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Comment
Jianqing FAN and Yang FENG

We would like to congratulate Carroll, Delaigle, and Hall on
their important and stimulating contributions to nonparamet-
ric prediction in measurement error models. The paper deals
with nonparametric prediction with measurements of different
quality (contaminated errors). They also studied the difficulty
of nonparametric prediction, which depends on the relative or-
der magnitude of tail behavior of characteristic functions. They
observed an interesting phenomenon that the convergence rate
of the estimator can be as fast as O(n−1/2) in certain cases, and
considered the case when the error densities are unknown. The
simulation studies and the real data example show the advan-
tages of their estimator over the Nadaraya–Watson estimator.
We appreciate the opportunity to discuss the paper and provide
additional insights.

1. BEST LINEAR UNBIASED ESTIMATOR

When the measurement errors are heterogeneous across sam-
ples, the essential idea is to aggregate the information from each
observation to estimate the characteristic function. The question
arises naturally how to optimally aggregate them. We appeal to
the best linear unbiased estimator.

To simplify the notation, instead of following the main paper,
we let φV(t) = EeitV be the characteristic function of a random
variable V . Following the other notations and assumptions in
the main paper, we have

φT(t) = φX(t)φUF (t)

and we need to estimate φX(t) from the observable data {Wj},
which is related to φX through

φWj(t) = φX(t)φUj(t).

Jianqing Fan is Frederick L. Moore Professor of Finance (E-mail: jqfan@
princeton.edu) and Yang Feng is Ph.D. Candidate (E-mail: yangfeng@
princeton.edu), Department of Operations Research and Financial Engineer-
ing, Princeton University, Princeton, NJ 08544. The work was supported by the
NIH grant R01-GM072611 and NSF grants DMS-0704337 and DMS-0714554.

It is easy to calculate that

EeitWj = φX(t)φUj(t)

and that

Var(eitWj) = E
(
eitWj − φWj(t)

)(
e−itWj − φWj(−t)

)
= 1 − ∣∣φX(t)φUj(t)

∣∣2
.

Hence, a sequence of unbiased estimators of φX(t) is {eitWj/

φUj(t)} with heterogeneous variance

Vj(t) = ∣∣φUj(t)
∣∣−2 − |φX(t)|2.

Thus, φX(t) can be estimated by the following linear unbiased
estimator:

φ̂X(t) =
n∑

j=1

aj(t)e
itWj/φUj(t) (1.1)

for some vector a(t) = (a1(t),a2(t), . . . ,an(t))T with∑n
j=1 aj(t) = 1. The corresponding variance of the estimator

will be

Va(t) =
n∑

j=1

aj(t)
2Vj(t).

The weights of the Best Linear Unbiased Estimator (BLUE)
are given by

aj,0(t) = (∣∣φUj(t)
∣∣−2 − |φX(t)|2)−1

/A(t),

for j = 1,2, . . . ,n, (1.2)
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where A(t) = ∑
j(|φUj(t)|−2 − |φX(t)|2)−1. The corresponding

minimum variance is 1/A(t) and the BLUE of the characteristic
function φX(t) is

φ̂X,0(t) =
∑n

j=1(|φUj(t)|−2 − |φX(t)|2)−1eitWj/φUj(t)∑n
j=1(|φUj(t)|−2 − |φX(t)|2)−1

. (1.3)

The quantity φX in the ideal weight (1.2) is unknown, but
this can be easily estimated consistently by a simple plug-in
procedure. A simple approach is to drop the unknown term φX

out from (1.2), which results in the weight

aj,1(t) = ∣∣φUj(t)
∣∣2

/ n∑
j=1

∣∣φUj(t)
∣∣2

, (1.4)

and the estimate

φ̂X,1(t) =
∑n

j=1 φUj(−t)eitWj∑n
j=1 |φUj(t)|2

. (1.5)

This is exactly the same as the one used in the main paper under
discussion. Clearly, our estimator (1.3) is more efficient, at least
in terms of estimating characteristic functions.

The plug-in version of (1.3) is now given by

φ̂X,2(t) =
∑n

j=1(|φUj(t)|−2 − |φ̂X,1(t)|2)−1eitWj/φUj(t)∑n
j=1(|φUj(t)|−2 − |φ̂X,1(t)|2)−1

. (1.6)

We can iterate the plug-in process until convergence and this
leads to the estimator φ̂X,3(t), which solves

φX,3(t) =
∑n

j=1(|φUj(t)|−2 − |φX,3(t)|2)−1eitWj/φUj(t)∑n
j=1(|φUj(t)|−2 − |φX,3(t)|2)−1

. (1.7)

As anticipated, in Section 3, we will show both φ̂X,2 and φ̂X,3

perform similarly to φ̂X,0. Thus, φ̂X,2(t) suffices for practice.

2. ESTIMATORS BASED ON BLUE

With an estimate of the characteristic function φ̂X(t) as in
(1.1), we can estimate the marginal density fT(x) of T = X + U
and the conditional mean function μ(x) = E(Y|T = x) in the
same manner as the main paper. More specifically, for a given
kernel function K and a bandwidth h, by the Fourier inversion
theorem, we define

f̂T(x) = (2π)−1
∫

e−itxφU(t)φ̂X(t)φK(th)dt

=
n∑

j=1

Kh,j(x − Wj), (2.1)

where the induced kernel Kh,j(z) is given by

Kh,j(z) = (2π)−1
∫

e−itzφK(th)
aj(t)φU(t)

φUj(t)
dt.

Using the above induced kernel, we can get an estimator of μ(x)
as

μ̂(x) =
∑n

j=1 YjKh,j(x − Wj)∑n
j=1 Kh,j(x − Wj)

. (2.2)

Note that the characteristic function φK(th) is introduced to
damp down the estimate φ̂T(t) = φU(t)φ̂X(t) when |t| is large,

whether the function |φU(t)φ̂X(t)| is integrable or not. In partic-
ular, when the function |φU(t)φ̂X(t)| is integrable, we can take
h as small as zero. In this case, the estimator is independent of
K and h.

If we take

aj(t) = n−1φUj(t)/φU(t),

the estimators (2.1) and (2.2) reduce respectively to the ker-
nel density estimator and the Nadaraya–Watson estimator. The
total weight is not necessarily one and the estimator is not nec-
essarily consistent. This estimator does not take into account
heterogeneity in the measurement error and thus is not optimal
in general. Our new estimator is based on the ideal weight (1.2)
or its estimated version. The estimator introduced by Carroll,
Delaigle, and Hall takes weights (1.4). In other words, different
estimators lie in choosing different weight functions {aj(t)}.

3. PERFORMANCE COMPARISON

We now study the efficiency gain by using the BLUE for esti-
mating the characteristic function. To facilitate the performance
comparison, we consider the two-error model as in the paper,
where we assume that the first m observations are contaminated
by an error with density fU(1) , and the last n − m observations
are contaminated by an error with density fU(2) , and the error in
the future observations is UF ∼ fU(1) . In this case, the optimal
weights in (1.2) take only two values. For this two-error model,
the variance function for φ̂X,0(t) in (1.3) can be simplified as

Z0(t) = 1/
(
m

(∣∣φU(1) (t)
∣∣−2 − |φX(t)|2)−1

+ (n − m)
(∣∣φU(2) (t)

∣∣−2 − |φX(t)|2)−1)
and the variance function for φ̂X,1(t) in (1.5) equals to

Z1(t) = (
m

∣∣φU(1) (t)
∣∣4(∣∣φU(1) (t)

∣∣−2 − |φX(t)|2)
+ (n − m)

∣∣φU(2) (t)
∣∣4(∣∣φU(2) (t)

∣∣−2 − |φX(t)|2))
/
(
m|φU(1) (t)|2 + (n − m)|φU(2) (t)|2)2

.

It is clear that Z0(t) ≤ Z1(t).
To gauge the gain by using the BLUE, we calculate the ratio

Z1(t)/Z0(t) for four different error density settings with m =
n/2. The results are shown in Figure 1. Notice that in setting A,
where the two different error densities are chosen to be the same
as the first example in the paper, the ratio is approximately equal
to 1. In setting B, we increase the variances. In this case, the
ratios are greater than 1 for a range of t. Similar results can be
found for error density settings C and D. If the error distribution
is more extreme, then the ratios will be even larger. In general,
the method of Carroll, Delaigle, and Hall is nearly BLUE, when
the contaminated noise is relatively small.

To evaluate the effectiveness of the plug-in version of BLUE,
we conduct a simulation experiment to compare the relative per-
formance of φ̂X,1(t), φ̂X,2(t), and φ̂X,3(t) with the oracle estima-
tor φ̂X,0(t). The variance of each estimator is computed based
on 1000 simulations with m = n/2 = 250. Again, we define the
corresponding variance functions to be Z1(t),Z2(t), and Z3(t)
and render the ratios Z1/Z0, Z2/Z0, and Z3/Z0 in Figure 2 under
the same settings as in Figure 1. It is worth noticing that both the
ratios Z2/Z0 and Z3/Z0 almost equal to 1. This shows that the
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Figure 1. Ratio Z1(t)/Z0(t) when setting A: U(1) ∼ Normal
and U(2) ∼ Laplace, with σ 2

U(1) = σ 2
U(2) = 0.2 Var(X); setting B:

U(1) ∼ Normal and U(2) ∼ Laplace, with σ 2
U(1) = 0.25 Var(X) and

σ 2
U(2) = 2 Var(X); setting C: U(1) ∼ Normal and U(2) ∼ Normal, with

σ 2
U(1) = 0.25 Var(X) and σ 2

U(2) = Var(X); setting D: U(1) ∼ Normal

and U(2) ∼ Normal, with σ 2
U(1) = 3 Var(X) and σ 2

U(2) = 0.25 Var(X).

plug-in BLUE φ̂X,2(t), the fully iterated estimator φ̂X,3(t), and
the oracle estimator have a similar performance. For this reason,
the plug-in BLUE suffices for practical purpose, which outper-
forms φ̂X,1(t) in the main paper. The question is how much this
gain will translate into the gain in estimating μ̂(x) as defined in
(1.2). We appeal to the asymptotic analysis.

4. ASYMPTOTIC PROPERTIES

Following the same lines of the proof for Theorem 4.1 in
the main paper, we can derive the asymptotic property for the
corresponding estimator μ̂(x) when we use the weights a as in
(1.1). The upper bound of the asymptotic variance is given by

n
∫

|φK(th)|2|φUF (t)|2Va(t)dt, (4.1)

where Va(t) is the variance of estimated characteristic function

Va(t) =
n∑

j=1

|aj(t)|2
(∣∣φUj(t)

∣∣−2 − |φX(t)|2).
In other words, the weighted integral of Va(t) contributes to
the asymptotic variance. Minimizing (4.1) would give the same
solution aj,0(t) as given by (1.2). The finite sample gain over
the estimator proposed by Carroll, Delaigle, and Hall remains
to be seen.

From (4.1), it reveals that the individual data contributes to
the asymptotic variance reflected in the expression∫

|φK(th)|2∣∣φUF (t)/φUj(t)
∣∣2

dt,

the smaller the more informative. When the function |φUF (t)/
φUj(t)|2 is integrable, the variance is bounded. If it is not inte-
grable, it depends on the tail behavior of |φUF (t)/φUj(t)|. For

the two-error model, the first m data points are of usual qual-
ity and the last n − m can be of much higher or lower quality,
depending on the tail behavior of |φU(1) (t)/φU(2) (t)|.

A simple way to understand the rates of convergence for two-
error case is as follows. Let μ̂1(t) be the Nadaraya–Watson
based on the first part of homogeneous sample (W1,Y1), . . . ,

(Wm,Ym). Then, it is well known

μ̂1(t) = μ(t) + OP
(
hk + (mh)−1/2). (4.2)

Based on the remaining (n − m) homogeneous data points, we
have an independent estimator

μ̂2(t) =
n∑

j=m+1

YjKh,1(x − Wj)

/ n∑
j=m+1

Kh,1(x − Wj), (4.3)

where the induced kernel is now given by

Kh,1(z) = ((n − m)2π)−1

×
∫

exp(itz)φK(th)φU(1) (t)/φU(2) (t)dt. (4.4)

This estimator has been shown in the main paper to have the
following asymptotic representation [see also (4.1)]:

μ̂2(t) = μ(t) + OP
(
hk + (n − m)−1/2v1(h)1/2), (4.5)

where v1(h) = ∫ |φK(th)|2|φU(1) (t)|2/|φU(2) (t)|2 dt. Taking the
best linear combination of the estimators from the two parts
results in

μ̂∗(t) = λ(t)μ̂1(t) + (1 − λ(t))μ̂2(t), (4.6)

where λ(t) is inversely proportional to the ratio of the asymp-
totic variances of the two estimators. Then, it is clear that the
estimator has the rate of convergence as stated in Theorem 4.2
of the paper under discussion, namely

μ̂∗(t) = μ(t)+OP
(
hk +min

{
(mh)−1/2, (n−m)−1/2v1(h)1/2}).

The above heuristic also provides the intuition why the opti-
mal rate is given in Theorem 4.3 and also renders an alternative
procedure (4.6).

5. PARAMETRIC RATES OF CONVERGENCE

We now give an intuitive explanation of the parametric rate
of convergence for the two-error model. This is only possible
when the second part of (n − m) data points are of much higher
quality (with less contaminated errors) than the first part of data
and are of nonnegligible sample size. In this case, we can regard
U(1) as U(2) with additional source of idiosyncratic noise ε:

U(1) = U(2) + ε. (5.1)

Under (5.1), it is well known that the density of T = X + U(1)

is given

fT(x) =
∫

fε(x − u)fW(2) (u)du, (5.2)

where W(2) = X + U(2) and fV(·) represents the density of a
random variable V . An obvious root-n consistent estimator is

f̂T(x) = (n − m)−1
n−m∑

i=m+1

fε(x − Wi)du, (5.3)
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Figure 2. Ratios of the variance function of three estimated characteristic functions with that using the oracle weight. The four error density
settings are the same as in Figure 1.

which does not require any smoothing.
Similarly, the function D(x) = ∫

yfY,T(y, x)dy can be ex-
pressed as

D(x) =
∫

fε(x − u)D2(u)du

=
∫ ∫

fε(x − u)yfY,W(2) (y,u)du dy, (5.4)

where D2(x) = ∫
yfY,W(2) (y, x)dy can be directly estimated

from second half of the data. This leads to the estimate

D̂(x) = (n − m)−1
n∑

i=m+1

fε(x − Wi)Yi, (5.5)

which is of the parametric rate.
The above argument is based upon the assumption (5.1).

Even when (5.1) does not hold, (5.2) and (5.4) can still hold,
as long as |φU(1) (t)/φU(2) (t)| is integrable. In this case, we can

define fε(x) through the Fourier inversion

fε(x) = (2π)−1
∫

exp(−itx)φU(1) (t)/φU(2) (t)dt.

Note that fε(x) is not necessarily a density function, but it is a
known weight function. Through direct estimate of D̂(x) and
f̂T(x) in (5.3) and (5.5), it follows easily that μ(x) = D(x)/fT(x)
can be estimated at the parametric rate. The estimator μ̂3 =
D̂(x)/f̂T(x) can be combined with the Nadaraya–Watson esti-
mator from the first part to yield a simple and new estimator as
in (4.6).

6. ADDING NOISE

Carroll, Delaigle, and Hall posed a provoking question in Re-
mark 4.3 whether the efficiency of prediction can be gained by
adding a noise. They did not elaborate how to predict Y based
on observed data. It is true that μT(x) = E(Y|T = x) can be es-
timated more accurately as discussed in Section 5. However,
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Figure 3. Comparisons of μT (x) = E(Y|T = x) (left panel) and μa(x) = EμT (x + ε) (right panel) for different values of σ . Here
μX(x) = −3x + 20 exp{−100(x − 0.5)2}/√2π is taken the same function as the first example in the paper.

μT(x) can be very different from μX(x) = E(Y|X = x), causing
a lot of biases. Left panel of Figure 3 shows the difference be-
tween the two functions for three noise level σ = 0, σ = 0.1,
and σ = 0.2 with normal distribution.

Suppose that we wish to predict Y based on X = x and only
the function μT(x) is available. One naturally generates many
Ti = x + εi, gets prediction μT(x + εi) and uses their average as

the prediction of Y . This approach essentially computes

μa(x) = EμT(x + ε).

This prediction can be seriously biased as shown in the right
panel of Figure 3. The authors are welcome to suggest an alter-
native method of prediction. In general, we suspect that adding
noise will improve the prediction.

Comment
Susanne M. SCHENNACH

1. OVERVIEW

The paper “Nonparametric Prediction in Measurement Error
Models” by R. J. Carroll, A. Delaigle, and P. Hall considers
the general problem of estimating a predictor function E[Y|T],
where Y is the variable to be predicted and T is an explanatory
variable. T is generated through T = X + UF , where X is the
true unobserved explanatory variable and UF a measurement
error. Given a sample (Yj,Tj)

n
j=1, this problem would be simple,

since the measurement error would play no role in this inference
problem—the best predictor could be estimated by a (perhaps
nonparametric) least-square regression of Y on T .

However, this problem acquires a highly nontrivial nature
when the measurement error Uj of the mismeasured variable
Wj used to construct the predictor function (with Wj = X + Uj)
has a distribution that differs from the measurement error dis-
tribution of the explanatory variable T that is actually used to
make the prediction. Thanks to this paper, this important setting
finally receives the attention it deserves, as it frequently occurs

Susanne M. Schennach is Professor, Department of Economics, University
of Chicago, Chicago, IL 60637 (E-mail: smschenn@uchicago.edu). This work
was made possible in part through financial support from the National Science
Foundation via grant SES-0752699.

in practice whenever data from different sources are combined.
One dataset could contain only a proxy T for the variable of
interest Y , while another separate dataset could contain vari-
able both the variable of interest Y and a proxy W , which at-
tempts to measure the same quantity as T , but, due to some
difference in data collection or measurement procedures, does
so with a different form of measurement error. This paper casts
and solves the problem in its most general form, allowing for
full hereroscedasticity in the measurement error Uj.

In this comment, we first provide some intuition regarding
the origin of the exceptionally fast convergence rates obtained.
We then informally suggest a series of modest extensions of the
authors’ results: (i) a slightly more efficient estimator, (ii) uni-
form convergence results, and (iii) a novel way to combine the
results of the paper with the regression calibration technique in
order to further reduce measurement error-induced bias.

2. PARAMETRIC RATES—SOME INTUITION

One of the most captivating results of the paper is the possi-
bility of obtaining parametric convergence rates (n−1/2, where
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