starting with
λmax = 20.6011. When λ decreases, phenotypes are entering the model one by one,
with the phenotype of the largest F score entering first. The bootstrap procedure selects
λ as λboot = 0.0095 and only 59 components of β̃(λboot) are non-zero. The bootstrap
selection of λ and the normalized β̃(λboot) are displayed in Fig. 1.

4 Discussion

Here the regularized PCH approach is proposed to remedy the usual sample PCH
approach for the situations where the number of phenotypes is large. The idea is to
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add a novel penalty term to the usual sample PCH approach, based on the notion that
the PCH β0 is sparse. Such regularization is a common procedure in high dimensional
problems.

We use the bootstrap procedure to select the tuning parameter. Another option is the
cross-validation procedure proposed in Wang et al. (2007), where data were randomly
divided into two halves, one for training and the other for examining the heritability.

It would be interesting to further develop the regularized PCH approach to obtain
the kth principal component of heritability, k = 2, 3, . . ., which is orthogonal to the
previous obtained k − 1 principal components of heritability.

5 Appendix

5.1 Proof of theorem

Assume the average family size N/n → m0 and min‖β‖=1 βT�T β ≥ δ > 0. Rewrite

hn,λ(β) = βT�Aβ + βT�Aβ

βT�T β + βT�T β + λ‖β‖2
1

,

where �A = �̂A − �A and �T = �̂T − �T . Under some mild conditions, we
have (e.g., Bickel and Levina 2004) ‖�A‖∞ = Op(

√
(log d)/n) and ‖�T ‖∞ =

Op(
√

(log d)/n), where ‖ · ‖∞ is the element-wise super-norm. From βT�Aβ ≤
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‖β‖�1‖�Aβ‖∞ ≤ ‖�A‖∞‖β‖2
�1

, we have βT�Aβ ≤ Op(
√

(log d)/(n − 1))‖β‖2
�1

.

Similarly, βT�T β ≤ Op(
√

(log d)/(N − n))‖β‖2
�1

.

Thus, if λ � Op(
√

(log d)/n) and min‖β‖=1 βT�T β ≥ δ > 0, we have
maxβ |hn,λ(β) − h0,λ(β)| = op(1), where h0,λ(β) = βT�Aβ/(βT�T β + λ‖β‖2

�1
).

Further, because λ‖β‖2
�1

≤ λs0‖β‖2, if λ � 1/s0 and min‖β‖=1 βT�T β ≥ δ > 0, we
have maxβ |h0,λ(β) − h(β)| = o(1). Together, we have

max
β

|hn,λ(β) − h(β)| = op(1).

Therefore, noting that 0 ≤ h(β0) − h(β̂(λ)) ≤ h(β0) − hn,λ(β0) + hn,λ(β̂(λ)) −
h(β̂(λ)), we have h(β̂(λ)) →p hmax, and noting that hn,λ(β0)−h(β0) ≤ hn,λ(β̂(λ))−
h(β0) ≤ hn,λ(β̂(λ)) − h(β̂(λ)), we have hn,λ(β̂(λ)) →p hmax.

5.2 The coordinate descent algorithm

We discuss the path solution to the optimization problem (4). Write two input matrices
�̂A and �̂T as (ai j ) and (ti j ) respectively. Note that whenλ is larger than some value say
λmax, β̃(λ) = 0d . Here we derive the formula for λmax. If β(−1) = 0d−1, then g(x) =
t11x2 + λx2 + γ (a11x2 − 1)2, which achieves minimum at x =

√

[− t11+λ−2a11γ

2γ a2
11

]+,

where [a]+ equals a if a ≥ 0 and zero otherwise. Therefore,

λmax = max
1≤ j≤d

{2a j jγ − t j j }.

On a fine grid of L values of λ, say exp{log(λmax)(1 : L)/L}, we computer the solution
path starting with λ = λmax backwardly and β̃(λmax) = 0d . Then we calculate the
solution associated with the consecutive λ on the grid, using the solution we obtain
most recently as the initial for minimization.

Continuing the discussion in Sect. 2.2, the problem narrows down to find the mini-
mum point of function (5). Now we examine the local minimum point(s) of g(x) when
β(−1) �= 0d−1. Letting its derivative be zero, we have c3x3 + c2x2 + c1x + c0 = 0,
where c3 = 2γ a11, c2 = 6γ a11a∗

12, c1 = t11 + λ + 4γ a∗
12

2 + 2γ a11(a∗
22 − 1), and

c0 = t∗12 + λsign(x)r∗ + 2γ (a∗
22 − 1)a∗

12. Here sign(x) is the sign of x . Now the
problem becomes finding solutions to this cubic equation. Let β̂(1) be the updated β(1)

after one coordinate descent step.
The unique non-differentiable point of g(x), x = 0, needs special concerns. The

set of all subgradients of g(x) at x = 0 is {t∗12 + λξr∗ + 2γ (a∗
22 − 1)a∗

12 : |ξ | ≤ 1}
(for the definition of subgrandient, see e.g., Bertsekas 1995). At any x �= 0, g(x) is
differentiable. Letting P = c1/c3 − c2

2/(3c2
3) and Q = 2c3

2/(27c3
3) − c1c2/(3c3) +

c0/c3, the equation becomes y3 + Py + Q = 0 with transformation y = x +c2/(3c3).
The problem of finding the solutions to y3 + Py + Q = 0 has been solved by many

mathematicians. Here we follow Kavinoky and Thoo (2008). Define � = Q2/4 +
P3/27, S = 3

√

−Q/2 + √
D, and T = 3

√

−Q/2 − √
D. Always, there are three
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roots (real or complex): y1 = S + T, y2 = −(S + T )/2 + √−3/4(S − T ), y3 =
−(S + T )/2 − √−3/4(S − T ). If � > 0, there is one real root, if D = 0, there are
two real roots (one of them is minimum point), and if D < 0, there are three real roots
(two of them are local minimum points). Let xi = yi − c2/(3c3), i = 1, 2, 3. Also let
x10 = min{x1, x2, x3} and x20 = max{x1, x2, x3} (the middle one is a local maximum
point).

Case (i). If |t∗12 + 2γ (a∗
22 − 1)a∗

12| ≤ λr∗, zero is a local minimum point of g(x)

and β̂(1) = 0.
Case (ii). If t∗12 + 2γ (a∗

22 − 1)a∗
12 > λr∗, β̂(1) < 0. If D ≥ 0 (D depends on

sign(β̂(1)) = −1), x1 is minimum point and β̂(1) = x1. Otherwise, β̂(1) equals the
negative one if x10 and x20 are of different signs, and equals the one of smaller absolute
value if both are negative.

Case (iii). If t∗12 + 2γ (a∗
22 − 1)a∗

12 < −λr∗, β̂(1) > 0. If D ≥ 0 (D depends
on sign(β̂(1)) = 1), x1 is minimum point and β̂(1) = x1. Otherwise, β̂(1) equals the
positive one if x10 and x20 are of different signs, and equals the one of smaller absolute
value if both are positive.
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